blob: 23aa838de0b890ad7f3c4eb805374640819a053a [file] [log] [blame]
/**
******************************************************************************
* @file stm32wbxx_ll_rcc.c
* @author MCD Application Team
* @brief RCC LL module driver.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_ll_rcc.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif
/** @addtogroup STM32WBxx_LL_Driver
* @{
*/
#if defined(RCC)
/** @addtogroup RCC_LL
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_LL_Private_Macros
* @{
*/
#define IS_LL_RCC_USART_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_USART1_CLKSOURCE)
#if defined(LPUART1)
#define IS_LL_RCC_LPUART_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_LPUART1_CLKSOURCE)
#endif
#if defined(I2C3)
#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_I2C1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_I2C3_CLKSOURCE))
#else
#define IS_LL_RCC_I2C_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_I2C1_CLKSOURCE)
#endif
#define IS_LL_RCC_LPTIM_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_LPTIM1_CLKSOURCE) \
|| ((__VALUE__) == LL_RCC_LPTIM2_CLKSOURCE))
#if defined(SAI1)
#define IS_LL_RCC_SAI_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_SAI1_CLKSOURCE)
#endif
#define IS_LL_RCC_RNG_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_RNG_CLKSOURCE))
#define IS_LL_RCC_CLK48_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_CLK48_CLKSOURCE))
#if defined(USB)
#define IS_LL_RCC_USB_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_USB_CLKSOURCE))
#endif
#define IS_LL_RCC_ADC_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_ADC_CLKSOURCE))
#if defined(SPI_I2S_SUPPORT)
#define IS_LL_RCC_I2S_CLKSOURCE(__VALUE__) ((__VALUE__) == LL_RCC_I2S_CLKSOURCE)
#endif
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCC_LL_Private_Functions RCC Private functions
* @{
*/
uint32_t RCC_PLL_GetFreqDomain_SYS(void);
#if defined(SAI1)
uint32_t RCC_PLL_GetFreqDomain_SAI(void);
#endif
uint32_t RCC_PLL_GetFreqDomain_ADC(void);
uint32_t RCC_PLL_GetFreqDomain_48M(void);
#if defined(SAI1)
uint32_t RCC_PLLSAI1_GetFreqDomain_SAI(void);
uint32_t RCC_PLLSAI1_GetFreqDomain_48M(void);
uint32_t RCC_PLLSAI1_GetFreqDomain_ADC(void);
#endif
#if defined(SPI_I2S_SUPPORT)
uint32_t RCC_PLL_GetFreqDomain_I2S(void);
#endif
uint32_t RCC_GetSystemClockFreq(void);
uint32_t RCC_GetHCLK1ClockFreq(uint32_t SYSCLK_Frequency);
uint32_t RCC_GetHCLK2ClockFreq(uint32_t SYSCLK_Frequency);
uint32_t RCC_GetHCLK4ClockFreq(uint32_t SYSCLK_Frequency);
uint32_t RCC_GetHCLK5ClockFreq(void);
uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency);
uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_LL_Exported_Functions
* @{
*/
/** @addtogroup RCC_LL_EF_Init
* @{
*/
/**
* @brief Reset the RCC clock to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - MSI ON and used as system clock source
* - HSE, HSI, HSI48, PLL and PLLSAI1 Source OFF
* - CPU1, CPU2, AHB4, APB1 and APB2 prescaler set to 1.
