blob: c5ea27a5a9b5e186b78861adf9d9def97f2c3d0c [file] [log] [blame]
/**
******************************************************************************
* @file stm32l5xx_hal_pwr_ex.c
* @author MCD Application Team
* @brief Extended PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Extended Initialization and de-initialization functions
* + Extended Peripheral Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l5xx_hal.h"
/** @addtogroup STM32L5xx_HAL_Driver
* @{
*/
/** @defgroup PWREx PWREx
* @brief PWR Extended HAL module driver
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PWR_Extended_Private_Defines PWR Extended Private Defines
* @{
*/
#define PWR_PORTH_AVAILABLE_PINS ((uint32_t)0x0000000B) /* PH0/PH1/PH3 */
/** @defgroup PWREx_PVM_Mode_Mask PWR PVM Mode Mask
* @{
*/
#define PVM_MODE_IT ((uint32_t)0x00010000) /*!< Mask for interruption yielded by PVM threshold crossing */
#define PVM_MODE_EVT ((uint32_t)0x00020000) /*!< Mask for event yielded by PVM threshold crossing */
#define PVM_RISING_EDGE ((uint32_t)0x00000001) /*!< Mask for rising edge set as PVM trigger */
#define PVM_FALLING_EDGE ((uint32_t)0x00000002) /*!< Mask for falling edge set as PVM trigger */
/**
* @}
*/
/** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value
* @{
*/
#define PWR_REGLP_SETTING_DELAY_VALUE 300UL /*!< Time out value for REGLPF flag setting */
#define PWR_VOSF_SETTING_DELAY_VALUE 50UL /*!< Time out value for VOSF flag setting */
#define PWR_MODE_CHANGE_DELAY_VALUE 1000UL /*!< Time out for step down converter operating mode */
/**
* @}
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PWREx_Exported_Functions PWR Extended Exported Functions
* @{
*/
/** @defgroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Initialization and de-initialization functions #####
===============================================================================
[..]
@endverbatim
* @{
*/
/**
* @brief Return Voltage Scaling Range.
* @retval VOS bit field (PWR_REGULATOR_VOLTAGE_SCALE0, PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2)
*/
uint32_t HAL_PWREx_GetVoltageRange(void)
{
return (PWR->CR1 & PWR_CR1_VOS);
}
/**
* @brief Configure the main internal regulator output voltage.
* @param VoltageScaling specifies the regulator output voltage to achieve
* a tradeoff between performance and power consumption.
* This parameter can be one of the following values:
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE0 Regulator voltage output range 0 mode,
* typical output voltage at 1.28 V,
* system frequency up to 100 MHz.
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode,
* typical output voltage at 1.2 V,
* system frequency up to 80 MHz.
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode,
* typical output voltage at 1.0 V,
* system frequency up to 26 MHz.
* @note When moving from Range 1 to Range 2, the system frequency must be decreased to
* a value below 26 MHz before calling HAL_PWREx_ControlVoltageScaling() API.
* When moving from Range 2 to Range 1, the system frequency can be increased to
* a value up to 80 MHz after calling HAL_PWREx_ControlVoltageScaling() API.
* @note When moving from one Range to another , the API waits for VOSF flag to be
* cleared before returning the status. If the flag is not cleared within limited time duration,
* HAL_TIMEOUT status is reported.
* @note The VOS shall NOT be changed in LP Mode of if LP mode is asked.
* @note The function shall not be called in Low-power run mode (meaningless and misleading).
