blob: b39074dfba09594cb71c0c03a30b554c34d770dc [file] [log] [blame]
/**
******************************************************************************
* @file stm32wbxx_hal_pwr_ex.c
* @author MCD Application Team
* @brief Extended PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Extended Initialization and de-initialization functions
* + Extended Peripheral Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @addtogroup PWREx
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PWR_Extended_Private_Defines PWR Extended Private Defines
* @{
*/
#define PWR_PORTE_AVAILABLE_PINS (PWR_GPIO_BIT_4 | PWR_GPIO_BIT_3 | PWR_GPIO_BIT_2 | PWR_GPIO_BIT_1 | PWR_GPIO_BIT_0)
#define PWR_PORTH_AVAILABLE_PINS (PWR_GPIO_BIT_3 | PWR_GPIO_BIT_1 | PWR_GPIO_BIT_0)
/** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value
* @{
*/
#define PWR_FLAG_SETTING_DELAY_US 50U /*!< Time out value for REGLPF and VOSF flags setting */
/**
* @}
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PWREx_Exported_Functions PWR Extended Exported Functions
* @{
*/
/** @addtogroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Initialization and de-initialization functions #####
===============================================================================
[..]
@endverbatim
* @{
*/
#if defined(PWR_CR1_VOS)
/**
* @brief Return Voltage Scaling Range.
* @retval VOS bit field (PWR_REGULATOR_VOLTAGE_RANGE1 or PWR_REGULATOR_VOLTAGE_RANGE2)
*/
uint32_t HAL_PWREx_GetVoltageRange(void)
{
return (PWR->CR1 & PWR_CR1_VOS);
}
/**
* @brief Configure the main internal regulator output voltage.
* @param VoltageScaling specifies the regulator output voltage to achieve
* a tradeoff between performance and power consumption.
* This parameter can be one of the following values:
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode,
* typical output voltage at 1.2 V,
* system frequency up to 64 MHz.
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode,
* typical output voltage at 1.0 V,
* system frequency up to 16 MHz.
* @note When moving from Range 1 to Range 2, the system frequency must be decreased to
* a value below 16 MHz before calling HAL_PWREx_ControlVoltageScaling() API.
* When moving from Range 2 to Range 1, the system frequency can be increased to
* a value up to 64 MHz after calling HAL_PWREx_ControlVoltageScaling() API.
* @note When moving from Range 2 to Range 1, the API waits for VOSF flag to be
* cleared before returning the status. If the flag is not cleared within
* 50 microseconds, HAL_TIMEOUT status is reported.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)
{
uint32_t wait_loop_index;
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling));
/* If Set Range 1 */
if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1)
{
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE1)
{
/* Set Range 1 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
/* Wait until VOSF is cleared */
wait_loop_index = (PWR_FLAG_SETTING_DELAY_US * (SystemCoreClock / 1000000U));
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
{
return HAL_TIMEOUT;
}
}
}
else
{
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE2)
{
/* Set Range 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2);
/* No need to wait for VOSF to be cleared for this transition */
}
}
return HAL_OK;
}
#endif /* PWR_CR1_VOS */
/****************************************************************************/
/**
* @brief Enable battery charging.
* When VDD is present, charge the external battery on VBAT thru an internal resistor.
* @param ResistorSelection specifies the resistor impedance.
* This parameter can be one of the following values:
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5 5 kOhms resistor
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor
* @retval None
*/
void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection)
{
assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection));
/* Specify resistor selection */
MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection);
/* Enable battery charging */
SET_BIT(PWR->CR4, PWR_CR4_VBE);
}
/**
* @brief Disable battery charging.
* @retval None
*/
void HAL_PWREx_DisableBatteryCharging(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_VBE);
}
/****************************************************************************/
#if defined(PWR_CR2_PVME1)
/**
* @brief Enable VDDUSB supply.
* @note Remove VDDUSB electrical and logical isolation, once VDDUSB supply is present.