* - CSS, MCO OFF
* - All interrupts disabled
* @note This function doesn't modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RCC registers are de-initialized
* - ERROR: not applicable
*/
ErrorStatus LL_RCC_DeInit(void)
{
uint32_t vl_mask;
/* Set MSION bit */
LL_RCC_MSI_Enable();
/* Insure MSIRDY bit is set before writing default MSIRANGE value */
while (LL_RCC_MSI_IsReady() == 0U)
{}
/* Set MSIRANGE default value */
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6);
/* Set MSITRIM bits to the reset value*/
LL_RCC_MSI_SetCalibTrimming(0);
/* Set HSITRIM bits to the reset value*/
LL_RCC_HSI_SetCalibTrimming(0x40U);
/* Reset CFGR register */
LL_RCC_WriteReg(CFGR, 0x00070000U); /* MSI selected as System Clock and all prescaler to not divided */
/* Wait for MSI oscillator used as system clock */
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI)
{}
/* Write new mask in CR register */
LL_RCC_WriteReg(CR, 0x00000061);
/* Wait for PLL READY bit to be reset */
while (LL_RCC_PLL_IsReady() != 0U)
{}
/* Reset PLLCFGR register */
LL_RCC_WriteReg(PLLCFGR, 0x22041000U);
#if defined(SAI1)
/* Wait for PLLSAI READY bit to be reset */
while (LL_RCC_PLLSAI1_IsReady() != 0U)
{}
/* Reset PLLSAI1CFGR register */
LL_RCC_WriteReg(PLLSAI1CFGR, 0x22041000U);
#endif
/* Disable all interrupts */
LL_RCC_WriteReg(CIER, 0x00000000U);
/* Clear all interrupt flags */
#if defined(SAI1)
vl_mask = RCC_CICR_LSI1RDYC | RCC_CICR_LSERDYC | RCC_CICR_MSIRDYC | RCC_CICR_HSIRDYC | RCC_CICR_HSERDYC | RCC_CICR_PLLRDYC | RCC_CICR_PLLSAI1RDYC | \
RCC_CICR_CSSC | RCC_CICR_HSI48RDYC | RCC_CICR_LSECSSC | RCC_CICR_LSI2RDYC;
#else
vl_mask = RCC_CICR_LSI1RDYC | RCC_CICR_LSERDYC | RCC_CICR_MSIRDYC | RCC_CICR_HSIRDYC | RCC_CICR_HSERDYC | RCC_CICR_PLLRDYC | \
RCC_CICR_CSSC | RCC_CICR_HSI48RDYC | RCC_CICR_LSECSSC | RCC_CICR_LSI2RDYC;
#endif
LL_RCC_WriteReg(CICR, vl_mask);
/* Clear reset flags */
LL_RCC_ClearResetFlags();
#if defined(RCC_SMPS_SUPPORT)
/* SMPS reset */
LL_RCC_WriteReg(SMPSCR, 0x00000301U); /* MSI default clock source */
#endif
/* RF Wakeup Clock Source selection */
LL_RCC_SetRFWKPClockSource(LL_RCC_RFWKP_CLKSOURCE_NONE);
/* HSI48 reset */
LL_RCC_HSI48_Disable();
/* HSECR register write unlock & then reset*/
LL_RCC_WriteReg(HSECR, HSE_CONTROL_UNLOCK_KEY);
LL_RCC_WriteReg(HSECR, LL_RCC_HSE_CURRENTMAX_3); /* HSEGMC set to default value 011, current max limit 1.13 mA/V */
/* EXTCFGR reset*/
LL_RCC_WriteReg(EXTCFGR, 0x00030000U);
return SUCCESS;
}
/**
* @}
*/
/** @addtogroup RCC_LL_EF_Get_Freq
* @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks
* and different peripheral clocks available on the device.
* @note If SYSCLK source is MSI, function returns values based on MSI values(*)
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**)
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***)
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(***)
* or HSI_VALUE(**) or MSI values(*) multiplied/divided by the PLL factors.
* @note (*) MSI values are retrieved thanks to __LL_RCC_CALC_MSI_FREQ macro
* @note (**) HSI_VALUE is a constant defined in this file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (***) HSE_VALUE is a constant defined in this file (default value
* 32 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
* @note The result of this function could be incorrect when using fractional
* value for HSE crystal.
* @note This function can be used by the user application to compute the
* baud-rate for the communication peripherals or configure other parameters.
