blob: 7feb7b5741639050dbc86739c008b1d63988809b [file] [log] [blame]
/**
******************************************************************************
* @file stm32wbxx_hal_pka.c
* @author MCD Application Team
* @brief PKA HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of public key accelerator(PKA):
* + Initialization and de-initialization functions
* + Start an operation
* + Retrieve the operation result
*
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The PKA HAL driver can be used as follows:
(#) Declare a PKA_HandleTypeDef handle structure, for example: PKA_HandleTypeDef hpka;
(#) Initialize the PKA low level resources by implementing the HAL_PKA_MspInit() API:
(##) Enable the PKA interface clock
(##) NVIC configuration if you need to use interrupt process
(+++) Configure the PKA interrupt priority
(+++) Enable the NVIC PKA IRQ Channel
(#) Initialize the PKA registers by calling the HAL_PKA_Init() API which trig
HAL_PKA_MspInit().
(#) Fill entirely the input structure corresponding to your operation:
For instance: PKA_ModExpInTypeDef for HAL_PKA_ModExp().
(#) Execute the operation (in polling or interrupt) and check the returned value.
(#) Retrieve the result of the operation (For instance, HAL_PKA_ModExp_GetResult for
HAL_PKA_ModExp operation). The function to gather the result is different for each
kind of operation. The correspondence can be found in the following section.
(#) Call the function HAL_PKA_DeInit() to restore the default configuration which trig
HAL_PKA_MspDeInit().
*** High level operation ***
=================================
[..]
(+) Input structure requires buffers as uint8_t array.
(+) Output structure requires buffers as uint8_t array.
(+) Modular exponentiation using:
(++) HAL_PKA_ModExp().
(++) HAL_PKA_ModExp_IT().
(++) HAL_PKA_ModExpFastMode().
(++) HAL_PKA_ModExpFastMode_IT().
(++) HAL_PKA_ModExp_GetResult() to retrieve the result of the operation.
(+) RSA Chinese Remainder Theorem (CRT) using:
(++) HAL_PKA_RSACRTExp().
(++) HAL_PKA_RSACRTExp_IT().
(++) HAL_PKA_RSACRTExp_GetResult() to retrieve the result of the operation.
(+) ECC Point Check using:
(++) HAL_PKA_PointCheck().
(++) HAL_PKA_PointCheck_IT().
(++) HAL_PKA_PointCheck_IsOnCurve() to retrieve the result of the operation.
(+) ECDSA Sign
(++) HAL_PKA_ECDSASign().
(++) HAL_PKA_ECDSASign_IT().
(++) HAL_PKA_ECDSASign_GetResult() to retrieve the result of the operation.
(+) ECDSA Verify
(++) HAL_PKA_ECDSAVerif().
(++) HAL_PKA_ECDSAVerif_IT().
(++) HAL_PKA_ECDSAVerif_IsValidSignature() to retrieve the result of the operation.
(+) ECC Scalar Multiplication using:
(++) HAL_PKA_ECCMul().
(++) HAL_PKA_ECCMul_IT().
(++) HAL_PKA_ECCMulFastMode().
(++) HAL_PKA_ECCMulFastMode_IT().
(++) HAL_PKA_ECCMul_GetResult() to retrieve the result of the operation.
*** Low level operation ***
=================================
[..]
(+) Input structure requires buffers as uint32_t array.
(+) Output structure requires buffers as uint32_t array.
(+) Arithmetic addition using:
(++) HAL_PKA_Add().
(++) HAL_PKA_Add_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
The resulting size can be the input parameter or the input parameter size + 1 (overflow).
(+) Arithmetic subtraction using:
(++) HAL_PKA_Sub().
(++) HAL_PKA_Sub_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
(+) Arithmetic multiplication using:
(++) HAL_PKA_Mul().
(++) HAL_PKA_Mul_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
(+) Comparison using:
(++) HAL_PKA_Cmp().
(++) HAL_PKA_Cmp_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
(+) Modular addition using:
(++) HAL_PKA_ModAdd().
(++) HAL_PKA_ModAdd_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
(+) Modular subtraction using:
(++) HAL_PKA_ModSub().
(++) HAL_PKA_ModSub_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
(+) Modular inversion using:
(++) HAL_PKA_ModInv().
(++) HAL_PKA_ModInv_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
(+) Modular reduction using:
(++) HAL_PKA_ModRed().
(++) HAL_PKA_ModRed_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
(+) Montgomery multiplication using:
(++) HAL_PKA_MontgomeryMul().
(++) HAL_PKA_MontgomeryMul_IT().
(++) HAL_PKA_Arithmetic_GetResult() to retrieve the result of the operation.
*** Montgomery parameter ***
=================================
(+) For some operation, the computation of the Montgomery parameter is a prerequisite.
(+) Input structure requires buffers as uint8_t array.
(+) Output structure requires buffers as uint32_t array.(Only used inside PKA).
(+) You can compute the Montgomery parameter using:
(++) HAL_PKA_MontgomeryParam().
(++) HAL_PKA_MontgomeryParam_IT().
(++) HAL_PKA_MontgomeryParam_GetResult() to retrieve the result of the operation.
*** Polling mode operation ***
===================================
[..]
(+) When an operation is started in polling mode, the function returns when:
(++) A timeout is encounter.
(++) The operation is completed.
*** Interrupt mode operation ***
===================================
[..]
(+) Add HAL_PKA_IRQHandler to the IRQHandler of PKA.
(+) Enable the IRQ using HAL_NVIC_EnableIRQ().
(+) When an operation is started in interrupt mode, the function returns immediately.
(+) When the operation is completed, the callback HAL_PKA_OperationCpltCallback is called.
(+) When an error is encountered, the callback HAL_PKA_ErrorCallback is called.
(+) To stop any operation in interrupt mode, use HAL_PKA_Abort().
*** Utilities ***
===================================
[..]
(+) To clear the PKA RAM, use HAL_PKA_RAMReset().
(+) To get current state, use HAL_PKA_GetState().
(+) To get current error, use HAL_PKA_GetError().
*** Callback registration ***
=============================================
[..]
The compilation flag USE_HAL_PKA_REGISTER_CALLBACKS, when set to 1,
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_PKA_RegisterCallback()
to register an interrupt callback.
[..]
Function HAL_PKA_RegisterCallback() allows to register following callbacks:
(+) OperationCpltCallback : callback for End of operation.
(+) ErrorCallback : callback for error detection.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
[..]