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)
{
uint32_t wait_loop_index;
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling));
uint32_t vos_old = READ_BIT(PWR->CR1, PWR_CR1_VOS);
/* VOS shall not be changed in LP Mode */
/* or if LP Mode is asked but not yet established */
if (HAL_PWREx_SMPS_GetEffectiveMode() == PWR_SMPS_LOW_POWER)
{
return HAL_ERROR;
}
if (READ_BIT(PWR->CR4, PWR_CR4_SMPSLPEN) == PWR_CR4_SMPSLPEN)
{
return HAL_ERROR;
}
/* No change, nothing to do */
if (vos_old == VoltageScaling)
{
return HAL_OK;
}
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, VoltageScaling);
/* Wait until VOSF is cleared */
/* and at least one iteration loop */
wait_loop_index = ((PWR_VOSF_SETTING_DELAY_VALUE * (SystemCoreClock / 100000U)) / 10U) + 1U;
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
{
return HAL_TIMEOUT;
}
return HAL_OK;
}
/**
* @brief Enable battery charging.
* When VDD is present, charge the external battery on VBAT through an internal resistor.
* @param ResistorSelection specifies the resistor impedance.
* This parameter can be one of the following values:
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5 5 kOhms resistor
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor
* @retval None
*/
void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection)
{
assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection));
/* Specify resistor selection */
MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection);
/* Enable battery charging */
SET_BIT(PWR->CR4, PWR_CR4_VBE);
}
/**
* @brief Disable battery charging.
* @retval None
*/
void HAL_PWREx_DisableBatteryCharging(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_VBE);
}
#if defined(PWR_CR2_USV)
/**
* @brief Enable VDDUSB supply.
* @note Remove VDDUSB electrical and logical isolation, once VDDUSB supply is present.
* @retval None
*/
void HAL_PWREx_EnableVddUSB(void)
{
SET_BIT(PWR->CR2, PWR_CR2_USV);
}
/**
* @brief Disable VDDUSB supply.
* @retval None
*/
void HAL_PWREx_DisableVddUSB(void)
{
CLEAR_BIT(PWR->CR2, PWR_CR2_USV);
}
#endif /* PWR_CR2_USV */
/**
* @brief Enable VDDIO2 supply.
* @note Remove VDDIO2 electrical and logical isolation, once VDDIO2 supply is present.
* @retval None
*/
void HAL_PWREx_EnableVddIO2(void)
{
SET_BIT(PWR->CR2, PWR_CR2_IOSV);
}
/**
* @brief Disable VDDIO2 supply.
* @retval None
*/
void HAL_PWREx_DisableVddIO2(void)
{
CLEAR_BIT(PWR->CR2, PWR_CR2_IOSV);
}
/**
* @brief Enable GPIO pull-up state in Standby and Shutdown modes.
* @note Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in
* pull-up state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PDy bit of PWR_PDCRx register is cleared unless it is reserved.
* @note Even if a PUy bit to set is reserved, the other PUy bits entered as input
* parameter at the same time are set.
* @param GPIO specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber specifies the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13 | PWR_GPIO_BIT_15))));
break;
case PWR_GPIO_B:
SET_BIT(PWR->PUCRB, GPIONumber);
CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
break;
case PWR_GPIO_C:
SET_BIT(PWR->PUCRC, GPIONumber);
CLEAR_BIT(PWR->PDCRC, GPIONumber);
break;
case PWR_GPIO_D:
SET_BIT(PWR->PUCRD, GPIONumber);
CLEAR_BIT(PWR->PDCRD, GPIONumber);
break;
case PWR_GPIO_E:
SET_BIT(PWR->PUCRE, GPIONumber);
CLEAR_BIT(PWR->PDCRE, GPIONumber);
break;
case PWR_GPIO_F:
SET_BIT(PWR->PUCRF, GPIONumber);
CLEAR_BIT(PWR->PDCRF, GPIONumber);
break;
case PWR_GPIO_G:
SET_BIT(PWR->PUCRG, GPIONumber);
CLEAR_BIT(PWR->PDCRG, GPIONumber);
break;
case PWR_GPIO_H:
SET_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-up state in Standby mode and Shutdown modes.
* @note Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O
* in pull-up state in Standby and Shutdown modes.
* @note Even if a PUy bit to reset is reserved, the other PUy bits entered as input
* parameter at the same time are reset.