* @{
*/
/**
* @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks
* @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
* must be called to update structure fields. Otherwise, any
* configuration based on this function will be incorrect.
* @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies
* @retval None
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks)
{
/* Get SYSCLK frequency */
RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq();
/* HCLK1 clock frequency */
RCC_Clocks->HCLK1_Frequency = RCC_GetHCLK1ClockFreq(RCC_Clocks->SYSCLK_Frequency);
/* HCLK2 clock frequency */
RCC_Clocks->HCLK2_Frequency = RCC_GetHCLK2ClockFreq(RCC_Clocks->SYSCLK_Frequency);
/* HCLK4 clock frequency */
RCC_Clocks->HCLK4_Frequency = RCC_GetHCLK4ClockFreq(RCC_Clocks->SYSCLK_Frequency);
/* HCLK5 clock frequency */
RCC_Clocks->HCLK5_Frequency = RCC_GetHCLK5ClockFreq();
/* PCLK1 clock frequency */
RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK1_Frequency);
/* PCLK2 clock frequency */
RCC_Clocks->PCLK2_Frequency = RCC_GetPCLK2ClockFreq(RCC_Clocks->HCLK1_Frequency);
}
#if defined(RCC_SMPS_SUPPORT)
/**
* @brief Return SMPS clock frequency
* @note This function is only applicable when CPU runs,
* When waking up from Standby mode and powering on the VCODE supply, the HSI is
* selected as SMPS Step Down converter clock, independent from the selection in
* SMPSSEL.
* @retval SMPS clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetSMPSClockFreq(void)
{
uint32_t smps_frequency;
uint32_t smps_prescaler_index = ((LL_RCC_GetSMPSPrescaler()) >> RCC_SMPSCR_SMPSDIV_Pos);
uint32_t smpsClockSource = LL_RCC_GetSMPSClockSource();
if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSI) /* SMPS Clock source is HSI Osc. */
{
if (LL_RCC_HSI_IsReady() == 1U)
{
smps_frequency = HSI_VALUE / SmpsPrescalerTable[smps_prescaler_index][0];
}
else
{
smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
}
}
else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_HSE) /* SMPS Clock source is HSE Osc. */
{
if (LL_RCC_HSE_IsReady() == 1U)
{
smps_frequency = HSE_VALUE / SmpsPrescalerTable[smps_prescaler_index][5];
}
else
{
smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
}
}
else if (smpsClockSource == LL_RCC_SMPS_CLKSOURCE_STATUS_MSI) /* SMPS Clock source is MSI Osc. */
{
uint32_t msiRange = LL_RCC_MSI_GetRange();
if (msiRange == LL_RCC_MSIRANGE_8)
{
smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_8) / SmpsPrescalerTable[smps_prescaler_index][4];
}
else if (msiRange == LL_RCC_MSIRANGE_9)
{
smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_9) / SmpsPrescalerTable[smps_prescaler_index][3];
}
else if (msiRange == LL_RCC_MSIRANGE_10)
{
smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_10) / SmpsPrescalerTable[smps_prescaler_index][2];
}
else if (msiRange == LL_RCC_MSIRANGE_11)
{
smps_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGE_11) / SmpsPrescalerTable[smps_prescaler_index][1];
}
else
{
smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
}
}
else /* SMPS has no Clock */
{
smps_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
}
if (smps_frequency != LL_RCC_PERIPH_FREQUENCY_NO)
{
/* Systematic div by 2 */
smps_frequency = smps_frequency >> 1U;
}
return smps_frequency;
}
#endif
/**
* @brief Return USARTx clock frequency
* @param USARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE
* @retval USART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource)
{
uint32_t usart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_USART_CLKSOURCE(USARTxSource));
/* USART1CLK clock frequency */
switch (LL_RCC_GetUSARTClockSource(USARTxSource))
{
case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */
usart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
usart_frequency = HSI_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
usart_frequency = LSE_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_PCLK2: /* USART1 Clock is PCLK2 */
default:
usart_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq()));
break;
}
return usart_frequency;
}
/**
* @brief Return I2Cx clock frequency
* @param I2CxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE
* @arg @ref LL_RCC_I2C3_CLKSOURCE
* @retval I2C clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that HSI oscillator is not ready
*/
uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource)
{
uint32_t i2c_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_I2C_CLKSOURCE(I2CxSource));
if (I2CxSource == LL_RCC_I2C1_CLKSOURCE)
{
/* I2C1 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C1_CLKSOURCE_PCLK1: /* I2C1 Clock is PCLK1 */
default:
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#if defined(I2C3)
else
{
/* I2C3 CLK clock frequency */
switch (LL_RCC_GetI2CClockSource(I2CxSource))
{
case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */
i2c_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
i2c_frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C3_CLKSOURCE_PCLK1: /* I2C3 Clock is PCLK1 */
default:
i2c_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
#endif
return i2c_frequency;
}
#if defined(LPUART1)
/**
* @brief Return LPUARTx clock frequency
* @param LPUARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE
* @retval LPUART clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI or LSE) is not ready
*/
uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource)
{
uint32_t lpuart_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_LPUART_CLKSOURCE(LPUARTxSource));
/* LPUART1CLK clock frequency */
switch (LL_RCC_GetLPUARTClockSource(LPUARTxSource))
{
case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */
lpuart_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lpuart_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lpuart_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */
default:
lpuart_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq()));
break;
}
return lpuart_frequency;
}
#endif
/**
* @brief Return LPTIMx clock frequency
* @param LPTIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE
* @retval LPTIM clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI, LSI or LSE) is not ready
*/
uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource)
{
uint32_t lptim_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
uint32_t temp = LL_RCC_LSI2_IsReady();
/* Check parameter */
assert_param(IS_LL_RCC_LPTIM_CLKSOURCE(LPTIMxSource));
if (LPTIMxSource == LL_RCC_LPTIM1_CLKSOURCE)
{
/* LPTIM1CLK clock frequency */
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM1_CLKSOURCE_LSI: /* LPTIM1 Clock is LSI Osc. */
if ((LL_RCC_LSI1_IsReady() == 1UL) || (temp == 1UL))
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_HSI: /* LPTIM1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lptim_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_LSE: /* LPTIM1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_PCLK1: /* LPTIM1 Clock is PCLK1 */
default:
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
else
{
/* LPTIM2CLK clock frequency */
switch (LL_RCC_GetLPTIMClockSource(LPTIMxSource))
{
case LL_RCC_LPTIM2_CLKSOURCE_LSI: /* LPTIM2 Clock is LSI Osc. */
if ((LL_RCC_LSI1_IsReady() == 1UL) || (temp == 1UL))
{
lptim_frequency = LSI_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_HSI: /* LPTIM2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
lptim_frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_LSE: /* LPTIM2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