Use function HAL_PKA_UnRegisterCallback to reset a callback to the default
weak function.
[..]
HAL_PKA_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) OperationCpltCallback : callback for End of operation.
(+) ErrorCallback : callback for error detection.
(+) MspInitCallback : callback for Msp Init.
(+) MspDeInitCallback : callback for Msp DeInit.
[..]
By default, after the HAL_PKA_Init() and when the state is HAL_PKA_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples HAL_PKA_OperationCpltCallback(), HAL_PKA_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the HAL_PKA_Init()/ HAL_PKA_DeInit() only when
these callbacks are null (not registered beforehand).
[..]
If MspInit or MspDeInit are not null, the HAL_PKA_Init()/ HAL_PKA_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
[..]
Callbacks can be registered/unregistered in HAL_PKA_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in HAL_PKA_STATE_READY or HAL_PKA_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
[..]
Then, the user first registers the MspInit/MspDeInit user callbacks
using HAL_PKA_RegisterCallback() before calling HAL_PKA_DeInit()
or HAL_PKA_Init() function.
[..]
When the compilation flag USE_HAL_PKA_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
#if defined(PKA) && defined(HAL_PKA_MODULE_ENABLED)
/** @defgroup PKA PKA
* @brief PKA HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PKA_Private_Define PKA Private Define
* @{
*/
#define PKA_RAM_SIZE 894U
/* Private macro -------------------------------------------------------------*/
#define __PKA_RAM_PARAM_END(TAB,INDEX) do{ \
TAB[INDEX] = 0UL; \
} while(0)
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup PKA_Private_Functions PKA Private Functions
* @{
*/
uint32_t PKA_GetMode(PKA_HandleTypeDef *hpka);
HAL_StatusTypeDef PKA_PollEndOfOperation(PKA_HandleTypeDef *hpka, uint32_t Timeout, uint32_t Tickstart);
uint32_t PKA_CheckError(PKA_HandleTypeDef *hpka, uint32_t mode);
uint32_t PKA_GetBitSize_u8(uint32_t byteNumber);
uint32_t PKA_GetOptBitSize_u8(uint32_t byteNumber, uint8_t msb);
uint32_t PKA_GetBitSize_u32(uint32_t wordNumber);
uint32_t PKA_GetArraySize_u8(uint32_t bitSize);
void PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], size_t n);
void PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], size_t n);
void PKA_Memcpy_u32_to_u32(__IO uint32_t dst[], __IO const uint32_t src[], size_t n);
HAL_StatusTypeDef PKA_Process(PKA_HandleTypeDef *hpka, uint32_t mode, uint32_t Timeout);
HAL_StatusTypeDef PKA_Process_IT(PKA_HandleTypeDef *hpka, uint32_t mode);
void PKA_ModExp_Set(PKA_HandleTypeDef *hpka, PKA_ModExpInTypeDef *in);
void PKA_ModExpFastMode_Set(PKA_HandleTypeDef *hpka, PKA_ModExpFastModeInTypeDef *in);
void PKA_ECDSASign_Set(PKA_HandleTypeDef *hpka, PKA_ECDSASignInTypeDef *in);
void PKA_ECDSAVerif_Set(PKA_HandleTypeDef *hpka, PKA_ECDSAVerifInTypeDef *in);
void PKA_RSACRTExp_Set(PKA_HandleTypeDef *hpka, PKA_RSACRTExpInTypeDef *in);
void PKA_PointCheck_Set(PKA_HandleTypeDef *hpka, PKA_PointCheckInTypeDef *in);
void PKA_ECCMul_Set(PKA_HandleTypeDef *hpka, PKA_ECCMulInTypeDef *in);
void PKA_ECCMulFastMode_Set(PKA_HandleTypeDef *hpka, PKA_ECCMulFastModeInTypeDef *in);
void PKA_ModRed_Set(PKA_HandleTypeDef *hpka, PKA_ModRedInTypeDef *in);
void PKA_ModInv_Set(PKA_HandleTypeDef *hpka, PKA_ModInvInTypeDef *in);
void PKA_MontgomeryParam_Set(PKA_HandleTypeDef *hpka, const uint32_t size, const uint8_t *pOp1);
void PKA_ARI_Set(PKA_HandleTypeDef *hpka, const uint32_t size, const uint32_t *pOp1, const uint32_t *pOp2,
const uint8_t *pOp3);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup PKA_Exported_Functions PKA Exported Functions
* @{
*/
/** @defgroup PKA_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
deinitialize the PKAx peripheral:
(+) User must implement HAL_PKA_MspInit() function in which he configures
all related peripherals resources (CLOCK, IT and NVIC ).
(+) Call the function HAL_PKA_Init() to configure the device.
(+) Call the function HAL_PKA_DeInit() to restore the default configuration
of the selected PKAx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initialize the PKA according to the specified
* parameters in the PKA_InitTypeDef and initialize the associated handle.
* @param hpka PKA handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Init(PKA_HandleTypeDef *hpka)
{
HAL_StatusTypeDef err = HAL_OK;
/* Check the PKA handle allocation */
if (hpka != NULL)
{
/* Check the parameters */
assert_param(IS_PKA_ALL_INSTANCE(hpka->Instance));
if (hpka->State == HAL_PKA_STATE_RESET)
{
#if (USE_HAL_PKA_REGISTER_CALLBACKS == 1)
/* Init the PKA Callback settings */
hpka->OperationCpltCallback = HAL_PKA_OperationCpltCallback; /* Legacy weak OperationCpltCallback */
hpka->ErrorCallback = HAL_PKA_ErrorCallback; /* Legacy weak ErrorCallback */
if (hpka->MspInitCallback == NULL)
{
hpka->MspInitCallback = HAL_PKA_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware */
hpka->MspInitCallback(hpka);
#else
/* Init the low level hardware */
HAL_PKA_MspInit(hpka);
#endif /* USE_HAL_PKA_REGISTER_CALLBACKS */
}
/* Set the state to busy */
hpka->State = HAL_PKA_STATE_BUSY;
/* Reset the control register and enable the PKA */
hpka->Instance->CR = PKA_CR_EN;
/* Reset any pending flag */
SET_BIT(hpka->Instance->CLRFR, PKA_CLRFR_PROCENDFC | PKA_CLRFR_RAMERRFC | PKA_CLRFR_ADDRERRFC);
/* Initialize the error code */
hpka->ErrorCode = HAL_PKA_ERROR_NONE;
/* Set the state to ready */
hpka->State = HAL_PKA_STATE_READY;
}
else
{
err = HAL_ERROR;
}
return err;
}
/**
* @brief DeInitialize the PKA peripheral.