* @retval None
*/
void HAL_PWREx_EnableVddUSB(void)
{
SET_BIT(PWR->CR2, PWR_CR2_USV);
}
/**
* @brief Disable VDDUSB supply.
* @retval None
*/
void HAL_PWREx_DisableVddUSB(void)
{
CLEAR_BIT(PWR->CR2, PWR_CR2_USV);
}
#endif /* PWR_CR2_PVME1 */
/****************************************************************************/
/**
* @brief Enable Internal Wake-up Line.
* @retval None
*/
void HAL_PWREx_EnableInternalWakeUpLine(void)
{
SET_BIT(PWR->CR3, PWR_CR3_EIWUL);
}
/**
* @brief Disable Internal Wake-up Line.
* @retval None
*/
void HAL_PWREx_DisableInternalWakeUpLine(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_EIWUL);
}
#if defined(PWR_CR5_SMPSEN)
/**
* @brief Enable BORH and SMPS step down converter forced in bypass mode
* interrupt for CPU1
* @retval None
*/
void HAL_PWREx_EnableBORH_SMPSBypassIT(void)
{
SET_BIT(PWR->CR3, PWR_CR3_EBORHSMPSFB);
}
/**
* @brief Disable BORH and SMPS step down converter forced in bypass mode
* interrupt for CPU1
* @retval None
*/
void HAL_PWREx_DisableBORH_SMPSBypassIT(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_EBORHSMPSFB);
}
#endif /* PWR_CR5_SMPSEN */
/**
* @brief Enable RF Phase interrupt.
* @retval None
*/
void HAL_PWREx_EnableRFPhaseIT(void)
{
SET_BIT(PWR->CR3, PWR_CR3_ECRPE_Msk);
}
/**
* @brief Disable RF Phase interrupt.
* @retval None
*/
void HAL_PWREx_DisableRFPhaseIT(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_ECRPE_Msk);
}
/**
* @brief Enable BLE Activity interrupt.
* @retval None
*/
void HAL_PWREx_EnableBLEActivityIT(void)
{
SET_BIT(PWR->CR3, PWR_CR3_EBLEA);
}
/**
* @brief Disable BLE Activity interrupt.
* @retval None
*/
void HAL_PWREx_DisableBLEActivityIT(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_EBLEA);
}
#if defined(PWR_CR3_E802A)
/**
* @brief Enable 802.15.4 Activity interrupt.
* @retval None
*/
void HAL_PWREx_Enable802ActivityIT(void)
{
SET_BIT(PWR->CR3, PWR_CR3_E802A);
}
/**
* @brief Disable 802.15.4 Activity interrupt.
* @retval None
*/
void HAL_PWREx_Disable802ActivityIT(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_E802A);
}
#endif /* PWR_CR3_E802A */
/**
* @brief Enable CPU2 on-Hold interrupt.
* @retval None
*/
void HAL_PWREx_EnableHOLDC2IT(void)
{
SET_BIT(PWR->CR3, PWR_CR3_EC2H);
}
/**
* @brief Disable CPU2 on-Hold interrupt.
* @retval None
*/
void HAL_PWREx_DisableHOLDC2IT(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_EC2H);
}
/****************************************************************************/
/**
* @brief Enable GPIO pull-up state in Standby and Shutdown modes.
* @note Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in
* pull-up state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PDy bit of PWR_PDCRx register is cleared unless it is reserved.
* @note Even if a PUy bit to set is reserved, the other PUy bits entered as input
* parameter at the same time are set.
* @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PUCRA, GPIONumber);
CLEAR_BIT(PWR->PDCRA, GPIONumber);
break;
case PWR_GPIO_B:
SET_BIT(PWR->PUCRB, GPIONumber);
CLEAR_BIT(PWR->PDCRB, GPIONumber);
break;
case PWR_GPIO_C:
SET_BIT(PWR->PUCRC, GPIONumber);
CLEAR_BIT(PWR->PDCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
SET_BIT(PWR->PUCRD, GPIONumber);
CLEAR_BIT(PWR->PDCRD, GPIONumber);
break;
#endif /* GPIOD */
case PWR_GPIO_E:
SET_BIT(PWR->PUCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS));
CLEAR_BIT(PWR->PDCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
SET_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-up state in Standby mode and Shutdown modes.