* @param GPIO specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber specifies the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PUCRC, GPIONumber);
break;
case PWR_GPIO_D:
CLEAR_BIT(PWR->PUCRD, GPIONumber);
break;
case PWR_GPIO_E:
CLEAR_BIT(PWR->PUCRE, GPIONumber);
break;
case PWR_GPIO_F:
CLEAR_BIT(PWR->PUCRF, GPIONumber);
break;
case PWR_GPIO_G:
CLEAR_BIT(PWR->PUCRG, GPIONumber);
break;
case PWR_GPIO_H:
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable GPIO pull-down state in Standby and Shutdown modes.
* @note Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in
* pull-down state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PUy bit of PWR_PUCRx register is cleared unless it is reserved.
* @note Even if a PDy bit to set is reserved, the other PDy bits entered as input
* parameter at the same time are set.
* @param GPIO specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber specifies the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13 | PWR_GPIO_BIT_15))));
CLEAR_BIT(PWR->PUCRA, (GPIONumber & (~(PWR_GPIO_BIT_14))));
break;
case PWR_GPIO_B:
SET_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
SET_BIT(PWR->PDCRC, GPIONumber);
CLEAR_BIT(PWR->PUCRC, GPIONumber);
break;
case PWR_GPIO_D:
SET_BIT(PWR->PDCRD, GPIONumber);
CLEAR_BIT(PWR->PUCRD, GPIONumber);
break;
case PWR_GPIO_E:
SET_BIT(PWR->PDCRE, GPIONumber);
CLEAR_BIT(PWR->PUCRE, GPIONumber);
break;
case PWR_GPIO_F:
SET_BIT(PWR->PDCRF, GPIONumber);
CLEAR_BIT(PWR->PUCRF, GPIONumber);
break;
case PWR_GPIO_G:
SET_BIT(PWR->PDCRG, GPIONumber);
CLEAR_BIT(PWR->PUCRG, GPIONumber);
break;
case PWR_GPIO_H:
SET_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-down state in Standby and Shutdown modes.
* @note Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O
* in pull-down state in Standby and Shutdown modes.
* @note Even if a PDy bit to reset is reserved, the other PDy bits entered as input
* parameter at the same time are reset.
* @param GPIO specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* (or PWR_GPIO_I depending on the devices) to select the GPIO peripheral.
* @param GPIONumber specifies the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for the port where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PDCRA, (GPIONumber & (~(PWR_GPIO_BIT_13 | PWR_GPIO_BIT_15))));
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PDCRB, (GPIONumber & (~(PWR_GPIO_BIT_4))));
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PDCRC, GPIONumber);
break;
case PWR_GPIO_D:
CLEAR_BIT(PWR->PDCRD, GPIONumber);
break;
case PWR_GPIO_E:
CLEAR_BIT(PWR->PDCRE, GPIONumber);
break;
case PWR_GPIO_F:
CLEAR_BIT(PWR->PDCRF, GPIONumber);
break;
case PWR_GPIO_G:
CLEAR_BIT(PWR->PDCRG, GPIONumber);
break;
case PWR_GPIO_H:
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable pull-up and pull-down configuration.
* @note When APC bit is set, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes.
* @note Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding
* PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher).
* HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there
* is no conflict when setting PUy or PDy bit.
* @retval None
*/
void HAL_PWREx_EnablePullUpPullDownConfig(void)
{
SET_BIT(PWR->CR3, PWR_CR3_APC);
}
/**
* @brief Disable pull-up and pull-down configuration.
* @note When APC bit is cleared, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes.
* @retval None
*/
void HAL_PWREx_DisablePullUpPullDownConfig(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_APC);
}
/**
* @brief Configure SRAM2 content retention in Standby mode.
* @param SRAM2ContentRetention This parameter can be one of the following values:
* @arg @ref PWR_NO_SRAM2_RETENTION
* @arg @ref PWR_FULL_SRAM2_RETENTION
* @arg @ref PWR_4KBYTES_SRAM2_RETENTION
* @note This feature is secured by SMLPM bit when system implements security (TZEN=1).