* @param hpka PKA handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_DeInit(PKA_HandleTypeDef *hpka)
{
HAL_StatusTypeDef err = HAL_OK;
/* Check the PKA handle allocation */
if (hpka != NULL)
{
/* Check the parameters */
assert_param(IS_PKA_ALL_INSTANCE(hpka->Instance));
/* Set the state to busy */
hpka->State = HAL_PKA_STATE_BUSY;
/* Reset the control register */
/* This abort any operation in progress (PKA RAM content is not guaranteed in this case) */
hpka->Instance->CR = 0;
/* Reset any pending flag */
SET_BIT(hpka->Instance->CLRFR, PKA_CLRFR_PROCENDFC | PKA_CLRFR_RAMERRFC | PKA_CLRFR_ADDRERRFC);
#if (USE_HAL_PKA_REGISTER_CALLBACKS == 1)
if (hpka->MspDeInitCallback == NULL)
{
hpka->MspDeInitCallback = HAL_PKA_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: GPIO, CLOCK, NVIC */
hpka->MspDeInitCallback(hpka);
#else
/* DeInit the low level hardware: CLOCK, NVIC */
HAL_PKA_MspDeInit(hpka);
#endif /* USE_HAL_PKA_REGISTER_CALLBACKS */
/* Reset the error code */
hpka->ErrorCode = HAL_PKA_ERROR_NONE;
/* Reset the state */
hpka->State = HAL_PKA_STATE_RESET;
}
else
{
err = HAL_ERROR;
}
return err;
}
/**
* @brief Initialize the PKA MSP.
* @param hpka PKA handle
* @retval None
*/
__weak void HAL_PKA_MspInit(PKA_HandleTypeDef *hpka)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpka);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PKA_MspInit can be implemented in the user file
*/
}
/**
* @brief DeInitialize the PKA MSP.
* @param hpka PKA handle
* @retval None
*/
__weak void HAL_PKA_MspDeInit(PKA_HandleTypeDef *hpka)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpka);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PKA_MspDeInit can be implemented in the user file
*/
}
#if (USE_HAL_PKA_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User PKA Callback
* To be used instead of the weak predefined callback
* @param hpka Pointer to a PKA_HandleTypeDef structure that contains
* the configuration information for the specified PKA.
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_PKA_OPERATION_COMPLETE_CB_ID End of operation callback ID
* @arg @ref HAL_PKA_ERROR_CB_ID Error callback ID
* @arg @ref HAL_PKA_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_PKA_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_RegisterCallback(PKA_HandleTypeDef *hpka, HAL_PKA_CallbackIDTypeDef CallbackID,
pPKA_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hpka->ErrorCode |= HAL_PKA_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (HAL_PKA_STATE_READY == hpka->State)
{
switch (CallbackID)
{
case HAL_PKA_OPERATION_COMPLETE_CB_ID :
hpka->OperationCpltCallback = pCallback;
break;
case HAL_PKA_ERROR_CB_ID :
hpka->ErrorCallback = pCallback;
break;
case HAL_PKA_MSPINIT_CB_ID :
hpka->MspInitCallback = pCallback;
break;
case HAL_PKA_MSPDEINIT_CB_ID :
hpka->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hpka->ErrorCode |= HAL_PKA_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_PKA_STATE_RESET == hpka->State)
{
switch (CallbackID)
{
case HAL_PKA_MSPINIT_CB_ID :
hpka->MspInitCallback = pCallback;
break;
case HAL_PKA_MSPDEINIT_CB_ID :
hpka->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hpka->ErrorCode |= HAL_PKA_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hpka->ErrorCode |= HAL_PKA_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a PKA Callback
* PKA callback is redirected to the weak predefined callback
* @param hpka Pointer to a PKA_HandleTypeDef structure that contains
* the configuration information for the specified PKA.
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_PKA_OPERATION_COMPLETE_CB_ID End of operation callback ID
* @arg @ref HAL_PKA_ERROR_CB_ID Error callback ID
* @arg @ref HAL_PKA_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_PKA_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_UnRegisterCallback(PKA_HandleTypeDef *hpka, HAL_PKA_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (HAL_PKA_STATE_READY == hpka->State)
{
switch (CallbackID)
{
case HAL_PKA_OPERATION_COMPLETE_CB_ID :
hpka->OperationCpltCallback = HAL_PKA_OperationCpltCallback; /* Legacy weak OperationCpltCallback */
break;
case HAL_PKA_ERROR_CB_ID :
hpka->ErrorCallback = HAL_PKA_ErrorCallback; /* Legacy weak ErrorCallback */
break;
case HAL_PKA_MSPINIT_CB_ID :
hpka->MspInitCallback = HAL_PKA_MspInit; /* Legacy weak MspInit */
break;
case HAL_PKA_MSPDEINIT_CB_ID :
hpka->MspDeInitCallback = HAL_PKA_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hpka->ErrorCode |= HAL_PKA_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_PKA_STATE_RESET == hpka->State)
{
switch (CallbackID)
{
case HAL_PKA_MSPINIT_CB_ID :
hpka->MspInitCallback = HAL_PKA_MspInit; /* Legacy weak MspInit */
break;
case HAL_PKA_MSPDEINIT_CB_ID :
hpka->MspDeInitCallback = HAL_PKA_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
hpka->ErrorCode |= HAL_PKA_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hpka->ErrorCode |= HAL_PKA_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_PKA_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup PKA_Exported_Functions_Group2 IO operation functions
* @brief IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the PKA operations.
(#) There are two modes of operation:
(++) Blocking mode : The operation is performed in the polling mode.
These functions return when data operation is completed.
(++) No-Blocking mode : The operation is performed using Interrupts.
These functions return immediately.
The end of the operation is indicated by HAL_PKA_ErrorCallback in case of error.
The end of the operation is indicated by HAL_PKA_OperationCpltCallback in case of success.
To stop any operation in interrupt mode, use HAL_PKA_Abort().