* @note Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O
* in pull-up state in Standby and Shutdown modes.
* @note Even if a PUy bit to reset is reserved, the other PUy bits entered as input
* parameter at the same time are reset.
* @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PUCRA, GPIONumber);
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PUCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
CLEAR_BIT(PWR->PUCRD, GPIONumber);
break;
#endif /* GPIOD */
case PWR_GPIO_E:
CLEAR_BIT(PWR->PUCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable GPIO pull-down state in Standby and Shutdown modes.
* @note Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in
* pull-down state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PUy bit of PWR_PUCRx register is cleared unless it is reserved.
* @note Even if a PDy bit to set is reserved, the other PDy bits entered as input
* parameter at the same time are set.
* @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PDCRA, GPIONumber);
CLEAR_BIT(PWR->PUCRA, GPIONumber);
break;
case PWR_GPIO_B:
SET_BIT(PWR->PDCRB, GPIONumber);
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
SET_BIT(PWR->PDCRC, GPIONumber);
CLEAR_BIT(PWR->PUCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
SET_BIT(PWR->PDCRD, GPIONumber);
CLEAR_BIT(PWR->PUCRD, GPIONumber);
break;
#endif /* GPIOD */
case PWR_GPIO_E:
SET_BIT(PWR->PDCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS));
CLEAR_BIT(PWR->PUCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
SET_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-down state in Standby and Shutdown modes.
* @note Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O
* in pull-down state in Standby and Shutdown modes.
* @note Even if a PDy bit to reset is reserved, the other PDy bits entered as input
* parameter at the same time are reset.
* @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PDCRA, GPIONumber);
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PDCRB, GPIONumber);
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PDCRC, GPIONumber);
break;
#if defined(GPIOD)
case PWR_GPIO_D:
CLEAR_BIT(PWR->PDCRD, GPIONumber);
break;
#endif /* GPIOD */
case PWR_GPIO_E:
CLEAR_BIT(PWR->PDCRE, (GPIONumber & PWR_PORTE_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable pull-up and pull-down configuration.
* @note When APC bit is set, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes.
* @note Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding
* PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher).
* HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there
* is no conflict when setting PUy or PDy bit.
* @retval None
*/
void HAL_PWREx_EnablePullUpPullDownConfig(void)
{
SET_BIT(PWR->CR3, PWR_CR3_APC);
}
/**
* @brief Disable pull-up and pull-down configuration.
* @note When APC bit is cleared, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes.
* @retval None
*/
void HAL_PWREx_DisablePullUpPullDownConfig(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_APC);
}
/****************************************************************************/
#if defined(PWR_CR5_SMPSEN)
/**
* @brief Set BOR configuration
* @param BORConfiguration This parameter can be one of the following values:
* @arg @ref PWR_BOR_SYSTEM_RESET
* @arg @ref PWR_BOR_SMPS_FORCE_BYPASS
*/
void HAL_PWREx_SetBORConfig(uint32_t BORConfiguration)
{
LL_PWR_SetBORConfig(BORConfiguration);
}
/**
* @brief Get BOR configuration
* @retval Returned value can be one of the following values:
* @arg @ref PWR_BOR_SYSTEM_RESET
* @arg @ref PWR_BOR_SMPS_FORCE_BYPASS
*/
uint32_t HAL_PWREx_GetBORConfig(void)
{
return LL_PWR_GetBORConfig();
}
#endif /* PWR_CR5_SMPSEN */
/****************************************************************************/
/**
* @brief Hold the CPU and their allocated peripherals after reset or wakeup from stop or standby.
* @param CPU: Specifies the core to be held.