lptim_frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_PCLK1: /* LPTIM2 Clock is PCLK1 */
default:
lptim_frequency = RCC_GetPCLK1ClockFreq(RCC_GetHCLK1ClockFreq(RCC_GetSystemClockFreq()));
break;
}
}
return lptim_frequency;
}
#if defined(SAI1)
/**
* @brief Return SAIx clock frequency
* @param SAIxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_SAI1_CLKSOURCE
*
* @retval SAI clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that PLL is not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that external clock is used
*/
uint32_t LL_RCC_GetSAIClockFreq(uint32_t SAIxSource)
{
uint32_t sai_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_SAI_CLKSOURCE(SAIxSource));
switch (LL_RCC_GetSAIClockSource(SAIxSource))
{
case LL_RCC_SAI1_CLKSOURCE_HSI: /* HSI clock used as SAI1 clock source */
if (LL_RCC_HSI_IsReady() == 1U)
{
sai_frequency = HSI_VALUE;
}
break;
#if defined(SAI1)
case LL_RCC_SAI1_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as SAI1 clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
sai_frequency = RCC_PLLSAI1_GetFreqDomain_SAI();
}
break;
#endif
case LL_RCC_SAI1_CLKSOURCE_PLL: /* PLL clock used as SAI1 clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
sai_frequency = RCC_PLL_GetFreqDomain_SAI();
}
break;
case LL_RCC_SAI1_CLKSOURCE_PIN: /* External input clock used as SAI1 clock source */
default:
sai_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return sai_frequency;
}
#endif
/**
* @brief Return CLK48x clock frequency
* @param CLK48xSource This parameter can be one of the following values:
* @arg @ref LL_RCC_CLK48_CLKSOURCE
* @retval USB clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLLs (PLL or PLLSAI1) is not ready
*/
uint32_t LL_RCC_GetCLK48ClockFreq(uint32_t CLK48xSource)
{
uint32_t clk48_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_CLK48_CLKSOURCE(CLK48xSource));
/* CLK48CLK clock frequency */
switch (LL_RCC_GetCLK48ClockSource(CLK48xSource))
{
#if defined(SAI1)
case LL_RCC_CLK48_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as CLK48 clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
clk48_frequency = RCC_PLLSAI1_GetFreqDomain_48M();
}
break;
#endif
case LL_RCC_CLK48_CLKSOURCE_PLL: /* PLL clock used as CLK48 clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
clk48_frequency = RCC_PLL_GetFreqDomain_48M();
}
break;
case LL_RCC_CLK48_CLKSOURCE_MSI: /* MSI clock used as CLK48 clock source */
if (LL_RCC_MSI_IsReady() == 1U)
{
clk48_frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
}
break;
case LL_RCC_CLK48_CLKSOURCE_HSI48: /* HSI48 clock used as CLK48 clock source */
default:
if (LL_RCC_HSI48_IsReady() == 1U)
{
clk48_frequency = HSI48_VALUE;
}
break;
}
return clk48_frequency;
}
#if defined(USB)
/**
* @brief Return USBx clock frequency
* @param USBxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_CLK48_CLKSOURCE
* @retval USB clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLLs (PLL or PLLSAI1) is not ready
*/
uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource)
{
return LL_RCC_GetCLK48ClockFreq(USBxSource);
}
#endif
/**
* @brief Return RNGx clock frequency
* @param RNGxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE
* @retval RNG clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI or HSI48) or PLLs (PLL or PLLSAI1) is not ready
*/
uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource)
{
uint32_t rng_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
uint32_t rngClockSource = LL_RCC_GetRNGClockSource(RNGxSource);
/* Check parameter */
assert_param(IS_LL_RCC_RNG_CLKSOURCE(RNGxSource));
/* RNGCLK clock frequency */
if (rngClockSource == LL_RCC_RNG_CLKSOURCE_LSI) /* LSI clock used as RNG clock source */