(#) Blocking mode functions are :
(++) HAL_PKA_ModExp()
(++) HAL_PKA_ModExpFastMode()
(++) HAL_PKA_ModExp_GetResult();
(++) HAL_PKA_ECDSASign()
(++) HAL_PKA_ECDSASign_GetResult();
(++) HAL_PKA_ECDSAVerif()
(++) HAL_PKA_ECDSAVerif_IsValidSignature();
(++) HAL_PKA_RSACRTExp()
(++) HAL_PKA_RSACRTExp_GetResult();
(++) HAL_PKA_PointCheck()
(++) HAL_PKA_PointCheck_IsOnCurve();
(++) HAL_PKA_ECCMul()
(++) HAL_PKA_ECCMulFastMode()
(++) HAL_PKA_ECCMul_GetResult();
(++) HAL_PKA_Add()
(++) HAL_PKA_Sub()
(++) HAL_PKA_Cmp()
(++) HAL_PKA_Mul()
(++) HAL_PKA_ModAdd()
(++) HAL_PKA_ModSub()
(++) HAL_PKA_ModInv()
(++) HAL_PKA_ModRed()
(++) HAL_PKA_MontgomeryMul()
(++) HAL_PKA_Arithmetic_GetResult(P);
(++) HAL_PKA_MontgomeryParam()
(++) HAL_PKA_MontgomeryParam_GetResult();
(#) No-Blocking mode functions with Interrupt are :
(++) HAL_PKA_ModExp_IT();
(++) HAL_PKA_ModExpFastMode_IT();
(++) HAL_PKA_ModExp_GetResult();
(++) HAL_PKA_ECDSASign_IT();
(++) HAL_PKA_ECDSASign_GetResult();
(++) HAL_PKA_ECDSAVerif_IT();
(++) HAL_PKA_ECDSAVerif_IsValidSignature();
(++) HAL_PKA_RSACRTExp_IT();
(++) HAL_PKA_RSACRTExp_GetResult();
(++) HAL_PKA_PointCheck_IT();
(++) HAL_PKA_PointCheck_IsOnCurve();
(++) HAL_PKA_ECCMul_IT();
(++) HAL_PKA_ECCMulFastMode_IT();
(++) HAL_PKA_ECCMul_GetResult();
(++) HAL_PKA_Add_IT();
(++) HAL_PKA_Sub_IT();
(++) HAL_PKA_Cmp_IT();
(++) HAL_PKA_Mul_IT();
(++) HAL_PKA_ModAdd_IT();
(++) HAL_PKA_ModSub_IT();
(++) HAL_PKA_ModInv_IT();
(++) HAL_PKA_ModRed_IT();
(++) HAL_PKA_MontgomeryMul_IT();
(++) HAL_PKA_Arithmetic_GetResult();
(++) HAL_PKA_MontgomeryParam_IT();
(++) HAL_PKA_MontgomeryParam_GetResult();
(++) HAL_PKA_Abort();
@endverbatim
* @{
*/
/**
* @brief Modular exponentiation in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModExp(PKA_HandleTypeDef *hpka, PKA_ModExpInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ModExp_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MODULAR_EXP, Timeout);
}
/**
* @brief Modular exponentiation in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModExp_IT(PKA_HandleTypeDef *hpka, PKA_ModExpInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ModExp_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MODULAR_EXP);
}
/**
* @brief Modular exponentiation in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModExpFastMode(PKA_HandleTypeDef *hpka, PKA_ModExpFastModeInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ModExpFastMode_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MODULAR_EXP_FAST_MODE, Timeout);
}
/**
* @brief Modular exponentiation in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModExpFastMode_IT(PKA_HandleTypeDef *hpka, PKA_ModExpFastModeInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ModExpFastMode_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MODULAR_EXP_FAST_MODE);
}
/**
* @brief Retrieve operation result.
* @param hpka PKA handle
* @param pRes Output buffer
* @retval HAL status
*/
void HAL_PKA_ModExp_GetResult(PKA_HandleTypeDef *hpka, uint8_t *pRes)
{
uint32_t size;
/* Indicate to the user the final size */
size = (hpka->Instance->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] + 7UL) / 8UL;
/* Move the result to appropriate location (indicated in out parameter) */
PKA_Memcpy_u32_to_u8(pRes, &hpka->Instance->RAM[PKA_MODULAR_EXP_OUT_SM_ALGO_ACC1], size);
}
/**
* @brief Sign a message using elliptic curves over prime fields in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECDSASign(PKA_HandleTypeDef *hpka, PKA_ECDSASignInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ECDSASign_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_ECDSA_SIGNATURE, Timeout);
}
/**
* @brief Sign a message using elliptic curves over prime fields in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECDSASign_IT(PKA_HandleTypeDef *hpka, PKA_ECDSASignInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ECDSASign_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_ECDSA_SIGNATURE);
}
/**
* @brief Retrieve operation result.
* @param hpka PKA handle
* @param out Output information
* @param outExt Additional Output information (facultative)
*/
void HAL_PKA_ECDSASign_GetResult(PKA_HandleTypeDef *hpka, PKA_ECDSASignOutTypeDef *out,
PKA_ECDSASignOutExtParamTypeDef *outExt)
{
uint32_t size;
size = (hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_MOD_NB_BITS] + 7UL) / 8UL;
if (out != NULL)
{
PKA_Memcpy_u32_to_u8(out->RSign, &hpka->Instance->RAM[PKA_ECDSA_SIGN_OUT_SIGNATURE_R], size);
PKA_Memcpy_u32_to_u8(out->SSign, &hpka->Instance->RAM[PKA_ECDSA_SIGN_OUT_SIGNATURE_S], size);
}
/* If user requires the additional information */
if (outExt != NULL)
{
/* Move the result to appropriate location (indicated in outExt parameter) */
PKA_Memcpy_u32_to_u8(outExt->ptX, &hpka->Instance->RAM[PKA_ECDSA_SIGN_OUT_FINAL_POINT_X], size);
PKA_Memcpy_u32_to_u8(outExt->ptY, &hpka->Instance->RAM[PKA_ECDSA_SIGN_OUT_FINAL_POINT_Y], size);
}
}
/**
* @brief Verify the validity of a signature using elliptic curves over prime fields in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECDSAVerif(PKA_HandleTypeDef *hpka, PKA_ECDSAVerifInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ECDSAVerif_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_ECDSA_VERIFICATION, Timeout);
}
/**
* @brief Verify the validity of a signature using elliptic curves
* over prime fields in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECDSAVerif_IT(PKA_HandleTypeDef *hpka, PKA_ECDSAVerifInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ECDSAVerif_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_ECDSA_VERIFICATION);
}
/**
* @brief Return the result of the ECDSA verification operation.