* This parameter can be one of the following values:
* @arg PWR_CORE_CPU2: Hold CPU2 and set CPU1 as master.
* @note Hold CPU2 with CPU1 as master by default.
* @retval None
*/
void HAL_PWREx_HoldCore(uint32_t CPU)
{
/* Check the parameters */
assert_param(IS_PWR_CORE_HOLD_RELEASE(CPU));
LL_PWR_DisableBootC2();
}
/**
* @brief Release Cortex CPU2 and allocated peripherals after reset or wakeup from stop or standby.
* @param CPU: Specifies the core to be released.
* This parameter can be one of the following values:
* @arg PWR_CORE_CPU2: Release the CPU2 from holding.
* @retval None
*/
void HAL_PWREx_ReleaseCore(uint32_t CPU)
{
/* Check the parameters */
assert_param(IS_PWR_CORE_HOLD_RELEASE(CPU));
LL_PWR_EnableBootC2();
}
/****************************************************************************/
/**
* @brief Enable SRAM2a content retention in Standby mode.
* @note When RRS bit is set, SRAM2a is powered by the low-power regulator in
* Standby mode and its content is kept.
* @note On devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx retention is extended
* to SRAM1, SRAM2a and SRAM2b.
* @retval None
*/
void HAL_PWREx_EnableSRAMRetention(void)
{
LL_PWR_EnableSRAM2Retention();
}
/**
* @brief Disable SRAM2a content retention in Standby mode.
* @note When RRS bit is reset, SRAM2a is powered off in Standby mode
* and its content is lost.
* @note On devices STM32WB15xx, STM32WB10xx, STM32WB1Mxx retention is extended
* to SRAM1, SRAM2a and SRAM2b.
* @retval None
*/
void HAL_PWREx_DisableSRAMRetention(void)
{
LL_PWR_DisableSRAM2Retention();
}
/****************************************************************************/
/**
* @brief Enable Flash Power Down.
* @note This API allows to enable flash power down capabilities in low power
* run and low power sleep modes.
* @param PowerMode this can be a combination of following values:
* @arg @ref PWR_FLASHPD_LPRUN
* @arg @ref PWR_FLASHPD_LPSLEEP
* @retval None
*/
void HAL_PWREx_EnableFlashPowerDown(uint32_t PowerMode)
{
assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode));
if ((PowerMode & PWR_FLASHPD_LPRUN) != 0U)
{
/* Unlock bit FPDR */
WRITE_REG(PWR->CR1, 0x0000C1B0UL);
}
/* Set flash power down mode */
SET_BIT(PWR->CR1, PowerMode);
}
/**
* @brief Disable Flash Power Down.
* @note This API allows to disable flash power down capabilities in low power
* run and low power sleep modes.
* @param PowerMode this can be a combination of following values:
* @arg @ref PWR_FLASHPD_LPRUN
* @arg @ref PWR_FLASHPD_LPSLEEP
* @retval None
*/
void HAL_PWREx_DisableFlashPowerDown(uint32_t PowerMode)
{
assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode));
/* Set flash power down mode */
CLEAR_BIT(PWR->CR1, PowerMode);
}
/****************************************************************************/
#if defined(PWR_CR2_PVME1)
/**
* @brief Enable the Power Voltage Monitoring 1: VDDUSB versus 1.2V.
* @retval None
*/
void HAL_PWREx_EnablePVM1(void)
{
SET_BIT(PWR->CR2, PWR_PVM_1);
}
/**
* @brief Disable the Power Voltage Monitoring 1: VDDUSB versus 1.2V.
* @retval None
*/
void HAL_PWREx_DisablePVM1(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_1);
}
#endif /* PWR_CR2_PVME1 */
/**
* @brief Enable the Power Voltage Monitoring 3: VDDA versus 1.62V.
* @retval None
*/
void HAL_PWREx_EnablePVM3(void)
{
SET_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Disable the Power Voltage Monitoring 3: VDDA versus 1.62V.