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_ConfigSRAM2ContentRetention(uint32_t SRAM2ContentRetention)
{
/* Check the parameters */
assert_param(IS_PWR_SRAM2CONTENT_RETENTION(SRAM2ContentRetention));
/* Set RRS bits */
MODIFY_REG(PWR->CR3, PWR_CR3_RRS, SRAM2ContentRetention);
return HAL_OK;
}
/**
* @brief Enable SRAM2 content retention in Standby mode.
* @note When RRS bit is set, SRAM2 is powered by the low-power regulator in
* Standby mode and its content is kept.
* @retval None
*/
void HAL_PWREx_EnableSRAM2ContentRetention(void)
{
(void) HAL_PWREx_ConfigSRAM2ContentRetention(PWR_FULL_SRAM2_RETENTION);
}
/**
* @brief Disable SRAM2 content retention in Standby mode.
* @note When RRS bit is reset, SRAM2 is powered off in Standby mode
* and its content is lost.
* @retval None
*/
void HAL_PWREx_DisableSRAM2ContentRetention(void)
{
(void) HAL_PWREx_ConfigSRAM2ContentRetention(PWR_NO_SRAM2_RETENTION);
}
/**
* @brief Enable the Power Voltage Monitoring 1: VDDUSB versus 1.2 V.
* @retval None
*/
void HAL_PWREx_EnablePVM1(void)
{
SET_BIT(PWR->CR2, PWR_PVM_1);
}
/**
* @brief Disable the Power Voltage Monitoring 1: VDDUSB versus 1.2 V.
* @retval None
*/
void HAL_PWREx_DisablePVM1(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_1);
}
/**
* @brief Enable the Power Voltage Monitoring 2: VDDIO2 versus 0.9 V.
* @retval None
*/
void HAL_PWREx_EnablePVM2(void)
{
SET_BIT(PWR->CR2, PWR_PVM_2);
}
/**
* @brief Disable the Power Voltage Monitoring 2: VDDIO2 versus 0.9 V.
* @retval None
*/
void HAL_PWREx_DisablePVM2(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_2);
}
/**
* @brief Enable the Power Voltage Monitoring 3: VDDA versus 1.62 V.
* @retval None
*/
void HAL_PWREx_EnablePVM3(void)
{
SET_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Disable the Power Voltage Monitoring 3: VDDA versus 1.62 V.
* @retval None
*/
void HAL_PWREx_DisablePVM3(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Enable the Power Voltage Monitoring 4: VDDA versus 1.8 V.
* @retval None
*/
void HAL_PWREx_EnablePVM4(void)
{
SET_BIT(PWR->CR2, PWR_PVM_4);
}
/**
* @brief Disable the Power Voltage Monitoring 4: VDDA versus 1.8 V.
* @retval None
*/
void HAL_PWREx_DisablePVM4(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_4);
}
/**
* @brief Configure the Peripheral Voltage Monitoring (PVM).
* @param sConfigPVM pointer to a PWR_PVMTypeDef structure that contains the
* PVM configuration information.
* @note The API configures a single PVM according to the information contained
* in the input structure. To configure several PVMs, the API must be singly
* called for each PVM used.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage thresholds corresponding to each
* detection level and to each monitored supply.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType));
assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode));
/* Configure EXTI 35 to 38 interrupts if so required:
scan through PVMType to detect which PVMx is set and
configure the corresponding EXTI line accordingly. */
switch (sConfigPVM->PVMType)
{
case PWR_PVM_1:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM1_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM1_EXTI_DISABLE_IT();
__HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM1_EXTI_ENABLE_IT();
}
/* Configure event mode */
if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM1_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE();
}
break;
case PWR_PVM_2:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM2_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM2_EXTI_DISABLE_IT();
__HAL_PWR_PVM2_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM2_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM2_EXTI_ENABLE_IT();
}
/* Configure event mode */
if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM2_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM2_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM2_EXTI_ENABLE_FALLING_EDGE();
}
break;
case PWR_PVM_3:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM3_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM3_EXTI_DISABLE_IT();
__HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM3_EXTI_ENABLE_IT();
}
/* Configure event mode */
if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM3_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE();
}
break;
case PWR_PVM_4:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM4_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM4_EXTI_DISABLE_IT();
__HAL_PWR_PVM4_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM4_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM4_EXTI_ENABLE_IT();
}
/* Configure event mode */
if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM4_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM4_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM4_EXTI_ENABLE_FALLING_EDGE();
}
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enter Low-power Run mode
* @note In Low-power Run mode, all I/O pins keep the same state as in Run mode.