* @param hpka PKA handle
* @retval 1 if signature is verified, 0 in other case
*/
uint32_t HAL_PKA_ECDSAVerif_IsValidSignature(PKA_HandleTypeDef const *const hpka)
{
/* Invert the state of the PKA RAM bit containing the result of the operation */
return (hpka->Instance->RAM[PKA_ECDSA_VERIF_OUT_RESULT] == 0UL) ? 1UL : 0UL;
}
/**
* @brief RSA CRT exponentiation in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_RSACRTExp(PKA_HandleTypeDef *hpka, PKA_RSACRTExpInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_RSACRTExp_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_RSA_CRT_EXP, Timeout);
}
/**
* @brief RSA CRT exponentiation in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_RSACRTExp_IT(PKA_HandleTypeDef *hpka, PKA_RSACRTExpInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_RSACRTExp_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_RSA_CRT_EXP);
}
/**
* @brief Retrieve operation result.
* @param hpka PKA handle
* @param pRes Pointer to memory location to receive the result of the operation
* @retval HAL status
*/
void HAL_PKA_RSACRTExp_GetResult(PKA_HandleTypeDef *hpka, uint8_t *pRes)
{
uint32_t size;
/* Move the result to appropriate location (indicated in out parameter) */
size = (hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_MOD_NB_BITS] + 7UL) / 8UL;
PKA_Memcpy_u32_to_u8(pRes, &hpka->Instance->RAM[PKA_RSA_CRT_EXP_OUT_RESULT], size);
}
/**
* @brief Point on elliptic curve check in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_PointCheck(PKA_HandleTypeDef *hpka, PKA_PointCheckInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_PointCheck_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_POINT_CHECK, Timeout);
}
/**
* @brief Point on elliptic curve check in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_PointCheck_IT(PKA_HandleTypeDef *hpka, PKA_PointCheckInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_PointCheck_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_POINT_CHECK);
}
/**
* @brief Return the result of the point check operation.
* @param hpka PKA handle
* @retval 1 if point is on curve, 0 in other case
*/
uint32_t HAL_PKA_PointCheck_IsOnCurve(PKA_HandleTypeDef const *const hpka)
{
#define PKA_POINT_IS_ON_CURVE 0UL
/* Invert the value of the PKA RAM containing the result of the operation */
return (hpka->Instance->RAM[PKA_POINT_CHECK_OUT_ERROR] == PKA_POINT_IS_ON_CURVE) ? 1UL : 0UL;
}
/**
* @brief ECC scalar multiplication in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECCMul(PKA_HandleTypeDef *hpka, PKA_ECCMulInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ECCMul_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_ECC_MUL, Timeout);
}
/**
* @brief ECC scalar multiplication in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECCMul_IT(PKA_HandleTypeDef *hpka, PKA_ECCMulInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ECCMul_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_ECC_MUL);
}
/**
* @brief ECC scalar multiplication in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECCMulFastMode(PKA_HandleTypeDef *hpka, PKA_ECCMulFastModeInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ECCMulFastMode_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_ECC_MUL_FAST_MODE, Timeout);
}
/**
* @brief ECC scalar multiplication in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ECCMulFastMode_IT(PKA_HandleTypeDef *hpka, PKA_ECCMulFastModeInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ECCMulFastMode_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_ECC_MUL_FAST_MODE);
}
/**
* @brief Retrieve operation result.
* @param hpka PKA handle
* @param out Output information
* @retval HAL status
*/
void HAL_PKA_ECCMul_GetResult(PKA_HandleTypeDef *hpka, PKA_ECCMulOutTypeDef *out)
{
uint32_t size;
/* Retrieve the size of the array from the PKA RAM */
size = (hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_OP_NB_BITS] + 7UL) / 8UL;
/* If a destination buffer is provided */
if (out != NULL)
{
/* Move the result to appropriate location (indicated in out parameter) */
PKA_Memcpy_u32_to_u8(out->ptX, &hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_OUT_RESULT_X], size);
PKA_Memcpy_u32_to_u8(out->ptY, &hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_OUT_RESULT_Y], size);
}
}
/**
* @brief Arithmetic addition in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Add(PKA_HandleTypeDef *hpka, PKA_AddInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_ARITHMETIC_ADD, Timeout);
}
/**
* @brief Arithmetic addition in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Add_IT(PKA_HandleTypeDef *hpka, PKA_AddInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_ARITHMETIC_ADD);
}
/**
* @brief Arithmetic subtraction in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Sub(PKA_HandleTypeDef *hpka, PKA_SubInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_ARITHMETIC_SUB, Timeout);
}
/**
* @brief Arithmetic subtraction in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Sub_IT(PKA_HandleTypeDef *hpka, PKA_SubInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_ARITHMETIC_SUB);
}
/**
* @brief Arithmetic multiplication in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Mul(PKA_HandleTypeDef *hpka, PKA_MulInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_ARITHMETIC_MUL, Timeout);
}
/**
* @brief Arithmetic multiplication in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Mul_IT(PKA_HandleTypeDef *hpka, PKA_MulInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_ARITHMETIC_MUL);
}
/**
* @brief Comparison in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Cmp(PKA_HandleTypeDef *hpka, PKA_CmpInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_COMPARISON, Timeout);
}
/**
* @brief Comparison in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Cmp_IT(PKA_HandleTypeDef *hpka, PKA_CmpInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, NULL);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_COMPARISON);
}
/**
* @brief Modular addition in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModAdd(PKA_HandleTypeDef *hpka, PKA_ModAddInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, in->pOp3);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MODULAR_ADD, Timeout);
}
/**
* @brief Modular addition in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModAdd_IT(PKA_HandleTypeDef *hpka, PKA_ModAddInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, in->pOp3);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MODULAR_ADD);
}
/**
* @brief Modular inversion in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModInv(PKA_HandleTypeDef *hpka, PKA_ModInvInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ModInv_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MODULAR_INV, Timeout);
}
/**
* @brief Modular inversion in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModInv_IT(PKA_HandleTypeDef *hpka, PKA_ModInvInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ModInv_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MODULAR_INV);
}
/**
* @brief Modular subtraction in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModSub(PKA_HandleTypeDef *hpka, PKA_ModSubInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, in->pOp3);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MODULAR_SUB, Timeout);
}
/**
* @brief Modular subtraction in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModSub_IT(PKA_HandleTypeDef *hpka, PKA_ModSubInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, in->pOp3);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MODULAR_SUB);
}
/**
* @brief Modular reduction in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModRed(PKA_HandleTypeDef *hpka, PKA_ModRedInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ModRed_Set(hpka, in);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MODULAR_RED, Timeout);
}
/**
* @brief Modular reduction in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_ModRed_IT(PKA_HandleTypeDef *hpka, PKA_ModRedInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ModRed_Set(hpka, in);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MODULAR_RED);
}
/**
* @brief Montgomery multiplication in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_MontgomeryMul(PKA_HandleTypeDef *hpka, PKA_MontgomeryMulInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, in->pOp3);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MONTGOMERY_MUL, Timeout);
}
/**
* @brief Montgomery multiplication in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_MontgomeryMul_IT(PKA_HandleTypeDef *hpka, PKA_MontgomeryMulInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_ARI_Set(hpka, in->size, in->pOp1, in->pOp2, in->pOp3);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MONTGOMERY_MUL);
}
/**
* @brief Retrieve operation result.
