blob: fdddf2d12177ef0ad522dc8f2590c9d7adf68cbf [file] [log] [blame]
/**
******************************************************************************
* @file stm32wbxx_hal_qspi.c
* @author MCD Application Team
* @brief QSPI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the QuadSPI interface (QSPI).
* + Initialization and de-initialization functions
* + Indirect functional mode management
* + Memory-mapped functional mode management
* + Auto-polling functional mode management
* + Interrupts and flags management
* + DMA channel configuration for indirect functional mode
* + Errors management and abort functionality
*
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
*** Initialization ***
======================
[..]
(#) As prerequisite, fill in the HAL_QSPI_MspInit() :
(++) Enable QuadSPI clock interface with __HAL_RCC_QUADSPI_CLK_ENABLE().
(++) Reset QuadSPI Peripheral with __HAL_RCC_QUADSPI_FORCE_RESET() and __HAL_RCC_QUADSPI_RELEASE_RESET().
(++) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE().
(++) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init().
(++) If interrupt mode is used, enable and configure QuadSPI global
interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
(++) If DMA mode is used, enable the clocks for the QuadSPI DMA channel
with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(),
link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure
DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
(#) Configure the flash size, the clock prescaler, the fifo threshold, the
clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function.
*** Indirect functional mode ***
================================
[..]
(#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT()
functions :
(++) Instruction phase : the mode used and if present the instruction opcode.
(++) Address phase : the mode used and if present the size and the address value.
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
bytes values.
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
(++) Data phase : the mode used and if present the number of bytes.
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
if activated.
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
(#) If no data is required for the command, it is sent directly to the memory :
(++) In polling mode, the output of the function is done when the transfer is complete.
(++) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete.
(#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or
HAL_QSPI_Transmit_IT() after the command configuration :
(++) In polling mode, the output of the function is done when the transfer is complete.
(++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold
is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
(++) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and
HAL_QSPI_TxCpltCallback() will be called when the transfer is complete.
(#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or
HAL_QSPI_Receive_IT() after the command configuration :
(++) In polling mode, the output of the function is done when the transfer is complete.
(++) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold
is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.
(++) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and
HAL_QSPI_RxCpltCallback() will be called when the transfer is complete.
*** Auto-polling functional mode ***
====================================
[..]
(#) Configure the command sequence and the auto-polling functional mode using the
HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions :
(++) Instruction phase : the mode used and if present the instruction opcode.
(++) Address phase : the mode used and if present the size and the address value.
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
bytes values.
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
(++) Data phase : the mode used.
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
if activated.
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
(++) The size of the status bytes, the match value, the mask used, the match mode (OR/AND),
the polling interval and the automatic stop activation.
(#) After the configuration :
(++) In polling mode, the output of the function is done when the status match is reached. The
automatic stop is activated to avoid an infinite loop.
(++) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached.
*** Memory-mapped functional mode ***
=====================================
[..]
(#) Configure the command sequence and the memory-mapped functional mode using the
HAL_QSPI_MemoryMapped() functions :
(++) Instruction phase : the mode used and if present the instruction opcode.
(++) Address phase : the mode used and the size.
(++) Alternate-bytes phase : the mode used and if present the size and the alternate
bytes values.
(++) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase).
(++) Data phase : the mode used.
(++) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay
if activated.
(++) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode.
(++) The timeout activation and the timeout period.
(#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on
the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires.
*** Errors management and abort functionality ***
=================================================
[..]
(#) HAL_QSPI_GetError() function gives the error raised during the last operation.
(#) HAL_QSPI_Abort() and HAL_QSPI_Abort_IT() functions aborts any on-going operation and
flushes the fifo :
(++) In polling mode, the output of the function is done when the transfer
complete bit is set and the busy bit cleared.
(++) In interrupt mode, HAL_QSPI_AbortCpltCallback() will be called when
the transfer complete bit is set.
*** Control functions ***
=========================
[..]
(#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver.
(#) HAL_QSPI_SetTimeout() function configures the timeout value used in the driver.
(#) HAL_QSPI_SetFifoThreshold() function configures the threshold on the Fifo of the QSPI IP.
(#) HAL_QSPI_GetFifoThreshold() function gives the current of the Fifo's threshold
*** Callback registration ***
=============================================
[..]
The compilation define USE_HAL_QSPI_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_QSPI_RegisterCallback() to register a user callback,
it allows to register following callbacks:
(+) ErrorCallback : callback when error occurs.
(+) AbortCpltCallback : callback when abort is completed.
(+) FifoThresholdCallback : callback when the fifo threshold is reached.
(+) CmdCpltCallback : callback when a command without data is completed.
(+) RxCpltCallback : callback when a reception transfer is completed.
(+) TxCpltCallback : callback when a transmission transfer is completed.
(+) RxHalfCpltCallback : callback when half of the reception transfer is completed.
(+) TxHalfCpltCallback : callback when half of the transmission transfer is completed.
(+) StatusMatchCallback : callback when a status match occurs.
(+) TimeOutCallback : callback when the timeout perioed expires.
(+) MspInitCallback : QSPI MspInit.
(+) MspDeInitCallback : QSPI MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function HAL_QSPI_UnRegisterCallback() to reset a callback to the default
weak (surcharged) function. It allows to reset following callbacks:
(+) ErrorCallback : callback when error occurs.
(+) AbortCpltCallback : callback when abort is completed.
(+) FifoThresholdCallback : callback when the fifo threshold is reached.
(+) CmdCpltCallback : callback when a command without data is completed.
(+) RxCpltCallback : callback when a reception transfer is completed.
(+) TxCpltCallback : callback when a transmission transfer is completed.
(+) RxHalfCpltCallback : callback when half of the reception transfer is completed.
(+) TxHalfCpltCallback : callback when half of the transmission transfer is completed.
(+) StatusMatchCallback : callback when a status match occurs.
(+) TimeOutCallback : callback when the timeout perioed expires.
(+) MspInitCallback : QSPI MspInit.
(+) MspDeInitCallback : QSPI MspDeInit.
This function) takes as parameters the HAL peripheral handle and the Callback ID.
By default, after the HAL_QSPI_Init and if the state is HAL_QSPI_STATE_RESET
all callbacks are reset to the corresponding legacy weak (surcharged) functions.
Exception done for MspInit and MspDeInit callbacks that are respectively
reset to the legacy weak (surcharged) functions in the HAL_QSPI_Init
and HAL_QSPI_DeInit only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_QSPI_Init and HAL_QSPI_DeInit
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in READY state only.
Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_QSPI_RegisterCallback before calling HAL_QSPI_DeInit
or HAL_QSPI_Init function.
When The compilation define USE_HAL_QSPI_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
*** Workarounds linked to Silicon Limitation ***
====================================================
[..]
(#) Workarounds Implemented inside HAL Driver
(++) Extra data written in the FIFO at the end of a read transfer
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
#if defined(QUADSPI)
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup QSPI QSPI
* @brief QSPI HAL module driver
* @{
*/
#ifdef HAL_QSPI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup QSPI_Private_Constants QSPI Private Constants
* @{
*/
#define QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE 0x00000000U /*!<Indirect write mode*/
#define QSPI_FUNCTIONAL_MODE_INDIRECT_READ ((uint32_t)QUADSPI_CCR_FMODE_0) /*!<Indirect read mode*/
#define QSPI_FUNCTIONAL_MODE_AUTO_POLLING ((uint32_t)QUADSPI_CCR_FMODE_1) /*!<Automatic polling mode*/
#define QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED ((uint32_t)QUADSPI_CCR_FMODE) /*!<Memory-mapped mode*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup QSPI_Private_Macros QSPI Private Macros
* @{
*/
#define IS_QSPI_FUNCTIONAL_MODE(MODE) (((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE) || \
((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_READ) || \
((MODE) == QSPI_FUNCTIONAL_MODE_AUTO_POLLING) || \
((MODE) == QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED))
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void QSPI_DMAError(DMA_HandleTypeDef *hdma);
static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, FlagStatus State, uint32_t Tickstart, uint32_t Timeout);
static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode);
/* Exported functions --------------------------------------------------------*/
/** @defgroup QSPI_Exported_Functions QSPI Exported Functions
* @{
*/
/** @defgroup QSPI_Exported_Functions_Group1 Initialization/de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to :
(+) Initialize the QuadSPI.
(+) De-initialize the QuadSPI.
@endverbatim
* @{
*/
/**
* @brief Initialize the QSPI mode according to the specified parameters
* in the QSPI_InitTypeDef and initialize the associated handle.
* @param hqspi QSPI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Init(QSPI_HandleTypeDef *hqspi)
{
HAL_StatusTypeDef status;
uint32_t tickstart = HAL_GetTick();
/* Check the QSPI handle allocation */
if(hqspi == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_QUADSPI_ALL_INSTANCE(hqspi->Instance));
assert_param(IS_QSPI_CLOCK_PRESCALER(hqspi->Init.ClockPrescaler));
assert_param(IS_QSPI_FIFO_THRESHOLD(hqspi->Init.FifoThreshold));
assert_param(IS_QSPI_SSHIFT(hqspi->Init.SampleShifting));
assert_param(IS_QSPI_FLASH_SIZE(hqspi->Init.FlashSize));
assert_param(IS_QSPI_CS_HIGH_TIME(hqspi->Init.ChipSelectHighTime));
assert_param(IS_QSPI_CLOCK_MODE(hqspi->Init.ClockMode));
if(hqspi->State == HAL_QSPI_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hqspi->Lock = HAL_UNLOCKED;
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
/* Reset Callback pointers in HAL_QSPI_STATE_RESET only */
hqspi->ErrorCallback = HAL_QSPI_ErrorCallback;
hqspi->AbortCpltCallback = HAL_QSPI_AbortCpltCallback;
hqspi->FifoThresholdCallback = HAL_QSPI_FifoThresholdCallback;
hqspi->CmdCpltCallback = HAL_QSPI_CmdCpltCallback;
hqspi->RxCpltCallback = HAL_QSPI_RxCpltCallback;
hqspi->TxCpltCallback = HAL_QSPI_TxCpltCallback;
hqspi->RxHalfCpltCallback = HAL_QSPI_RxHalfCpltCallback;
hqspi->TxHalfCpltCallback = HAL_QSPI_TxHalfCpltCallback;
hqspi->StatusMatchCallback = HAL_QSPI_StatusMatchCallback;
hqspi->TimeOutCallback = HAL_QSPI_TimeOutCallback;
if(hqspi->MspInitCallback == NULL)
{
hqspi->MspInitCallback = HAL_QSPI_MspInit;
}
/* Init the low level hardware */
hqspi->MspInitCallback(hqspi);
#else
/* Init the low level hardware : GPIO, CLOCK */
HAL_QSPI_MspInit(hqspi);
#endif
/* Configure the default timeout for the QSPI memory access */
HAL_QSPI_SetTimeout(hqspi, HAL_QSPI_TIMEOUT_DEFAULT_VALUE);
}
/* Configure QSPI FIFO Threshold */
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES,
((hqspi->Init.FifoThreshold - 1U) << QUADSPI_CR_FTHRES_Pos));
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if(status == HAL_OK)
{
/* Configure QSPI Clock Prescaler and Sample Shift */
MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PRESCALER | QUADSPI_CR_SSHIFT),
((hqspi->Init.ClockPrescaler << QUADSPI_CR_PRESCALER_Pos) |
hqspi->Init.SampleShifting));
/* Configure QSPI Flash Size, CS High Time and Clock Mode */
MODIFY_REG(hqspi->Instance->DCR, (QUADSPI_DCR_FSIZE | QUADSPI_DCR_CSHT | QUADSPI_DCR_CKMODE),
((hqspi->Init.FlashSize << QUADSPI_DCR_FSIZE_Pos) |
hqspi->Init.ChipSelectHighTime | hqspi->Init.ClockMode));
/* Enable the QSPI peripheral */
__HAL_QSPI_ENABLE(hqspi);
/* Set QSPI error code to none */
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Initialize the QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
/* Release Lock */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief De-Initialize the QSPI peripheral.
* @param hqspi QSPI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_DeInit(QSPI_HandleTypeDef *hqspi)
{
/* Check the QSPI handle allocation */
if(hqspi == NULL)
{
return HAL_ERROR;
}
/* Disable the QSPI Peripheral Clock */
__HAL_QSPI_DISABLE(hqspi);
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
if(hqspi->MspDeInitCallback == NULL)
{
hqspi->MspDeInitCallback = HAL_QSPI_MspDeInit;
}
/* DeInit the low level hardware */
hqspi->MspDeInitCallback(hqspi);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
HAL_QSPI_MspDeInit(hqspi);
#endif
/* Set QSPI error code to none */
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Initialize the QSPI state */
hqspi->State = HAL_QSPI_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hqspi);
return HAL_OK;
}
/**
* @brief Initialize the QSPI MSP.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_MspInit(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_MspInit can be implemented in the user file
*/
}
/**
* @brief DeInitialize the QSPI MSP.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_MspDeInit can be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup QSPI_Exported_Functions_Group2 Input and Output operation functions
* @brief QSPI Transmit/Receive functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to :
(+) Handle the interrupts.