* @note When Regulator is set to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the
* Flash in power-down monde in setting the RUN_PD bit in FLASH_ACR register.
* Additionally, the clock frequency must be reduced below 2 MHz.
* Setting RUN_PD in FLASH_ACR then appropriately reducing the clock frequency must
* be done before calling HAL_PWREx_EnableLowPowerRunMode() API.
* @retval None
*/
void HAL_PWREx_EnableLowPowerRunMode(void)
{
/* Set Regulator parameter */
SET_BIT(PWR->CR1, PWR_CR1_LPR);
}
/**
* @brief Exit Low-power Run mode.
* @note Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that
* REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode
* returns HAL_TIMEOUT status). The system clock frequency can then be
* increased above 2 MHz.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void)
{
uint32_t wait_loop_index;
/* Clear LPR bit */
CLEAR_BIT(PWR->CR1, PWR_CR1_LPR);
/* Wait until REGLPF is reset */
/* and at least one iteration loop */
wait_loop_index = ((PWR_REGLP_SETTING_DELAY_VALUE * (SystemCoreClock / 100000U)) / 10U) + 1U;
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF))
{
return HAL_TIMEOUT;
}
return HAL_OK;
}
/**
* @brief Enter Stop 0 mode.
* @note In Stop 0 mode, main and low voltage regulators are ON.
* @note In Stop 0 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 0 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note By keeping the internal regulator ON during Stop 0 mode, the consumption
* is higher although the startup time is reduced.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Stop 0 mode with Main Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP0);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Stop 1 mode.
* @note In Stop 1 mode, only low power voltage regulator is ON.
* @note In Stop 1 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 1 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Stop 1 mode with Low-Power Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP1);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Stop 2 mode.
* @note In Stop 2 mode, only low power voltage regulator is ON.
* @note In Stop 2 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped, the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with wakeup capability
* (LCD, LPTIM1, I2C3 and LPUART) can switch on the HSI to receive a frame, and switch off the HSI after
* receiving the frame if it is not a wakeup frame. In this case the HSI clock is propagated only
* to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* The voltage regulator is set in low-power mode but LPR bit must be cleared to enter stop 2 mode.
* Otherwise, Stop 1 mode is entered.
* @note When exiting Stop 2 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry)
{
/* Check the parameter */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Set Stop mode 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_STOP2);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Shutdown mode.
* @note In Shutdown mode, the PLL, the HSI, the MSI, the LSI and the HSE oscillators are switched
* off. The voltage regulator is disabled and Vcore domain is powered off.
* SRAM1, SRAM2 and registers contents are lost except for registers in the Backup domain.
* The BOR is not available.
* @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state.
* @retval None
*/
void HAL_PWREx_EnterSHUTDOWNMode(void)
{
/* Set Shutdown mode */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_CR1_LPMS_SHUTDOWN);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Request Wait For Interrupt */
__WFI();
}
/**
* @brief This function handles the PWR PVD/PVMx interrupt request.
* @note This API should be called under the PVD_PVM_IRQHandler().