* @param hpka PKA handle
* @param pRes Pointer to memory location to receive the result of the operation
*/
void HAL_PKA_Arithmetic_GetResult(PKA_HandleTypeDef *hpka, uint32_t *pRes)
{
uint32_t mode = (hpka->Instance->CR & PKA_CR_MODE_Msk) >> PKA_CR_MODE_Pos;
uint32_t size = 0;
/* Move the result to appropriate location (indicated in pRes parameter) */
switch (mode)
{
case PKA_MODE_ARITHMETIC_SUB:
case PKA_MODE_MODULAR_ADD:
case PKA_MODE_MODULAR_RED:
case PKA_MODE_MODULAR_INV:
case PKA_MODE_MODULAR_SUB:
case PKA_MODE_MONTGOMERY_MUL:
size = hpka->Instance->RAM[1] / 32UL;
break;
case PKA_MODE_ARITHMETIC_ADD:
size = hpka->Instance->RAM[1] / 32UL;
/* Manage the overflow of the addition */
if (hpka->Instance->RAM[500U + size] != 0UL)
{
size += 1UL;
}
break;
case PKA_MODE_COMPARISON:
size = 1;
break;
case PKA_MODE_ARITHMETIC_MUL:
size = hpka->Instance->RAM[1] / 32UL * 2UL;
break;
default:
break;
}
if (pRes != NULL)
{
switch (mode)
{
case PKA_MODE_ARITHMETIC_SUB:
case PKA_MODE_MODULAR_ADD:
case PKA_MODE_MODULAR_RED:
case PKA_MODE_MODULAR_INV:
case PKA_MODE_MODULAR_SUB:
case PKA_MODE_MONTGOMERY_MUL:
case PKA_MODE_ARITHMETIC_ADD:
case PKA_MODE_COMPARISON:
case PKA_MODE_ARITHMETIC_MUL:
PKA_Memcpy_u32_to_u32(pRes, &hpka->Instance->RAM[PKA_ARITHMETIC_ALL_OPS_OUT_RESULT], size);
break;
default:
break;
}
}
}
/**
* @brief Montgomery parameter computation in blocking mode.
* @param hpka PKA handle
* @param in Input information
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_MontgomeryParam(PKA_HandleTypeDef *hpka, PKA_MontgomeryParamInTypeDef *in, uint32_t Timeout)
{
/* Set input parameter in PKA RAM */
PKA_MontgomeryParam_Set(hpka, in->size, in->pOp1);
/* Start the operation */
return PKA_Process(hpka, PKA_MODE_MONTGOMERY_PARAM, Timeout);
}
/**
* @brief Montgomery parameter computation in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param in Input information
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_MontgomeryParam_IT(PKA_HandleTypeDef *hpka, PKA_MontgomeryParamInTypeDef *in)
{
/* Set input parameter in PKA RAM */
PKA_MontgomeryParam_Set(hpka, in->size, in->pOp1);
/* Start the operation */
return PKA_Process_IT(hpka, PKA_MODE_MONTGOMERY_PARAM);
}
/**
* @brief Retrieve operation result.
* @param hpka PKA handle
* @param pRes pointer to buffer where the result will be copied
* @retval HAL status
*/
void HAL_PKA_MontgomeryParam_GetResult(PKA_HandleTypeDef *hpka, uint32_t *pRes)
{
uint32_t size;
/* Retrieve the size of the buffer from the PKA RAM */
size = (hpka->Instance->RAM[PKA_MONTGOMERY_PARAM_IN_MOD_NB_BITS] + 31UL) / 32UL;
/* Move the result to appropriate location (indicated in out parameter) */
PKA_Memcpy_u32_to_u32(pRes, &hpka->Instance->RAM[PKA_MONTGOMERY_PARAM_OUT_PARAMETER], size);
}
/**
* @brief Abort any ongoing operation.
* @param hpka PKA handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PKA_Abort(PKA_HandleTypeDef *hpka)
{
HAL_StatusTypeDef err = HAL_OK;
/* Clear EN bit */
/* This abort any operation in progress (PKA RAM content is not guaranteed in this case) */
CLEAR_BIT(hpka->Instance->CR, PKA_CR_EN);
SET_BIT(hpka->Instance->CR, PKA_CR_EN);
/* Reset any pending flag */
SET_BIT(hpka->Instance->CLRFR, PKA_CLRFR_PROCENDFC | PKA_CLRFR_RAMERRFC | PKA_CLRFR_ADDRERRFC);
/* Reset the error code */
hpka->ErrorCode = HAL_PKA_ERROR_NONE;
/* Reset the state */
hpka->State = HAL_PKA_STATE_READY;
return err;
}
/**
* @brief Reset the PKA RAM.
* @param hpka PKA handle
* @retval None
*/
void HAL_PKA_RAMReset(PKA_HandleTypeDef *hpka)
{
uint32_t index;
/* For each element in the PKA RAM */
for (index = 0; index < PKA_RAM_SIZE; index++)
{
/* Clear the content */
hpka->Instance->RAM[index] = 0UL;
}
}
/**
* @brief This function handles PKA event interrupt request.