(+) Handle the command sequence.
(+) Transmit data in blocking, interrupt or DMA mode.
(+) Receive data in blocking, interrupt or DMA mode.
(+) Manage the auto-polling functional mode.
(+) Manage the memory-mapped functional mode.
@endverbatim
* @{
*/
/**
* @brief Handle QSPI interrupt request.
* @param hqspi QSPI handle
* @retval None
*/
void HAL_QSPI_IRQHandler(QSPI_HandleTypeDef *hqspi)
{
__IO uint32_t *data_reg;
uint32_t flag = READ_REG(hqspi->Instance->SR);
uint32_t itsource = READ_REG(hqspi->Instance->CR);
/* QSPI Fifo Threshold interrupt occurred ----------------------------------*/
if(((flag & QSPI_FLAG_FT) != 0U) && ((itsource & QSPI_IT_FT) != 0U))
{
data_reg = &hqspi->Instance->DR;
if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX)
{
/* Transmission process */
while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != RESET)
{
if (hqspi->TxXferCount > 0U)
{
/* Fill the FIFO until the threshold is reached */
*((__IO uint8_t *)data_reg) = *hqspi->pTxBuffPtr;
hqspi->pTxBuffPtr++;
hqspi->TxXferCount--;
}
else
{
/* No more data available for the transfer */
/* Disable the QSPI FIFO Threshold Interrupt */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT);
break;
}
}
}
else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX)
{
/* Receiving Process */
while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != RESET)
{
if (hqspi->RxXferCount > 0U)
{
/* Read the FIFO until the threshold is reached */
*hqspi->pRxBuffPtr = *((__IO uint8_t *)data_reg);
hqspi->pRxBuffPtr++;
hqspi->RxXferCount--;
}
else
{
/* All data have been received for the transfer */
/* Disable the QSPI FIFO Threshold Interrupt */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_FT);
break;
}
}
}
else
{
/* Nothing to do */
}
/* FIFO Threshold callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->FifoThresholdCallback(hqspi);
#else
HAL_QSPI_FifoThresholdCallback(hqspi);
#endif
}
/* QSPI Transfer Complete interrupt occurred -------------------------------*/
else if(((flag & QSPI_FLAG_TC) != 0U) && ((itsource & QSPI_IT_TC) != 0U))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TC);
/* Disable the QSPI FIFO Threshold, Transfer Error and Transfer complete Interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT);
/* Transfer complete callback */
if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX)
{
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN) != 0U)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Disable the DMA channel */
__HAL_DMA_DISABLE(hqspi->hdma);
}
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* TX Complete callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->TxCpltCallback(hqspi);
#else
HAL_QSPI_TxCpltCallback(hqspi);
#endif
}
else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX)
{
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN) != 0U)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Disable the DMA channel */
__HAL_DMA_DISABLE(hqspi->hdma);
}
else
{
data_reg = &hqspi->Instance->DR;
while(READ_BIT(hqspi->Instance->SR, QUADSPI_SR_FLEVEL) != 0U)
{
if (hqspi->RxXferCount > 0U)
{
/* Read the last data received in the FIFO until it is empty */
*hqspi->pRxBuffPtr = *((__IO uint8_t *)data_reg);
hqspi->pRxBuffPtr++;
hqspi->RxXferCount--;
}
else
{
/* All data have been received for the transfer */
break;
}
}
}
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* RX Complete callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->RxCpltCallback(hqspi);
#else
HAL_QSPI_RxCpltCallback(hqspi);
#endif
}
else if(hqspi->State == HAL_QSPI_STATE_BUSY)
{
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Command Complete callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->CmdCpltCallback(hqspi);
#else
HAL_QSPI_CmdCpltCallback(hqspi);
#endif
}
else if(hqspi->State == HAL_QSPI_STATE_ABORT)
{
/* Reset functional mode configuration to indirect write mode by default */
CLEAR_BIT(hqspi->Instance->CCR, QUADSPI_CCR_FMODE);
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
if (hqspi->ErrorCode == HAL_QSPI_ERROR_NONE)
{
/* Abort called by the user */
/* Abort Complete callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->AbortCpltCallback(hqspi);
#else
HAL_QSPI_AbortCpltCallback(hqspi);
#endif
}
else
{
/* Abort due to an error (eg : DMA error) */
/* Error callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->ErrorCallback(hqspi);
#else
HAL_QSPI_ErrorCallback(hqspi);
#endif
}
}
else
{
/* Nothing to do */
}
}
/* QSPI Status Match interrupt occurred ------------------------------------*/
else if(((flag & QSPI_FLAG_SM) != 0U) && ((itsource & QSPI_IT_SM) != 0U))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_SM);
/* Check if the automatic poll mode stop is activated */
if(READ_BIT(hqspi->Instance->CR, QUADSPI_CR_APMS) != 0U)
{
/* Disable the QSPI Transfer Error and Status Match Interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE));
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
}
/* Status match callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->StatusMatchCallback(hqspi);
#else
HAL_QSPI_StatusMatchCallback(hqspi);
#endif
}
/* QSPI Transfer Error interrupt occurred ----------------------------------*/
else if(((flag & QSPI_FLAG_TE) != 0U) && ((itsource & QSPI_IT_TE) != 0U))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TE);
/* Disable all the QSPI Interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT);
/* Set error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_TRANSFER;
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN) != 0U)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Disable the DMA channel */
hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt;
if (HAL_DMA_Abort_IT(hqspi->hdma) != HAL_OK)
{
/* Set error code to DMA */
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Error callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->ErrorCallback(hqspi);
#else
HAL_QSPI_ErrorCallback(hqspi);
#endif
}
}
else
{
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Error callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->ErrorCallback(hqspi);
#else
HAL_QSPI_ErrorCallback(hqspi);
#endif
}
}
/* QSPI Timeout interrupt occurred -----------------------------------------*/
else if(((flag & QSPI_FLAG_TO) != 0U) && ((itsource & QSPI_IT_TO) != 0U))
{
/* Clear interrupt */
WRITE_REG(hqspi->Instance->FCR, QSPI_FLAG_TO);
/* Timeout callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->TimeOutCallback(hqspi);
#else
HAL_QSPI_TimeOutCallback(hqspi);
#endif
}
else
{
/* Nothing to do */
}
}
/**
* @brief Set the command configuration.