* @retval None
*/
void HAL_PWREx_PVD_PVM_IRQHandler(void)
{
uint32_t rising_flag;
uint32_t falling_flag;
rising_flag = READ_REG(EXTI->RPR1);
falling_flag = READ_REG(EXTI->FPR1);
/* Check PWR exti flags for PVD */
if (((rising_flag | falling_flag) & PWR_EXTI_LINE_PVD) != 0x0U)
{
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();
/* Clear PVD exti pending bit */
WRITE_REG(EXTI->RPR1, PWR_EXTI_LINE_PVD);
WRITE_REG(EXTI->FPR1, PWR_EXTI_LINE_PVD);
}
/* Next, successively check PVMx exti flags */
rising_flag = READ_REG(EXTI->RPR2);
falling_flag = READ_REG(EXTI->FPR2);
if (((rising_flag | falling_flag) & PWR_EXTI_LINE_PVM1) != 0x0U)
{
/* PWR PVM1 interrupt user callback */
HAL_PWREx_PVM1Callback();
/* Clear PVM1 exti pending bit */
WRITE_REG(EXTI->RPR2, PWR_EXTI_LINE_PVM1);
WRITE_REG(EXTI->FPR2, PWR_EXTI_LINE_PVM1);
}
if (((rising_flag | falling_flag) & PWR_EXTI_LINE_PVM2) != 0x0U)
{
/* PWR PVM2 interrupt user callback */
HAL_PWREx_PVM2Callback();
/* Clear PVM2 exti pending bit */
WRITE_REG(EXTI->RPR2, PWR_EXTI_LINE_PVM2);
WRITE_REG(EXTI->FPR2, PWR_EXTI_LINE_PVM2);
}
if (((rising_flag | falling_flag) & PWR_EXTI_LINE_PVM3) != 0x0U)
{
/* PWR PVM3 interrupt user callback */
HAL_PWREx_PVM3Callback();
/* Clear PVM3 exti pending bit */
WRITE_REG(EXTI->RPR2, PWR_EXTI_LINE_PVM3);
WRITE_REG(EXTI->FPR2, PWR_EXTI_LINE_PVM3);
}
if (((rising_flag | falling_flag) & PWR_EXTI_LINE_PVM4) != 0x0U)
{
/* PWR PVM4 interrupt user callback */
HAL_PWREx_PVM4Callback();
/* Clear PVM4 exti pending bit */
WRITE_REG(EXTI->RPR2, PWR_EXTI_LINE_PVM4);
WRITE_REG(EXTI->FPR2, PWR_EXTI_LINE_PVM4);
}
}
/**
* @brief PWR PVM1 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM1Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM1Callback() API can be implemented in the user file
*/
}
/**
* @brief PWR PVM2 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM2Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM2Callback() API can be implemented in the user file
*/
}
/**
* @brief PWR PVM3 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM3Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM3Callback() API can be implemented in the user file
*/
}
/**
* @brief PWR PVM4 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM4Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM4Callback() API can be implemented in the user file
*/
}
/**
* @brief Enable UCPD configuration memorization in Standby.
* @note This feature is secured by secured UCPD1 when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_EnableUCPDStandbyMode(void)
{
/* Memorize UCPD configuration when entering standby mode */
SET_BIT(PWR->CR3, PWR_CR3_UCPD_STDBY);
}
/**
* @brief Disable UCPD configuration memorization in Standby.
* @note This function must be called on exiting the Standby mode and before any UCPD
* configuration update.
* @note This feature is secured by secured UCPD1 when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_DisableUCPDStandbyMode(void)
{
/* Write 0 immediately after Standby exit when using UCPD,
and before writing any UCPD registers */
CLEAR_BIT(PWR->CR3, PWR_CR3_UCPD_STDBY);
}
/**
* @brief Enable the USB Type-C dead battery pull-down behavior
* on UCPDx_CC1 and UCPDx_CC2 pins
* @note This feature is secured by secured UCPD1 when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_EnableUCPDDeadBattery(void)
{
/* Write 0 to enable the USB Type-C dead battery pull-down behavior */
CLEAR_BIT(PWR->CR3, PWR_CR3_UCPD_DBDIS);
}
/**
* @brief Disable the USB Type-C dead battery pull-down behavior
* on UCPDx_CC1 and UCPDx_CC2 pins
* @note This feature is secured by secured UCPD1 when system implements security (TZEN=1).