* @param hpka PKA handle
* @retval None
*/
void HAL_PKA_IRQHandler(PKA_HandleTypeDef *hpka)
{
uint32_t mode = PKA_GetMode(hpka);
FlagStatus addErrFlag = __HAL_PKA_GET_FLAG(hpka, PKA_FLAG_ADDRERR);
FlagStatus ramErrFlag = __HAL_PKA_GET_FLAG(hpka, PKA_FLAG_RAMERR);
FlagStatus procEndFlag = __HAL_PKA_GET_FLAG(hpka, PKA_FLAG_PROCEND);
/* Address error interrupt occurred */
if ((__HAL_PKA_GET_IT_SOURCE(hpka, PKA_IT_ADDRERR) == SET) && (addErrFlag == SET))
{
hpka->ErrorCode |= HAL_PKA_ERROR_ADDRERR;
/* Clear ADDRERR flag */
__HAL_PKA_CLEAR_FLAG(hpka, PKA_FLAG_ADDRERR);
}
/* RAM access error interrupt occurred */
if ((__HAL_PKA_GET_IT_SOURCE(hpka, PKA_IT_RAMERR) == SET) && (ramErrFlag == SET))
{
hpka->ErrorCode |= HAL_PKA_ERROR_RAMERR;
/* Clear RAMERR flag */
__HAL_PKA_CLEAR_FLAG(hpka, PKA_FLAG_RAMERR);
}
/* Check the operation success in case of ECDSA signature */
if (mode == PKA_MODE_ECDSA_SIGNATURE)
{
/* If error output result is different from 0, ecdsa sign operation need to be repeated */
if (hpka->Instance->RAM[PKA_ECDSA_SIGN_OUT_ERROR] != 0UL)
{
hpka->ErrorCode |= HAL_PKA_ERROR_OPERATION;
}
}
/* Trigger the error callback if an error is present */
if (hpka->ErrorCode != HAL_PKA_ERROR_NONE)
{
#if (USE_HAL_PKA_REGISTER_CALLBACKS == 1)
hpka->ErrorCallback(hpka);
#else
HAL_PKA_ErrorCallback(hpka);
#endif /* USE_HAL_PKA_REGISTER_CALLBACKS */
}
/* End Of Operation interrupt occurred */
if ((__HAL_PKA_GET_IT_SOURCE(hpka, PKA_IT_PROCEND) == SET) && (procEndFlag == SET))
{
/* Clear PROCEND flag */
__HAL_PKA_CLEAR_FLAG(hpka, PKA_FLAG_PROCEND);
/* Set the state to ready */
hpka->State = HAL_PKA_STATE_READY;
#if (USE_HAL_PKA_REGISTER_CALLBACKS == 1)
hpka->OperationCpltCallback(hpka);
#else
HAL_PKA_OperationCpltCallback(hpka);
#endif /* USE_HAL_PKA_REGISTER_CALLBACKS */
}
}
/**
* @brief Process completed callback.
* @param hpka PKA handle
* @retval None
*/
__weak void HAL_PKA_OperationCpltCallback(PKA_HandleTypeDef *hpka)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpka);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PKA_OperationCpltCallback could be implemented in the user file
*/
}
/**
* @brief Error callback.
* @param hpka PKA handle
* @retval None
*/
__weak void HAL_PKA_ErrorCallback(PKA_HandleTypeDef *hpka)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hpka);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_PKA_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup PKA_Exported_Functions_Group3 Peripheral State and Error functions
* @brief Peripheral State and Error functions
*
@verbatim
===============================================================================
##### Peripheral State and Error functions #####
===============================================================================
[..]
This subsection permit to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Return the PKA handle state.
* @param hpka PKA handle
* @retval HAL status
*/
HAL_PKA_StateTypeDef HAL_PKA_GetState(PKA_HandleTypeDef *hpka)
{
/* Return PKA handle state */
return hpka->State;
}
/**
* @brief Return the PKA error code.
* @param hpka PKA handle
* @retval PKA error code
*/
uint32_t HAL_PKA_GetError(PKA_HandleTypeDef *hpka)
{
/* Return PKA handle error code */
return hpka->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup PKA_Private_Functions
* @{
*/
/**
* @brief Get PKA operating mode.
* @param hpka PKA handle
* @retval Return the current mode
*/
uint32_t PKA_GetMode(PKA_HandleTypeDef *hpka)
{
/* return the shifted PKA_CR_MODE value */
return (uint32_t)(READ_BIT(hpka->Instance->CR, PKA_CR_MODE) >> PKA_CR_MODE_Pos);
}
/**
* @brief Wait for operation completion or timeout.
* @param hpka PKA handle
* @param Timeout Timeout duration in millisecond.
* @param Tickstart Tick start value
* @retval HAL status
*/
HAL_StatusTypeDef PKA_PollEndOfOperation(PKA_HandleTypeDef *hpka, uint32_t Timeout, uint32_t Tickstart)
{
/* Wait for the end of operation or timeout */
while ((hpka->Instance->SR & PKA_SR_PROCENDF) == 0UL)
{
/* Check if timeout is disabled (set to infinite wait) */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0UL))
{
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief Return a hal error code based on PKA error flags.
* @param hpka PKA handle
* @param mode PKA operating mode
* @retval error code
*/
uint32_t PKA_CheckError(PKA_HandleTypeDef *hpka, uint32_t mode)
{
uint32_t err = HAL_PKA_ERROR_NONE;
/* Check RAMERR error */
if (__HAL_PKA_GET_FLAG(hpka, PKA_FLAG_RAMERR) == SET)
{
err |= HAL_PKA_ERROR_RAMERR;
}
/* Check ADDRERR error */
if (__HAL_PKA_GET_FLAG(hpka, PKA_FLAG_ADDRERR) == SET)
{
err |= HAL_PKA_ERROR_ADDRERR;
}
/* Check the operation success in case of ECDSA signature */
if (mode == PKA_MODE_ECDSA_SIGNATURE)
{
#define EDCSA_SIGN_NOERROR 0UL
/* If error output result is different from no error, ecsa sign operation need to be repeated */
if (hpka->Instance->RAM[PKA_ECDSA_SIGN_OUT_ERROR] != EDCSA_SIGN_NOERROR)
{
err |= HAL_PKA_ERROR_OPERATION;
}
}
return err;
}
/**
* @brief Get number of bits inside an array of u8.
* @param byteNumber Number of u8 inside the array
*/
uint32_t PKA_GetBitSize_u8(uint32_t byteNumber)
{
/* Convert from number of uint8_t in an array to the associated number of bits in this array */
return byteNumber * 8UL;
}
/**
* @brief Get optimal number of bits inside an array of u8.