* @param hqspi QSPI handle
* @param cmd : structure that contains the command configuration information
* @param Timeout Timeout duration
* @note This function is used only in Indirect Read or Write Modes
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Command(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t Timeout)
{
HAL_StatusTypeDef status;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_BUSY;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Call the configuration function */
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
if (cmd->DataMode == QSPI_DATA_NONE)
{
/* When there is no data phase, the transfer start as soon as the configuration is done
so wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
if (status == HAL_OK)
{
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
else
{
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief Set the command configuration in interrupt mode.
* @param hqspi QSPI handle
* @param cmd structure that contains the command configuration information
* @note This function is used only in Indirect Read or Write Modes
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Command_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd)
{
HAL_StatusTypeDef status;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_BUSY;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if (status == HAL_OK)
{
if (cmd->DataMode == QSPI_DATA_NONE)
{
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
}
/* Call the configuration function */
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
if (cmd->DataMode == QSPI_DATA_NONE)
{
/* When there is no data phase, the transfer start as soon as the configuration is done
so activate TC and TE interrupts */
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI Transfer Error Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_TC);
}
else
{
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
/* Return function status */
return status;
}
/**
* @brief Transmit an amount of data in blocking mode.
* @param hqspi QSPI handle
* @param pData pointer to data buffer
* @param Timeout Timeout duration
* @note This function is used only in Indirect Write Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Transmit(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart = HAL_GetTick();
__IO uint32_t *data_reg = &hqspi->Instance->DR;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
/* Configure counters and size of the handle */
hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->pTxBuffPtr = pData;
/* Configure QSPI: CCR register with functional as indirect write */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
while(hqspi->TxXferCount > 0U)
{
/* Wait until FT flag is set to send data */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_FT, SET, tickstart, Timeout);
if (status != HAL_OK)
{
break;
}
*((__IO uint8_t *)data_reg) = *hqspi->pTxBuffPtr;
hqspi->pTxBuffPtr++;
hqspi->TxXferCount--;
}
if (status == HAL_OK)
{
/* Wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Clear Transfer Complete bit */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
}
}
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
return status;
}
/**
* @brief Receive an amount of data in blocking mode.
* @param hqspi QSPI handle
* @param pData pointer to data buffer
* @param Timeout Timeout duration
* @note This function is used only in Indirect Read Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Receive(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart = HAL_GetTick();
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
__IO uint32_t *data_reg = &hqspi->Instance->DR;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
/* Configure counters and size of the handle */
hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->pRxBuffPtr = pData;
/* Configure QSPI: CCR register with functional as indirect read */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
/* Start the transfer by re-writing the address in AR register */
WRITE_REG(hqspi->Instance->AR, addr_reg);
while(hqspi->RxXferCount > 0U)
{
/* Wait until FT or TC flag is set to read received data */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, (QSPI_FLAG_FT | QSPI_FLAG_TC), SET, tickstart, Timeout);
if (status != HAL_OK)
{
break;
}
*hqspi->pRxBuffPtr = *((__IO uint8_t *)data_reg);
hqspi->pRxBuffPtr++;
hqspi->RxXferCount--;
}
if (status == HAL_OK)
{
/* Wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Clear Transfer Complete bit */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
}
}
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_READY;
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
return status;
}
/**
* @brief Send an amount of data in non-blocking mode with interrupt.
* @param hqspi QSPI handle
* @param pData pointer to data buffer
* @note This function is used only in Indirect Write Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Transmit_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
/* Configure counters and size of the handle */
hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->pTxBuffPtr = pData;
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
/* Configure QSPI: CCR register with functional as indirect write */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC);
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Receive an amount of data in non-blocking mode with interrupt.
* @param hqspi QSPI handle
* @param pData pointer to data buffer
* @note This function is used only in Indirect Read Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Receive_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
/* Configure counters and size of the handle */
hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1U;
hqspi->pRxBuffPtr = pData;
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_TC);
/* Configure QSPI: CCR register with functional as indirect read */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
/* Start the transfer by re-writing the address in AR register */
WRITE_REG(hqspi->Instance->AR, addr_reg);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error, FIFO threshold and transfer complete Interrupts */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC);
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Send an amount of data in non-blocking mode with DMA.
* @param hqspi QSPI handle
* @param pData pointer to data buffer
* @note This function is used only in Indirect Write Mode
* @note If DMA peripheral access is configured as halfword, the number
* of data and the fifo threshold should be aligned on halfword
* @note If DMA peripheral access is configured as word, the number
* of data and the fifo threshold should be aligned on word
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Transmit_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U);
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
/* Clear the error code */
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Configure counters of the handle */
if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
{
hqspi->TxXferCount = data_size;
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD)
{
if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U))
{
/* The number of data or the fifo threshold is not aligned on halfword
=> no transfer possible with DMA peripheral access configured as halfword */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->TxXferCount = (data_size >> 1U);
}
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD)
{
if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U))
{
/* The number of data or the fifo threshold is not aligned on word
=> no transfer possible with DMA peripheral access configured as word */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->TxXferCount = (data_size >> 2U);
}
}
else
{
/* Nothing to do */
}
if (status == HAL_OK)
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX;
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC));
/* Configure size and pointer of the handle */
hqspi->TxXferSize = hqspi->TxXferCount;
hqspi->pTxBuffPtr = pData;
/* Configure QSPI: CCR register with functional mode as indirect write */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE);
/* Set the QSPI DMA transfer complete callback */
hqspi->hdma->XferCpltCallback = QSPI_DMATxCplt;
/* Set the QSPI DMA Half transfer complete callback */
hqspi->hdma->XferHalfCpltCallback = QSPI_DMATxHalfCplt;
/* Set the DMA error callback */
hqspi->hdma->XferErrorCallback = QSPI_DMAError;
/* Clear the DMA abort callback */
hqspi->hdma->XferAbortCallback = NULL;
/* Configure the direction of the DMA */
hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH;
MODIFY_REG(hqspi->hdma->Instance->CCR, DMA_CCR_DIR, hqspi->hdma->Init.Direction);
/* Enable the QSPI transmit DMA Channel */
if (HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)pData, (uint32_t)&hqspi->Instance->DR, hqspi->TxXferSize) == HAL_OK)
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE);
/* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
}
else
{
status = HAL_ERROR;
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
hqspi->State = HAL_QSPI_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Receive an amount of data in non-blocking mode with DMA.
* @param hqspi QSPI handle
* @param pData pointer to data buffer.