* @retval None
*/
void HAL_PWREx_DisablePVM3(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Configure the Peripheral Voltage Monitoring (PVM).
* @param sConfigPVM pointer to a PWR_PVMTypeDef structure that contains the
* PVM configuration information.
* @note The API configures a single PVM according to the information contained
* in the input structure. To configure several PVMs, the API must be singly
* called for each PVM used.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage thresholds corresponding to each
* detection level and to each monitored supply.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType));
assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode));
/* Configure EXTI 31 and 33 interrupts if so required:
scan thru PVMType to detect which PVMx is set and
configure the corresponding EXTI line accordingly. */
switch (sConfigPVM->PVMType)
{
#if defined(PWR_CR2_PVME1)
case PWR_PVM_1:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM1_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM1_EXTI_DISABLE_IT();
__HAL_PWR_PVM1_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM1_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM1_EXTI_ENABLE_IT();
}
/* Configure event mode */
if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM1_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM1_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM1_EXTI_ENABLE_FALLING_EDGE();
}
break;
#endif /* PWR_CR2_PVME1 */
case PWR_PVM_3:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM3_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM3_EXTI_DISABLE_IT();
__HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM3_EXTI_ENABLE_IT();
}
/* Configure event mode */
if ((sConfigPVM->Mode & PVM_MODE_EVT) == PVM_MODE_EVT)
{
__HAL_PWR_PVM3_EXTI_ENABLE_EVENT();
}
/* Configure the edge */
if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE();
}
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
#if defined(PWR_CR5_SMPSEN)
/**
* @brief Configure the SMPS step down converter.
* @note SMPS output voltage is calibrated in production,
* calibration parameters are applied to the voltage level parameter
* to reach the requested voltage value.
* @param sConfigSMPS pointer to a PWR_SMPSTypeDef structure that contains the
* SMPS configuration information.
* @note To set and enable SMPS operating mode, refer to function
* "HAL_PWREx_SMPS_SetMode()".
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_ConfigSMPS(PWR_SMPSTypeDef *sConfigSMPS)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_PWR_SMPS_STARTUP_CURRENT(sConfigSMPS->StartupCurrent));
assert_param(IS_PWR_SMPS_OUTPUT_VOLTAGE(sConfigSMPS->OutputVoltage));
__IO const uint32_t OutputVoltageLevel_calibration = (((*SMPS_VOLTAGE_CAL_ADDR) & SMPS_VOLTAGE_CAL) >> SMPS_VOLTAGE_CAL_POS); /* SMPS output voltage level calibrated in production */
int32_t TrimmingSteps; /* Trimming steps between theoretical output voltage and calibrated output voltage */
int32_t OutputVoltageLevelTrimmed; /* SMPS output voltage level after calibration: trimming value added to required level */
if (OutputVoltageLevel_calibration == 0UL)
{
/* Device with SMPS output voltage not calibrated in production: Apply output voltage value directly */
/* Update register */
MODIFY_REG(PWR->CR5, PWR_CR5_SMPSVOS, (sConfigSMPS->StartupCurrent | sConfigSMPS->OutputVoltage));
}
else
{
/* Device with SMPS output voltage calibrated in production: Apply output voltage value after correction by calibration value */
TrimmingSteps = ((int32_t)OutputVoltageLevel_calibration - (int32_t)(LL_PWR_SMPS_OUTPUT_VOLTAGE_1V50 >> PWR_CR5_SMPSVOS_Pos));
OutputVoltageLevelTrimmed = ((int32_t)((uint32_t)(sConfigSMPS->OutputVoltage >> PWR_CR5_SMPSVOS_Pos)) + (int32_t)TrimmingSteps);
/* Clamp value to voltage trimming bitfield range */
if (OutputVoltageLevelTrimmed < 0)
{
OutputVoltageLevelTrimmed = 0;
status = HAL_ERROR;
}
else
{
if (OutputVoltageLevelTrimmed > (int32_t)PWR_CR5_SMPSVOS)
{
OutputVoltageLevelTrimmed = (int32_t)PWR_CR5_SMPSVOS;
status = HAL_ERROR;
}
}
/* Update register */
MODIFY_REG(PWR->CR5, (PWR_CR5_SMPSSC | PWR_CR5_SMPSVOS),
(sConfigSMPS->StartupCurrent | ((uint32_t) OutputVoltageLevelTrimmed)));
}
return status;
}
/**
* @brief Set SMPS operating mode.