{
const uint32_t temp_lsi1Status = LL_RCC_LSI1_IsReady();
const uint32_t temp_lsi2Status = LL_RCC_LSI2_IsReady();
if ((temp_lsi1Status == 1U) || (temp_lsi2Status == 1U))
{
rng_frequency = LSI_VALUE;
}
}
else if (rngClockSource == LL_RCC_RNG_CLKSOURCE_LSE) /* LSE clock used as RNG clock source */
{
if (LL_RCC_LSE_IsReady() == 1U)
{
rng_frequency = LSE_VALUE;
}
}
else /* CLK48 clock used as RNG clock source */
{
/* Systematic Div by 3 */
rng_frequency = LL_RCC_GetCLK48ClockFreq(LL_RCC_CLK48_CLKSOURCE) / 3U;
}
return rng_frequency;
}
/**
* @brief Return ADCx clock frequency
* @param ADCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE
* @retval ADC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (MSI) or PLL is not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource)
{
uint32_t adc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_ADC_CLKSOURCE(ADCxSource));
/* ADCCLK clock frequency */
switch (LL_RCC_GetADCClockSource(ADCxSource))
{
#if defined(SAI1)
case LL_RCC_ADC_CLKSOURCE_PLLSAI1: /* PLLSAI1 clock used as ADC clock source */
if (LL_RCC_PLLSAI1_IsReady() == 1U)
{
adc_frequency = RCC_PLLSAI1_GetFreqDomain_ADC();
}
break;
#endif
case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */
adc_frequency = RCC_GetSystemClockFreq();
break;
case LL_RCC_ADC_CLKSOURCE_PLL: /* PLL clock used as ADC clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
adc_frequency = RCC_PLL_GetFreqDomain_ADC();
}
break;
case LL_RCC_ADC_CLKSOURCE_NONE: /* No clock used as ADC clock source */
default:
adc_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return adc_frequency;
}
/**
* @brief Return RTC & LCD clock frequency
* @retval RTC clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (LSI, LSE or HSE) are not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetRTCClockFreq(void)
{
uint32_t rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
uint32_t temp = LL_RCC_LSI2_IsReady();
/* RTCCLK clock frequency */
switch (LL_RCC_GetRTCClockSource())
{
case LL_RCC_RTC_CLKSOURCE_LSE: /* LSE clock used as RTC clock source */
if (LL_RCC_LSE_IsReady() == 1U)
{
rtc_frequency = LSE_VALUE;
}
break;
case LL_RCC_RTC_CLKSOURCE_LSI: /* LSI clock used as RTC clock source */
if ((LL_RCC_LSI1_IsReady() == 1UL) || (temp == 1UL))
{
rtc_frequency = LSI_VALUE;
}
break;
case LL_RCC_RTC_CLKSOURCE_HSE_DIV32: /* HSE clock used as ADC clock source */
rtc_frequency = HSE_VALUE / 32U;
break;
case LL_RCC_RTC_CLKSOURCE_NONE: /* No clock used as RTC clock source */
default:
rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return rtc_frequency;
}
/**
* @brief Return RF Wakeup clock frequency
* @retval RFWKP clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (LSI, LSE or HSE) are not ready
* - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected
*/
uint32_t LL_RCC_GetRFWKPClockFreq(void)
{
uint32_t rfwkp_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
uint32_t temp = LL_RCC_LSI2_IsReady();
/* RTCCLK clock frequency */
switch (LL_RCC_GetRFWKPClockSource())
{
case LL_RCC_RFWKP_CLKSOURCE_LSE: /* LSE clock used as RF Wakeup clock source */
if (LL_RCC_LSE_IsReady() == 1U)
{
rfwkp_frequency = LSE_VALUE;
}
break;
case LL_RCC_RFWKP_CLKSOURCE_LSI: /* LSI clock used as RF Wakeup clock source */
if ((LL_RCC_LSI1_IsReady() == 1UL) || (temp == 1UL))
{
rfwkp_frequency = LSI_VALUE;
}
break;
case LL_RCC_RFWKP_CLKSOURCE_HSE_DIV1024: /* HSE clock used as RF Wakeup clock source */
rfwkp_frequency = HSE_VALUE / 1024U;
break;
case LL_RCC_RFWKP_CLKSOURCE_NONE: /* No clock used as RF Wakeup clock source */
default:
rfwkp_frequency = LL_RCC_PERIPH_FREQUENCY_NA;
break;
}
return rfwkp_frequency;
}
#if defined(SPI_I2S_SUPPORT)
/**
* @brief Return I2Sx clock frequency