* @note This function is used only in Indirect Read Mode
* @note If DMA peripheral access is configured as halfword, the number
* of data and the fifo threshold should be aligned on halfword
* @note If DMA peripheral access is configured as word, the number
* of data and the fifo threshold should be aligned on word
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Receive_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t addr_reg = READ_REG(hqspi->Instance->AR);
uint32_t data_size = (READ_REG(hqspi->Instance->DLR) + 1U);
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
/* Clear the error code */
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
if(pData != NULL )
{
/* Configure counters of the handle */
if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_BYTE)
{
hqspi->RxXferCount = data_size;
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_HALFWORD)
{
if (((data_size % 2U) != 0U) || ((hqspi->Init.FifoThreshold % 2U) != 0U))
{
/* The number of data or the fifo threshold is not aligned on halfword
=> no transfer possible with DMA peripheral access configured as halfword */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->RxXferCount = (data_size >> 1U);
}
}
else if (hqspi->hdma->Init.PeriphDataAlignment == DMA_PDATAALIGN_WORD)
{
if (((data_size % 4U) != 0U) || ((hqspi->Init.FifoThreshold % 4U) != 0U))
{
/* The number of data or the fifo threshold is not aligned on word
=> no transfer possible with DMA peripheral access configured as word */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
else
{
hqspi->RxXferCount = (data_size >> 2U);
}
}
else
{
/* Nothing to do */
}
if (status == HAL_OK)
{
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX;
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, (QSPI_FLAG_TE | QSPI_FLAG_TC));
/* Configure size and pointer of the handle */
hqspi->RxXferSize = hqspi->RxXferCount;
hqspi->pRxBuffPtr = pData;
/* Set the QSPI DMA transfer complete callback */
hqspi->hdma->XferCpltCallback = QSPI_DMARxCplt;
/* Set the QSPI DMA Half transfer complete callback */
hqspi->hdma->XferHalfCpltCallback = QSPI_DMARxHalfCplt;
/* Set the DMA error callback */
hqspi->hdma->XferErrorCallback = QSPI_DMAError;
/* Clear the DMA abort callback */
hqspi->hdma->XferAbortCallback = NULL;
/* Configure the direction of the DMA */
hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY;
MODIFY_REG(hqspi->hdma->Instance->CCR, DMA_CCR_DIR, hqspi->hdma->Init.Direction);
/* Enable the DMA Channel */
if (HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, (uint32_t)pData, hqspi->RxXferSize) == HAL_OK)
{
/* Configure QSPI: CCR register with functional as indirect read */
MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ);
/* Start the transfer by re-writing the address in AR register */
WRITE_REG(hqspi->Instance->AR, addr_reg);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI transfer error Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE);
/* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
}
else
{
status = HAL_ERROR;
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
hqspi->State = HAL_QSPI_STATE_READY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
}
else
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_PARAM;
status = HAL_ERROR;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
return status;
}
/**
* @brief Configure the QSPI Automatic Polling Mode in blocking mode.
* @param hqspi QSPI handle
* @param cmd structure that contains the command configuration information.
* @param cfg structure that contains the polling configuration information.
* @param Timeout Timeout duration
* @note This function is used only in Automatic Polling Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_AutoPolling(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg, uint32_t Timeout)
{
HAL_StatusTypeDef status;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
assert_param(IS_QSPI_INTERVAL(cfg->Interval));
assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize));
assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, Timeout);
if (status == HAL_OK)
{
/* Configure QSPI: PSMAR register with the status match value */
WRITE_REG(hqspi->Instance->PSMAR, cfg->Match);
/* Configure QSPI: PSMKR register with the status mask value */
WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask);
/* Configure QSPI: PIR register with the interval value */
WRITE_REG(hqspi->Instance->PIR, cfg->Interval);
/* Configure QSPI: CR register with Match mode and Automatic stop enabled
(otherwise there will be an infinite loop in blocking mode) */
MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS),
(cfg->MatchMode | QSPI_AUTOMATIC_STOP_ENABLE));
/* Call the configuration function */
cmd->NbData = cfg->StatusBytesSize;
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING);
/* Wait until SM flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_SM, SET, tickstart, Timeout);
if (status == HAL_OK)
{
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM);
/* Update state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief Configure the QSPI Automatic Polling Mode in non-blocking mode.
* @param hqspi QSPI handle
* @param cmd structure that contains the command configuration information.
* @param cfg structure that contains the polling configuration information.
* @note This function is used only in Automatic Polling Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_AutoPolling_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg)
{
HAL_StatusTypeDef status;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
assert_param(IS_QSPI_INTERVAL(cfg->Interval));
assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize));
assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode));
assert_param(IS_QSPI_AUTOMATIC_STOP(cfg->AutomaticStop));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if (status == HAL_OK)
{
/* Configure QSPI: PSMAR register with the status match value */
WRITE_REG(hqspi->Instance->PSMAR, cfg->Match);
/* Configure QSPI: PSMKR register with the status mask value */
WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask);
/* Configure QSPI: PIR register with the interval value */
WRITE_REG(hqspi->Instance->PIR, cfg->Interval);
/* Configure QSPI: CR register with Match mode and Automatic stop mode */
MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS),
(cfg->MatchMode | cfg->AutomaticStop));
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE | QSPI_FLAG_SM);
/* Call the configuration function */
cmd->NbData = cfg->StatusBytesSize;
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING);
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Enable the QSPI Transfer Error and status match Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, (QSPI_IT_SM | QSPI_IT_TE));
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
}
else
{
status = HAL_BUSY;
/* Process unlocked */
__HAL_UNLOCK(hqspi);
}
/* Return function status */
return status;
}
/**
* @brief Configure the Memory Mapped mode.
* @param hqspi QSPI handle
* @param cmd structure that contains the command configuration information.
* @param cfg structure that contains the memory mapped configuration information.