* @note After exiting reset, the USB Type-C dead battery behavior will be enabled,
* which may have a pull-down effect on CC1 and CC2 pins.
* It is recommended to disable it in all cases, either to stop this pull-down
* or to hand over control to the UCPD (which should therefore be
* initialized before doing the disable).
* @retval None
*/
void HAL_PWREx_DisableUCPDDeadBattery(void)
{
/* Write 1 to disable the USB Type-C dead battery pull-down behavior */
SET_BIT(PWR->CR3, PWR_CR3_UCPD_DBDIS);
}
/**
* @brief Enable ultra low power mode.
* Enable ultra low power BORL, BORH and PVD in Standby/Shutdown mode.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_EnableUltraLowPowerMode(void)
{
/* Enable ultra low power mode */
SET_BIT(PWR->CR3, PWR_CR3_ULPMEN);
}
/**
* @brief Disable ultra low power mode.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_DisableUltraLowPowerMode(void)
{
/* Disable ultra low power mode */
CLEAR_BIT(PWR->CR3, PWR_CR3_ULPMEN);
}
/**
* @}
*/
/** @defgroup PWREx_Exported_Functions_Group2 Extended Power Control SMPS functions
* @brief Extended Power Control SMPS functions
*
@verbatim
===============================================================================
##### Extended Power Control SMPS functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the
SMPS mode.
@endverbatim
* @{
*/
/**
* @brief Set SMPS step down converter operating mode.
* @param OperatingMode This parameter can be one of the following values:
* @arg @ref PWR_SMPS_HIGH_POWER SMPS step down converter in high-power mode (default)
* @arg @ref PWR_SMPS_LOW_POWER SMPS step down converter in low-power mode
* @arg @ref PWR_SMPS_BYPASS SMPS step down converter in bypass mode
* @note The High-power mode achieves the high efficiency at high current load.
* @note The Low-power mode achieves the high efficiency at low current load.
* @note The Low-power mode can be enabled only when the main regulator voltage is in range 2 mode.
* When Low-power mode is enabled, the voltage scaling must not be modified. This mode can be
* only selected when power consumption does not exceed 30 mA.
* @note When switching from one power mode to another, HAL_PWREx_SMPS_SetMode() waits for the new
* mode to be effective within a limited time duration before returning the status HAL_OK
* else it returns HAL_TIMEOUT. A request for Low power mode when the voltage regulator is not
* in range 2 is rejected with HAL_ERROR.
* @note The Bypass mode can be enabled or disabled on the fly whatever the selected operation mode.
* @note The function shall not be called in Low-power run mode (meaningless and misleading).