* @param I2SxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2S_CLKSOURCE
* @retval I2S clock frequency (in Hz)
* - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSI) or PLLs (PLL) is not ready
*/
uint32_t LL_RCC_GetI2SClockFreq(uint32_t I2SxSource)
{
uint32_t i2s_frequency = LL_RCC_PERIPH_FREQUENCY_NO;
/* Check parameter */
assert_param(IS_LL_RCC_I2S_CLKSOURCE(I2SxSource));
/* I2SCLK clock frequency */
switch (LL_RCC_GetI2SClockSource(I2SxSource))
{
case LL_RCC_I2S_CLKSOURCE_PLL: /* I2S2 Clock is PLL"P" */
if (LL_RCC_PLL_IsReady() == 1U)
{
i2s_frequency = RCC_PLL_GetFreqDomain_I2S();
}
break;
case LL_RCC_I2S_CLKSOURCE_PIN: /* I2S2 Clock is External clock */
i2s_frequency = EXTERNAL_CLOCK_VALUE;
break;
case LL_RCC_I2S_CLKSOURCE_HSI: /* HSI clock used as I2S clock source */
default:
if (LL_RCC_HSI_IsReady() == 1U)
{
i2s_frequency = HSI_VALUE;
}
break;
}
return i2s_frequency;
}
#endif
/**
* @}
*/
/**
* @}
*/
/** @addtogroup RCC_LL_Private_Functions
* @{
*/
/**
* @brief Return SYSTEM clock (SYSCLK) frequency
* @retval SYSTEM clock frequency (in Hz)
*/
uint32_t RCC_GetSystemClockFreq(void)
{
uint32_t frequency;
/* Get SYSCLK source -------------------------------------------------------*/
switch (LL_RCC_GetSysClkSource())
{
case LL_RCC_SYS_CLKSOURCE_STATUS_MSI: /* MSI used as system clock source */
frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
frequency = HSI_VALUE;
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
frequency = HSE_VALUE / 2U;
}
else
{
frequency = HSE_VALUE;
}
break;
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */
frequency = RCC_PLL_GetFreqDomain_SYS();
break;
default:
frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return frequency;
}
/**
* @brief Return HCLK1 clock frequency
* @param SYSCLK_Frequency SYSCLK clock frequency
* @retval HCLK1 clock frequency (in Hz)
*/
uint32_t RCC_GetHCLK1ClockFreq(uint32_t SYSCLK_Frequency)
{
/* HCLK clock frequency */
return __LL_RCC_CALC_HCLK1_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler());
}
/**
* @brief Return HCLK2 clock frequency
* @param SYSCLK_Frequency SYSCLK clock frequency
* @retval HCLK2 clock frequency (in Hz)
*/
uint32_t RCC_GetHCLK2ClockFreq(uint32_t SYSCLK_Frequency)
{
/* HCLK clock frequency */
return __LL_RCC_CALC_HCLK2_FREQ(SYSCLK_Frequency, LL_C2_RCC_GetAHBPrescaler());
}
/**
* @brief Return HCLK clock frequency
* @param SYSCLK_Frequency SYSCLK clock frequency
* @retval HCLK4 clock frequency (in Hz)
*/
uint32_t RCC_GetHCLK4ClockFreq(uint32_t SYSCLK_Frequency)
{
/* HCLK clock frequency */
return __LL_RCC_CALC_HCLK4_FREQ(SYSCLK_Frequency, LL_RCC_GetAHB4Prescaler());
}
/**
* @brief Return HCLK5 clock frequency
* @retval HCLK5 clock frequency (in Hz)
*/
uint32_t RCC_GetHCLK5ClockFreq(void)
{
uint32_t frequency;
/* Get SYSCLK source -------------------------------------------------------*/
switch (LL_RCC_GetRFClockSource())
{
case LL_RCC_RF_CLKSOURCE_HSI: /* HSI used as system clock source */
frequency = HSI_VALUE;
break;
case LL_RCC_RF_CLKSOURCE_HSE_DIV2: /* HSE Div2 used as system clock source */
frequency = HSE_VALUE / 2U;
break;
default:
frequency = HSI_VALUE;
break;
}
return frequency;
}
/**
* @brief Return PCLK1 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK1 clock frequency (in Hz)
*/
uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK1 clock frequency */
return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler());
}
/**
* @brief Return PCLK2 clock frequency
* @param HCLK_Frequency HCLK clock frequency
* @retval PCLK2 clock frequency (in Hz)
*/
uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency)
{
/* PCLK2 clock frequency */
return __LL_RCC_CALC_PCLK2_FREQ(HCLK_Frequency, LL_RCC_GetAPB2Prescaler());
}