* @note This function is used only in Memory mapped Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_MemoryMapped(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_MemoryMappedTypeDef *cfg)
{
HAL_StatusTypeDef status;
uint32_t tickstart = HAL_GetTick();
/* Check the parameters */
assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode));
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction));
}
assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode));
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize));
}
assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode));
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize));
}
assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles));
assert_param(IS_QSPI_DATA_MODE(cmd->DataMode));
assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode));
assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode));
assert_param(IS_QSPI_TIMEOUT_ACTIVATION(cfg->TimeOutActivation));
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
hqspi->ErrorCode = HAL_QSPI_ERROR_NONE;
/* Update state */
hqspi->State = HAL_QSPI_STATE_BUSY_MEM_MAPPED;
/* Wait till BUSY flag reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
if (status == HAL_OK)
{
/* Configure QSPI: CR register with timeout counter enable */
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_TCEN, cfg->TimeOutActivation);
if (cfg->TimeOutActivation == QSPI_TIMEOUT_COUNTER_ENABLE)
{
assert_param(IS_QSPI_TIMEOUT_PERIOD(cfg->TimeOutPeriod));
/* Configure QSPI: LPTR register with the low-power timeout value */
WRITE_REG(hqspi->Instance->LPTR, cfg->TimeOutPeriod);
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TO);
/* Enable the QSPI TimeOut Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TO);
}
/* Call the configuration function */
QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED);
}
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/**
* @brief Transfer Error callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_ErrorCallback could be implemented in the user file
*/
}
/**
* @brief Abort completed callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_AbortCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_QSPI_AbortCpltCallback could be implemented in the user file
*/
}
/**
* @brief Command completed callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_QSPI_CmdCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_QSPI_RxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Tx Transfer completed callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_QSPI_TxCpltCallback could be implemented in the user file
*/
}
/**
* @brief Rx Half Transfer completed callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_RxHalfCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_QSPI_RxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief Tx Half Transfer completed callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_TxHalfCpltCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_QSPI_TxHalfCpltCallback could be implemented in the user file
*/
}
/**
* @brief FIFO Threshold callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_FifoThresholdCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_FIFOThresholdCallback could be implemented in the user file
*/
}
/**
* @brief Status Match callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_StatusMatchCallback could be implemented in the user file
*/
}
/**
* @brief Timeout callback.
* @param hqspi QSPI handle
* @retval None
*/
__weak void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hqspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_QSPI_TimeOutCallback could be implemented in the user file
*/
}
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User QSPI Callback
* To be used instead of the weak (surcharged) predefined callback
* @param hqspi QSPI handle
* @param CallbackId ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_QSPI_ERROR_CB_ID QSPI Error Callback ID
* @arg @ref HAL_QSPI_ABORT_CB_ID QSPI Abort Callback ID
* @arg @ref HAL_QSPI_FIFO_THRESHOLD_CB_ID QSPI FIFO Threshold Callback ID
* @arg @ref HAL_QSPI_CMD_CPLT_CB_ID QSPI Command Complete Callback ID
* @arg @ref HAL_QSPI_RX_CPLT_CB_ID QSPI Rx Complete Callback ID
* @arg @ref HAL_QSPI_TX_CPLT_CB_ID QSPI Tx Complete Callback ID
* @arg @ref HAL_QSPI_RX_HALF_CPLT_CB_ID QSPI Rx Half Complete Callback ID
* @arg @ref HAL_QSPI_TX_HALF_CPLT_CB_ID QSPI Tx Half Complete Callback ID
* @arg @ref HAL_QSPI_STATUS_MATCH_CB_ID QSPI Status Match Callback ID
* @arg @ref HAL_QSPI_TIMEOUT_CB_ID QSPI Timeout Callback ID
* @arg @ref HAL_QSPI_MSP_INIT_CB_ID QSPI MspInit callback ID
* @arg @ref HAL_QSPI_MSP_DEINIT_CB_ID QSPI MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_QSPI_RegisterCallback (QSPI_HandleTypeDef *hqspi, HAL_QSPI_CallbackIDTypeDef CallbackId, pQSPI_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if(pCallback == NULL)
{
/* Update the error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
switch (CallbackId)
{
case HAL_QSPI_ERROR_CB_ID :
hqspi->ErrorCallback = pCallback;
break;
case HAL_QSPI_ABORT_CB_ID :
hqspi->AbortCpltCallback = pCallback;
break;
case HAL_QSPI_FIFO_THRESHOLD_CB_ID :
hqspi->FifoThresholdCallback = pCallback;
break;
case HAL_QSPI_CMD_CPLT_CB_ID :
hqspi->CmdCpltCallback = pCallback;
break;
case HAL_QSPI_RX_CPLT_CB_ID :
hqspi->RxCpltCallback = pCallback;
break;
case HAL_QSPI_TX_CPLT_CB_ID :
hqspi->TxCpltCallback = pCallback;
break;
case HAL_QSPI_RX_HALF_CPLT_CB_ID :
hqspi->RxHalfCpltCallback = pCallback;
break;
case HAL_QSPI_TX_HALF_CPLT_CB_ID :
hqspi->TxHalfCpltCallback = pCallback;
break;
case HAL_QSPI_STATUS_MATCH_CB_ID :
hqspi->StatusMatchCallback = pCallback;
break;
case HAL_QSPI_TIMEOUT_CB_ID :
hqspi->TimeOutCallback = pCallback;
break;
case HAL_QSPI_MSP_INIT_CB_ID :
hqspi->MspInitCallback = pCallback;
break;
case HAL_QSPI_MSP_DEINIT_CB_ID :
hqspi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hqspi->State == HAL_QSPI_STATE_RESET)
{
switch (CallbackId)
{
case HAL_QSPI_MSP_INIT_CB_ID :
hqspi->MspInitCallback = pCallback;
break;
case HAL_QSPI_MSP_DEINIT_CB_ID :
hqspi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hqspi);
return status;
}
/**
* @brief Unregister a User QSPI Callback
* QSPI Callback is redirected to the weak (surcharged) predefined callback
* @param hqspi QSPI handle
* @param CallbackId ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_QSPI_ERROR_CB_ID QSPI Error Callback ID
* @arg @ref HAL_QSPI_ABORT_CB_ID QSPI Abort Callback ID
* @arg @ref HAL_QSPI_FIFO_THRESHOLD_CB_ID QSPI FIFO Threshold Callback ID
* @arg @ref HAL_QSPI_CMD_CPLT_CB_ID QSPI Command Complete Callback ID
* @arg @ref HAL_QSPI_RX_CPLT_CB_ID QSPI Rx Complete Callback ID