* @param OperatingMode This parameter can be one of the following values:
* @arg @ref PWR_SMPS_BYPASS
* @arg @ref PWR_SMPS_STEP_DOWN (1)
*
* (1) SMPS operating mode step down or open depends on system low-power mode:
* - step down mode if system low power mode is run, LP run or stop,
* - open mode if system low power mode is Stop1, Stop2, Standby or Shutdown
* @retval None
*/
void HAL_PWREx_SMPS_SetMode(uint32_t OperatingMode)
{
MODIFY_REG(PWR->CR5, PWR_CR5_SMPSEN, (OperatingMode & PWR_SR2_SMPSF) << (PWR_CR5_SMPSEN_Pos - PWR_SR2_SMPSF_Pos));
}
/**
* @brief Get SMPS effective operating mode
* @note SMPS operating mode can be changed by hardware, therefore
* requested operating mode can differ from effective low power mode.
* - dependency on system low-power mode:
* - step down mode if system low power mode is run, LP run or stop,
* - open mode if system low power mode is Stop1, Stop2, Standby or Shutdown
* - dependency on BOR level:
* - bypass mode if supply voltage drops below BOR level
* @note This functions check flags of SMPS operating modes step down
* and bypass. If the SMPS is not among these 2 operating modes,
* then it can be in mode off or open.
* @retval Returned value can be one of the following values:
* @arg @ref PWR_SMPS_BYPASS
* @arg @ref PWR_SMPS_STEP_DOWN (1)
*
* (1) SMPS operating mode step down or open depends on system low-power mode:
* - step down mode if system low power mode is run, LP run or stop,
* - open mode if system low power mode is Stop1, Stop2, Standby or Shutdown
*/
uint32_t HAL_PWREx_SMPS_GetEffectiveMode(void)
{
return (uint32_t)(READ_BIT(PWR->SR2, (PWR_SR2_SMPSF | PWR_SR2_SMPSBF)));
}
#endif /* PWR_CR5_SMPSEN */
/****************************************************************************/
/**
* @brief Enable the WakeUp PINx functionality.
* @param WakeUpPinPolarity Specifies which Wake-Up pin to enable.
* This parameter can be one of the following legacy values which set the default polarity
* i.e. detection on high level (rising edge):
* @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3, PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5
*
* or one of the following value where the user can explicitly specify the enabled pin and
* the chosen polarity:
* @arg @ref PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW
* @arg @ref PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW
* @arg @ref PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW
* @arg @ref PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW
* @arg @ref PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW
* @param wakeupTarget Specifies the wake-up target
* @arg @ref PWR_CORE_CPU1
* @arg @ref PWR_CORE_CPU2
* @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent.
* @retval None
*/
void HAL_PWREx_EnableWakeUpPin(uint32_t WakeUpPinPolarity, uint32_t wakeupTarget)
{
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity));
/* Specifies the Wake-Up pin polarity for the event detection
(rising or falling edge) */
MODIFY_REG(PWR->CR4, (PWR_C2CR3_EWUP & WakeUpPinPolarity), (WakeUpPinPolarity >> PWR_WUP_POLARITY_SHIFT));
/* Enable wake-up pin */
if (PWR_CORE_CPU2 == wakeupTarget)
{
SET_BIT(PWR->C2CR3, (PWR_C2CR3_EWUP & WakeUpPinPolarity));
}
else
{
SET_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinPolarity));
}
}
/**
* @brief Get the Wake-Up pin flag.