/**
* @brief Return PLL clock (PLLRCLK) frequency used for system domain
* @retval PLLRCLK clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_SYS(void)
{
uint32_t pllinputfreq, pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetR());
}
#if defined(SAI1)
/**
* @brief Return PLL clock (PLLPCLK) frequency used for SAI domain
* @retval PLLPCLK clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_SAI(void)
{
uint32_t pllinputfreq, pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value / PLLM) * PLLN
SAI Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return __LL_RCC_CALC_PLLCLK_SAI_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
}
#endif
/**
* @brief Return PLL clock (PLLPCLK) frequency used for ADC domain
* @retval PLLPCLK clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_ADC(void)
{
uint32_t pllinputfreq, pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value / PLLM) * PLLN
SAI Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return __LL_RCC_CALC_PLLCLK_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
}
/**
* @brief Return PLL clock (PLLQCLK) frequency used for 48 MHz domain
* @retval PLLQCLK clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_48M(void)
{
uint32_t pllinputfreq, pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLN
48M Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return __LL_RCC_CALC_PLLCLK_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
#if defined(SAI1)
/**
* @brief Return PLLSAI1 clock (PLLSAI1PCLK) frequency used for SAI domain
* @retval PLLSAI1PCLK clock frequency (in Hz)
*/
uint32_t RCC_PLLSAI1_GetFreqDomain_SAI(void)
{
uint32_t pllinputfreq, pllsource;
/* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */
/* SAI Domain clock = PLLSAI1_VCO / PLLSAI1P */
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return __LL_RCC_CALC_PLLSAI1_SAI_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetP());
}
/**
* @brief Return PLLSAI1 clock (PLLSAI1QCLK) frequency used for 48Mhz domain
* @retval PLLSAI1QCLK clock frequency (in Hz)
*/
uint32_t RCC_PLLSAI1_GetFreqDomain_48M(void)
{
uint32_t pllinputfreq, pllsource;
/* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */
/* 48M Domain clock = PLLSAI1_VCO / PLLSAI1Q */
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return __LL_RCC_CALC_PLLSAI1_48M_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetQ());
}
/**
* @brief Return PLLSAI1 clock (PLLSAI1RCLK) frequency used for ADC domain
* @retval PLLSAI1RCLK clock frequency (in Hz)
*/
uint32_t RCC_PLLSAI1_GetFreqDomain_ADC(void)
{
uint32_t pllinputfreq, pllsource;
/* PLLSAI1_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLSAI1N */
/* 48M Domain clock = PLLSAI1_VCO / PLLSAI1R */
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLLSAI1 clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLLSAI1 clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLLSAI1 clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
return __LL_RCC_CALC_PLLSAI1_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLLSAI1_GetN(), LL_RCC_PLLSAI1_GetR());
}
#endif
#if defined(SPI_I2S_SUPPORT)
/**
* @brief Return PLL clock frequency used for I2S domain
* @retval PLL clock frequency (in Hz)
*/
uint32_t RCC_PLL_GetFreqDomain_I2S(void)
{
uint32_t pllinputfreq, pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
I2S Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
pllinputfreq = HSE_VALUE;
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
default:
pllinputfreq = HSI_VALUE;
break;
}
return __LL_RCC_CALC_PLLCLK_I2S_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
}
#endif
/**
* @}
*/
/**
* @}
*/
#endif /* defined(RCC) */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/