* @arg @ref HAL_QSPI_TX_CPLT_CB_ID QSPI Tx Complete Callback ID
* @arg @ref HAL_QSPI_RX_HALF_CPLT_CB_ID QSPI Rx Half Complete Callback ID
* @arg @ref HAL_QSPI_TX_HALF_CPLT_CB_ID QSPI Tx Half Complete Callback ID
* @arg @ref HAL_QSPI_STATUS_MATCH_CB_ID QSPI Status Match Callback ID
* @arg @ref HAL_QSPI_TIMEOUT_CB_ID QSPI Timeout Callback ID
* @arg @ref HAL_QSPI_MSP_INIT_CB_ID QSPI MspInit callback ID
* @arg @ref HAL_QSPI_MSP_DEINIT_CB_ID QSPI MspDeInit callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_QSPI_UnRegisterCallback (QSPI_HandleTypeDef *hqspi, HAL_QSPI_CallbackIDTypeDef CallbackId)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
switch (CallbackId)
{
case HAL_QSPI_ERROR_CB_ID :
hqspi->ErrorCallback = HAL_QSPI_ErrorCallback;
break;
case HAL_QSPI_ABORT_CB_ID :
hqspi->AbortCpltCallback = HAL_QSPI_AbortCpltCallback;
break;
case HAL_QSPI_FIFO_THRESHOLD_CB_ID :
hqspi->FifoThresholdCallback = HAL_QSPI_FifoThresholdCallback;
break;
case HAL_QSPI_CMD_CPLT_CB_ID :
hqspi->CmdCpltCallback = HAL_QSPI_CmdCpltCallback;
break;
case HAL_QSPI_RX_CPLT_CB_ID :
hqspi->RxCpltCallback = HAL_QSPI_RxCpltCallback;
break;
case HAL_QSPI_TX_CPLT_CB_ID :
hqspi->TxCpltCallback = HAL_QSPI_TxCpltCallback;
break;
case HAL_QSPI_RX_HALF_CPLT_CB_ID :
hqspi->RxHalfCpltCallback = HAL_QSPI_RxHalfCpltCallback;
break;
case HAL_QSPI_TX_HALF_CPLT_CB_ID :
hqspi->TxHalfCpltCallback = HAL_QSPI_TxHalfCpltCallback;
break;
case HAL_QSPI_STATUS_MATCH_CB_ID :
hqspi->StatusMatchCallback = HAL_QSPI_StatusMatchCallback;
break;
case HAL_QSPI_TIMEOUT_CB_ID :
hqspi->TimeOutCallback = HAL_QSPI_TimeOutCallback;
break;
case HAL_QSPI_MSP_INIT_CB_ID :
hqspi->MspInitCallback = HAL_QSPI_MspInit;
break;
case HAL_QSPI_MSP_DEINIT_CB_ID :
hqspi->MspDeInitCallback = HAL_QSPI_MspDeInit;
break;
default :
/* Update the error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else if (hqspi->State == HAL_QSPI_STATE_RESET)
{
switch (CallbackId)
{
case HAL_QSPI_MSP_INIT_CB_ID :
hqspi->MspInitCallback = HAL_QSPI_MspInit;
break;
case HAL_QSPI_MSP_DEINIT_CB_ID :
hqspi->MspDeInitCallback = HAL_QSPI_MspDeInit;
break;
default :
/* Update the error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hqspi->ErrorCode |= HAL_QSPI_ERROR_INVALID_CALLBACK;
/* update return status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hqspi);
return status;
}
#endif
/**
* @}
*/
/** @defgroup QSPI_Exported_Functions_Group3 Peripheral Control and State functions
* @brief QSPI control and State functions
*
@verbatim
===============================================================================
##### Peripheral Control and State functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to :
(+) Check in run-time the state of the driver.
(+) Check the error code set during last operation.
(+) Abort any operation.
@endverbatim
* @{
*/
/**
* @brief Return the QSPI handle state.
* @param hqspi QSPI handle
* @retval HAL state
*/
HAL_QSPI_StateTypeDef HAL_QSPI_GetState(QSPI_HandleTypeDef *hqspi)
{
/* Return QSPI handle state */
return hqspi->State;
}
/**
* @brief Return the QSPI error code.
* @param hqspi QSPI handle
* @retval QSPI Error Code
*/
uint32_t HAL_QSPI_GetError(QSPI_HandleTypeDef *hqspi)
{
return hqspi->ErrorCode;
}
/**
* @brief Abort the current transmission.
* @param hqspi QSPI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Abort(QSPI_HandleTypeDef *hqspi)
{
HAL_StatusTypeDef status = HAL_OK;
uint32_t tickstart = HAL_GetTick();
/* Check if the state is in one of the busy states */
if (((uint32_t)hqspi->State & 0x2U) != 0U)
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN) != 0U)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Abort DMA channel */
status = HAL_DMA_Abort(hqspi->hdma);
if(status != HAL_OK)
{
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
}
}
/* Configure QSPI: CR register with Abort request */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
/* Wait until TC flag is set to go back in idle state */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, tickstart, hqspi->Timeout);
if (status == HAL_OK)
{
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Wait until BUSY flag is reset */
status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, tickstart, hqspi->Timeout);
}
if (status == HAL_OK)
{
/* Reset functional mode configuration to indirect write mode by default */
CLEAR_BIT(hqspi->Instance->CCR, QUADSPI_CCR_FMODE);
/* Update state */
hqspi->State = HAL_QSPI_STATE_READY;
}
}
return status;
}
/**
* @brief Abort the current transmission (non-blocking function)
* @param hqspi QSPI handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_Abort_IT(QSPI_HandleTypeDef *hqspi)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check if the state is in one of the busy states */
if (((uint32_t)hqspi->State & 0x2U) != 0U)
{
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Update QSPI state */
hqspi->State = HAL_QSPI_STATE_ABORT;
/* Disable all interrupts */
__HAL_QSPI_DISABLE_IT(hqspi, (QSPI_IT_TO | QSPI_IT_SM | QSPI_IT_FT | QSPI_IT_TC | QSPI_IT_TE));
if ((hqspi->Instance->CR & QUADSPI_CR_DMAEN) != 0U)
{
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Abort DMA channel */
hqspi->hdma->XferAbortCallback = QSPI_DMAAbortCplt;
if (HAL_DMA_Abort_IT(hqspi->hdma) != HAL_OK)
{
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Abort Complete callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->AbortCpltCallback(hqspi);
#else
HAL_QSPI_AbortCpltCallback(hqspi);
#endif
}
}
else
{
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Enable the QSPI Transfer Complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
/* Configure QSPI: CR register with Abort request */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
}
}
return status;
}
/** @brief Set QSPI timeout.
* @param hqspi QSPI handle.
* @param Timeout Timeout for the QSPI memory access.
* @retval None
*/
void HAL_QSPI_SetTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Timeout)
{
hqspi->Timeout = Timeout;
}
/** @brief Set QSPI Fifo threshold.
* @param hqspi QSPI handle.
* @param Threshold Threshold of the Fifo (value between 1 and 16).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_QSPI_SetFifoThreshold(QSPI_HandleTypeDef *hqspi, uint32_t Threshold)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hqspi);
if(hqspi->State == HAL_QSPI_STATE_READY)
{
/* Synchronize init structure with new FIFO threshold value */
hqspi->Init.FifoThreshold = Threshold;
/* Configure QSPI FIFO Threshold */
MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES,
((hqspi->Init.FifoThreshold - 1U) << QUADSPI_CR_FTHRES_Pos));
}
else
{
status = HAL_BUSY;
}
/* Process unlocked */
__HAL_UNLOCK(hqspi);
/* Return function status */
return status;
}
/** @brief Get QSPI Fifo threshold.