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_SMPS_SetMode(uint32_t OperatingMode)
{
HAL_StatusTypeDef status;
uint32_t pwr_sr1;
uint32_t wait_loop_index;
/* Check the parameters */
assert_param(IS_PWR_SMPS_MODE(OperatingMode));
if (OperatingMode == PWR_SMPS_HIGH_POWER)
{
MODIFY_REG(PWR->CR4, (PWR_CR4_SMPSBYP | PWR_CR4_SMPSLPEN), 0U);
}
else if (OperatingMode == PWR_SMPS_LOW_POWER)
{
/* ------------------------------------------------------------------------ */
/* SMPS Low-power mode can only be set in range 2 */
if (HAL_PWREx_GetVoltageRange() != PWR_REGULATOR_VOLTAGE_SCALE2)
{
return HAL_ERROR;
}
else
{
pwr_sr1 = READ_REG(PWR->SR1);
if (READ_BIT(pwr_sr1, PWR_SR1_SMPSHPRDY | PWR_SR1_SMPSBYPRDY) == 0U)
{
/* Already in SMPS Low-power mode */
/* Nothing to configure */
}
else
{
/* Switch to Low-power mode */
MODIFY_REG(PWR->CR4, (PWR_CR4_SMPSBYP | PWR_CR4_SMPSLPEN), PWR_CR4_SMPSLPEN);
}
}
}
else /* PWR_SMPS_BYPASS */
{
HAL_PWREx_SMPS_EnableBypassMode();
}
/* Wait until SMPS step down converter operating mode change */
/* and at least one iteration loop */
wait_loop_index = ((PWR_MODE_CHANGE_DELAY_VALUE * (SystemCoreClock / 100000U)) / 10U) + 1U;
while ((HAL_PWREx_SMPS_GetEffectiveMode() != OperatingMode) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_PWREx_SMPS_GetEffectiveMode() == OperatingMode)
{
status = HAL_OK;
}
else
{
status = HAL_TIMEOUT;
}
return status;
}
/**
* @brief Get SMPS effective step down converter operating mode
* @retval Returned value can be one of the following values:
* @arg @ref PWR_SMPS_HIGH_POWER SMPS step down converter in high-power mode (default)
* @arg @ref PWR_SMPS_LOW_POWER SMPS step down converter in low-power mode
* @arg @ref PWR_SMPS_BYPASS SMPS step down converter in bypass mode
*/
uint32_t HAL_PWREx_SMPS_GetEffectiveMode(void)
{
uint32_t mode;
uint32_t pwr_sr1;
pwr_sr1 = READ_REG(PWR->SR1);
if (READ_BIT(pwr_sr1, PWR_SR1_SMPSBYPRDY) != 0U)
{
mode = PWR_SMPS_BYPASS;
}
else if (READ_BIT(pwr_sr1, PWR_SR1_SMPSHPRDY) == 0U)
{
mode = PWR_SMPS_LOW_POWER;
}
else
{
mode = PWR_SMPS_HIGH_POWER;
}
return mode;
}
/**
* @brief Enable SMPS step down converter fast start.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_SMPS_EnableFastStart(void)
{
SET_BIT(PWR->CR4, PWR_CR4_SMPSFSTEN);
}
/**
* @brief Disable SMPS step down converter fast start.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_SMPS_DisableFastStart(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_SMPSFSTEN);
}
/**
* @brief Disable the SMPS Bypass.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_SMPS_DisableBypassMode(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_SMPSBYP);
}
/**
* @brief Enable the SMPS Bypass.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_SMPS_EnableBypassMode(void)
{
SET_BIT(PWR->CR4, PWR_CR4_SMPSBYP);
}
/**
* @brief Enable external SMPS when external SMPS switch closed.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_SMPS_EnableExternal(void)
{
SET_BIT(PWR->CR4, PWR_CR4_EXTSMPSEN);
}
/**
* @brief Disable external SMPS when external SMPS switch closed.
* @note This feature is secured by VDMSEC bit when system implements security (TZEN=1).
* @retval None
*/
void HAL_PWREx_SMPS_DisableExternal(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_EXTSMPSEN);
}
/**
* @brief Get Main Regulator status for use with external SMPS
* @retval Returned value can be one of the following values:
* @arg @ref PWR_MAINREG_READY_FOR_EXTSMPS Main regulator ready for use with external SMPS
* @arg @ref PWR_MAINREG_NOT_READY_FOR_EXTSMPS Main regulator not ready for use with external SMPS
*/
uint32_t HAL_PWREx_SMPS_GetMainRegulatorExtSMPSReadyStatus(void)
{
uint32_t main_regulator_status;
uint32_t pwr_sr1;
pwr_sr1 = READ_REG(PWR->SR1);
if (READ_BIT(pwr_sr1, PWR_SR1_EXTSMPSRDY) != 0U)
{
main_regulator_status = PWR_MAINREG_READY_FOR_EXTSMPS;
}
else
{
main_regulator_status = PWR_MAINREG_NOT_READY_FOR_EXTSMPS;
}
return main_regulator_status;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/