* @param WakeUpFlag specifies the Wake-Up PIN flag to check.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WUF1: A wakeup event was received from PA0.
* @arg PWR_FLAG_WUF2: A wakeup event was received from PC13.
* @arg PWR_FLAG_WUF3: A wakeup event was received from PC12.
* @arg PWR_FLAG_WUF4: A wakeup event was received from PA2.
* @arg PWR_FLAG_WUF5: A wakeup event was received from PC5.
* @retval The Wake-Up pin flag.
*/
uint32_t HAL_PWREx_GetWakeupFlag(uint32_t WakeUpFlag)
{
return (PWR->SR1 & (1UL << ((WakeUpFlag) & 31U)));
}
/**
* @brief Clear the Wake-Up pin flag.
* @param WakeUpFlag specifies the Wake-Up PIN flag to clear.
* This parameter can be one of the following values:
* @arg PWR_FLAG_WUF1: A wakeup event was received from PA0.
* @arg PWR_FLAG_WUF2: A wakeup event was received from PC13.
* @arg PWR_FLAG_WUF3: A wakeup event was received from PC12.
* @arg PWR_FLAG_WUF4: A wakeup event was received from PA2.
* @arg PWR_FLAG_WUF5: A wakeup event was received from PC5.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_PWREx_ClearWakeupFlag(uint32_t WakeUpFlag)
{
PWR->SCR = (1UL << ((WakeUpFlag) & 31U));
if ((PWR->SR1 & (1UL << ((WakeUpFlag) & 31U))) != 0U)
{
return HAL_ERROR;
}
return HAL_OK;
}
/****************************************************************************/
/**
* @brief Enter Low-power Run mode
* @note In Low-power Run mode, all I/O pins keep the same state as in Run mode.
* @note When Regulator is set to PWR_LOWPOWERREGULATOR_ON, the user can optionally configure the
* Flash in power-down mode in setting the RUN_PD bit in FLASH_ACR register.
* Additionally, the clock frequency must be reduced below 2 MHz.
* Setting RUN_PD in FLASH_ACR then appropriately reducing the clock frequency must
* be done before calling HAL_PWREx_EnableLowPowerRunMode() API.
* @retval None
*/
void HAL_PWREx_EnableLowPowerRunMode(void)
{
/* Set Regulator parameter */
SET_BIT(PWR->CR1, PWR_CR1_LPR);
}
/**
* @brief Exit Low-power Run mode.
* @note Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that
* REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode
* returns HAL_TIMEOUT status). The system clock frequency can then be
* increased above 2 MHz.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void)
{
uint32_t wait_loop_index;
/* Clear LPR bit */
CLEAR_BIT(PWR->CR1, PWR_CR1_LPR);
/* Wait until REGLPF is reset */
wait_loop_index = (PWR_FLAG_SETTING_DELAY_US * (SystemCoreClock / 1000000U));
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF))
{
return HAL_TIMEOUT;
}
return HAL_OK;
}
/****************************************************************************/
/**
* @brief Enter Stop 0 mode.
* @note In Stop 0 mode, main and low voltage regulators are ON.
* @note In Stop 0 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 0 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note By keeping the internal regulator ON during Stop 0 mode, the consumption
* is higher although the startup time is reduced.
* @note Case of Stop0 mode with SMPS: Before entering Stop 0 mode with SMPS Step Down converter enabled,
* the HSI16 must be kept on by enabling HSI kernel clock (set HSIKERON register bit).
* @note According to system power policy, system entering in Stop mode
* is depending on other CPU power mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Stop 0 mode with Main Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP0);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Stop 1 mode.
* @note In Stop 1 mode, only low power voltage regulator is ON.
* @note In Stop 1 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 1 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode.
* @note According to system power policy, system entering in Stop mode
* is depending on other CPU power mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Stop 1 mode with Low-Power Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP1);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
#if defined(PWR_SUPPORT_STOP2)
/**
* @brief Enter Stop 2 mode.