* @param hqspi QSPI handle.
* @retval Fifo threshold (value between 1 and 16)
*/
uint32_t HAL_QSPI_GetFifoThreshold(QSPI_HandleTypeDef *hqspi)
{
return ((READ_BIT(hqspi->Instance->CR, QUADSPI_CR_FTHRES) >> QUADSPI_CR_FTHRES_Pos) + 1U);
}
/**
* @}
*/
/**
* @}
*/
/** @defgroup QSPI_Private_Functions QSPI Private Functions
* @{
*/
/**
* @brief DMA QSPI receive process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)(hdma->Parent);
hqspi->RxXferCount = 0U;
/* Enable the QSPI transfer complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
}
/**
* @brief DMA QSPI transmit process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)(hdma->Parent);
hqspi->TxXferCount = 0U;
/* Enable the QSPI transfer complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
}
/**
* @brief DMA QSPI receive process half complete callback.
* @param hdma DMA handle
* @retval None
*/
static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)(hdma->Parent);
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->RxHalfCpltCallback(hqspi);
#else
HAL_QSPI_RxHalfCpltCallback(hqspi);
#endif
}
/**
* @brief DMA QSPI transmit process half complete callback.
* @param hdma DMA handle
* @retval None
*/
static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)(hdma->Parent);
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->TxHalfCpltCallback(hqspi);
#else
HAL_QSPI_TxHalfCpltCallback(hqspi);
#endif
}
/**
* @brief DMA QSPI communication error callback.
* @param hdma DMA handle
* @retval None
*/
static void QSPI_DMAError(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )(hdma->Parent);
hqspi->RxXferCount = 0U;
hqspi->TxXferCount = 0U;
hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA;
/* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */
CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN);
/* Abort the QSPI */
(void)HAL_QSPI_Abort_IT(hqspi);
}
/**
* @brief DMA QSPI abort complete callback.
* @param hdma DMA handle
* @retval None
*/
static void QSPI_DMAAbortCplt(DMA_HandleTypeDef *hdma)
{
QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )(hdma->Parent);
hqspi->RxXferCount = 0U;
hqspi->TxXferCount = 0U;
if(hqspi->State == HAL_QSPI_STATE_ABORT)
{
/* DMA Abort called by QSPI abort */
/* Clear interrupt */
__HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC);
/* Enable the QSPI Transfer Complete Interrupt */
__HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TC);
/* Configure QSPI: CR register with Abort request */
SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT);
}
else
{
/* DMA Abort called due to a transfer error interrupt */
/* Change state of QSPI */
hqspi->State = HAL_QSPI_STATE_READY;
/* Error callback */
#if (USE_HAL_QSPI_REGISTER_CALLBACKS == 1)
hqspi->ErrorCallback(hqspi);
#else
HAL_QSPI_ErrorCallback(hqspi);
#endif
}
}
/**
* @brief Wait for a flag state until timeout.
* @param hqspi QSPI handle
* @param Flag Flag checked
* @param State Value of the flag expected
* @param Tickstart Tick start value
* @param Timeout Duration of the timeout
* @retval HAL status
*/
static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag,
FlagStatus State, uint32_t Tickstart, uint32_t Timeout)
{
/* Wait until flag is in expected state */
while((__HAL_QSPI_GET_FLAG(hqspi, Flag)) != State)
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if(((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
{
hqspi->State = HAL_QSPI_STATE_ERROR;
hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT;
return HAL_ERROR;
}
}
}
return HAL_OK;
}
/**
* @brief Configure the communication registers.
* @param hqspi QSPI handle
* @param cmd structure that contains the command configuration information
* @param FunctionalMode functional mode to configured
* This parameter can be one of the following values:
* @arg QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE: Indirect write mode
* @arg QSPI_FUNCTIONAL_MODE_INDIRECT_READ: Indirect read mode
* @arg QSPI_FUNCTIONAL_MODE_AUTO_POLLING: Automatic polling mode
* @arg QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED: Memory-mapped mode
* @retval None
*/
static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode)
{
assert_param(IS_QSPI_FUNCTIONAL_MODE(FunctionalMode));
if ((cmd->DataMode != QSPI_DATA_NONE) && (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED))
{
/* Configure QSPI: DLR register with the number of data to read or write */
WRITE_REG(hqspi->Instance->DLR, (cmd->NbData - 1U));
}
if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE)
{
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
/* Configure QSPI: ABR register with alternate bytes value */
WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes);
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with instruction, address and alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateBytesSize | cmd->AlternateByteMode |
cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode |
cmd->Instruction | FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with instruction and alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateBytesSize | cmd->AlternateByteMode |
cmd->AddressMode | cmd->InstructionMode |
cmd->Instruction | FunctionalMode));
}
}
else
{
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with instruction and address ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode |
cmd->InstructionMode | cmd->Instruction | FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with only instruction ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateByteMode | cmd->AddressMode |
cmd->InstructionMode | cmd->Instruction | FunctionalMode));
}
}
}
else
{
if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE)
{
/* Configure QSPI: ABR register with alternate bytes value */
WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes);
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with address and alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateBytesSize | cmd->AlternateByteMode |
cmd->AddressSize | cmd->AddressMode |
cmd->InstructionMode | FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with only alternate bytes ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateBytesSize | cmd->AlternateByteMode |
cmd->AddressMode | cmd->InstructionMode | FunctionalMode));
}
}
else
{
if (cmd->AddressMode != QSPI_ADDRESS_NONE)
{
/*---- Command with only address ----*/
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateByteMode | cmd->AddressSize |
cmd->AddressMode | cmd->InstructionMode | FunctionalMode));
if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)
{
/* Configure QSPI: AR register with address value */
WRITE_REG(hqspi->Instance->AR, cmd->Address);
}
}
else
{
/*---- Command with only data phase ----*/
if (cmd->DataMode != QSPI_DATA_NONE)
{
/* Configure QSPI: CCR register with all communications parameters */
WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->SIOOMode |
cmd->DataMode | (cmd->DummyCycles << QUADSPI_CCR_DCYC_Pos) |
cmd->AlternateByteMode | cmd->AddressMode |
cmd->InstructionMode | FunctionalMode));
}
}
}
}
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_QSPI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(QUADSPI) */