* @note In Stop 2 mode, only low power voltage regulator is ON.
* @note In Stop 2 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped, the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with wakeup capability
* (LCD, LPTIM1, I2C3 and LPUART) can switch on the HSI to receive a frame, and switch off the HSI after
* receiving the frame if it is not a wakeup frame. In this case the HSI clock is propagated only
* to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* The voltage regulator is set in low-power mode but LPR bit must be cleared to enter stop 2 mode.
* Otherwise, Stop 1 mode is entered.
* @note When exiting Stop 2 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note Case of Stop2 mode and debugger probe attached: a workaround should be applied.
* Issue specified in "ES0394 - STM32WB55Cx/Rx/Vx device errata":
* 2.2.9 Incomplete Stop 2 mode entry after a wakeup from debug upon EXTI line 48 event
* "With the JTAG debugger enabled on GPIO pins and after a wakeup from debug triggered by an event on EXTI
* line 48 (CDBGPWRUPREQ), the device may enter in a state in which attempts to enter Stop 2 mode are not fully
* effective ..."
* Workaround implementation example using LL driver:
* LL_EXTI_DisableIT_32_63(LL_EXTI_LINE_48);
* LL_C2_EXTI_DisableIT_32_63(LL_EXTI_LINE_48);
* @note According to system power policy, system entering in Stop mode
* is depending on other CPU power mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry)
{
/* Check the parameter */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
/* Set Stop mode 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP2);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
#endif /* PWR_SUPPORT_STOP2 */
/**
* @brief Enter Shutdown mode.
* @note In Shutdown mode, the PLL, the HSI, the MSI, the LSI and the HSE oscillators are switched
* off. The voltage regulator is disabled and Vcore domain is powered off.
* SRAM1, SRAM2, BKRAM and registers contents are lost except for registers in the Backup domain.
* The BOR is not available.
* @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state.
* @note According to system power policy, system entering in Shutdown mode
* is depending on other CPU power mode.
* @retval None
*/
void HAL_PWREx_EnterSHUTDOWNMode(void)
{
/* Set Shutdown mode */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_SHUTDOWN);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* This option is used to ensure that store operations are completed */
#if defined (__CC_ARM)
__force_stores();
#endif /* __CC_ARM */
/* Request Wait For Interrupt */
__WFI();
/* Following code is executed after wake up if system didn't go to SHUTDOWN
* or STANDBY mode according to power policy */
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief This function handles the PWR PVD/PVMx interrupt request.
* @note This API should be called under the PVD_PVM_IRQHandler().
* @retval None
*/
void HAL_PWREx_PVD_PVM_IRQHandler(void)
{
/* Check PWR exti flag */
if (__HAL_PWR_PVD_EXTI_GET_FLAG() != 0U)
{
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();
/* Clear PVD exti pending bit */
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
}
#if defined(PWR_CR2_PVME1)
/* Next, successively check PVMx exti flags */
if (__HAL_PWR_PVM1_EXTI_GET_FLAG() != 0U)
{
/* PWR PVM1 interrupt user callback */
HAL_PWREx_PVM1Callback();
/* Clear PVM1 exti pending bit */
__HAL_PWR_PVM1_EXTI_CLEAR_FLAG();
}
#endif /* PWR_CR2_PVME1 */
if (__HAL_PWR_PVM3_EXTI_GET_FLAG() != 0U)
{
/* PWR PVM3 interrupt user callback */
HAL_PWREx_PVM3Callback();
/* Clear PVM3 exti pending bit */
__HAL_PWR_PVM3_EXTI_CLEAR_FLAG();
}
}
#if defined(PWR_CR2_PVME1)
/**
* @brief PWR PVM1 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM1Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM1Callback() API can be implemented in the user file
*/
}
#endif /* PWR_CR2_PVME1 */
/**
* @brief PWR PVM3 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM3Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM3Callback() API can be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/