* @param byteNumber Number of u8 inside the array
* @param msb Most significant uint8_t of the array
*/
uint32_t PKA_GetOptBitSize_u8(uint32_t byteNumber, uint8_t msb)
{
uint32_t position;
position = 32UL - __CLZ(msb);
return (((byteNumber - 1UL) * 8UL) + position);
}
/**
* @brief Get number of bits inside an array of u32.
* @param wordNumber Number of u32 inside the array
*/
uint32_t PKA_GetBitSize_u32(uint32_t wordNumber)
{
/* Convert from number of uint32_t in an array to the associated number of bits in this array */
return wordNumber * 32UL;
}
/**
* @brief Get number of uint8_t element in an array of bitSize bits.
* @param bitSize Number of bits in an array
*/
uint32_t PKA_GetArraySize_u8(uint32_t bitSize)
{
/* Manage the non aligned on uint8_t bitsize: */
/* 512 bits requires 64 uint8_t */
/* 521 bits requires 66 uint8_t */
return ((bitSize + 7UL) / 8UL);
}
/**
* @brief Copy uint32_t array to uint8_t array to fit PKA number representation.
* @param dst Pointer to destination
* @param src Pointer to source
* @param n Number of uint8_t to copy
* @retval dst
*/
void PKA_Memcpy_u32_to_u8(uint8_t dst[], __IO const uint32_t src[], size_t n)
{
if (dst != NULL)
{
if (src != NULL)
{
uint32_t index_uint32_t = 0UL; /* This index is used outside of the loop */
for (; index_uint32_t < (n / 4UL); index_uint32_t++)
{
/* Avoid casting from uint8_t* to uint32_t* by copying 4 uint8_t in a row */
/* Apply __REV equivalent */
uint32_t index_uint8_t = n - 4UL - (index_uint32_t * 4UL);
dst[index_uint8_t + 3UL] = (uint8_t)((src[index_uint32_t] & 0x000000FFU));
dst[index_uint8_t + 2UL] = (uint8_t)((src[index_uint32_t] & 0x0000FF00U) >> 8UL);
dst[index_uint8_t + 1UL] = (uint8_t)((src[index_uint32_t] & 0x00FF0000U) >> 16UL);
dst[index_uint8_t + 0UL] = (uint8_t)((src[index_uint32_t] & 0xFF000000U) >> 24UL);
}
/* Manage the buffers not aligned on uint32_t */
if ((n % 4UL) == 1UL)
{
dst[0UL] = (uint8_t)((src[index_uint32_t] & 0x000000FFU));
}
else if ((n % 4UL) == 2UL)
{
dst[1UL] = (uint8_t)((src[index_uint32_t] & 0x000000FFU));
dst[0UL] = (uint8_t)((src[index_uint32_t] & 0x0000FF00U) >> 8UL);
}
else if ((n % 4UL) == 3UL)
{
dst[2UL] = (uint8_t)((src[index_uint32_t] & 0x000000FFU));
dst[1UL] = (uint8_t)((src[index_uint32_t] & 0x0000FF00U) >> 8UL);
dst[0UL] = (uint8_t)((src[index_uint32_t] & 0x00FF0000U) >> 16UL);
}
else
{
/* The last element is already handle in the loop */
}
}
}
}
/**
* @brief Copy uint8_t array to uint32_t array to fit PKA number representation.
* @param dst Pointer to destination
* @param src Pointer to source
* @param n Number of uint8_t to copy (must be multiple of 4)
* @retval dst
*/
void PKA_Memcpy_u8_to_u32(__IO uint32_t dst[], const uint8_t src[], size_t n)
{
if (dst != NULL)
{
if (src != NULL)
{
uint32_t index = 0UL; /* This index is used outside of the loop */
for (; index < (n / 4UL); index++)
{
/* Apply the equivalent of __REV from uint8_t to uint32_t */
dst[index] = ((uint32_t)src[(n - (index * 4UL) - 1UL)]) \
| ((uint32_t)src[(n - (index * 4UL) - 2UL)] << 8UL) \
| ((uint32_t)src[(n - (index * 4UL) - 3UL)] << 16UL) \
| ((uint32_t)src[(n - (index * 4UL) - 4UL)] << 24UL);
}
/* Manage the buffers not aligned on uint32_t */
if ((n % 4UL) == 1UL)
{
dst[index] = (uint32_t)src[(n - (index * 4UL) - 1UL)];
}
else if ((n % 4UL) == 2UL)
{
dst[index] = ((uint32_t)src[(n - (index * 4UL) - 1UL)]) \
| ((uint32_t)src[(n - (index * 4UL) - 2UL)] << 8UL);
}
else if ((n % 4UL) == 3UL)
{
dst[index] = ((uint32_t)src[(n - (index * 4UL) - 1UL)]) \
| ((uint32_t)src[(n - (index * 4UL) - 2UL)] << 8UL) \
| ((uint32_t)src[(n - (index * 4UL) - 3UL)] << 16UL);
}
else
{
/* The last element is already handle in the loop */
}
}
}
}
/**
* @brief Copy uint32_t array to uint32_t array.
* @param dst Pointer to destination
* @param src Pointer to source
* @param n Number of u32 to be handled
* @retval dst
*/
void PKA_Memcpy_u32_to_u32(__IO uint32_t dst[], __IO const uint32_t src[], size_t n)
{
/* If a destination buffer is provided */
if (dst != NULL)
{
/* If a source buffer is provided */
if (src != NULL)
{
/* For each element in the array */
for (uint32_t index = 0UL; index < n; index++)
{
/* Copy the content */
dst[index] = src[index];
}
}
}
}
/**
* @brief Generic function to start a PKA operation in blocking mode.
* @param hpka PKA handle
* @param mode PKA operation
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef PKA_Process(PKA_HandleTypeDef *hpka, uint32_t mode, uint32_t Timeout)
{
HAL_StatusTypeDef err = HAL_OK;
uint32_t tickstart;
if (hpka->State == HAL_PKA_STATE_READY)
{
/* Set the state to busy */
hpka->State = HAL_PKA_STATE_BUSY;
/* Clear any pending error */
hpka->ErrorCode = HAL_PKA_ERROR_NONE;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Set the mode and deactivate the interrupts */
MODIFY_REG(hpka->Instance->CR, PKA_CR_MODE | PKA_CR_PROCENDIE | PKA_CR_RAMERRIE | PKA_CR_ADDRERRIE,
mode << PKA_CR_MODE_Pos);
/* Start the computation */
hpka->Instance->CR |= PKA_CR_START;
/* Wait for the end of operation or timeout */
if (PKA_PollEndOfOperation(hpka, Timeout, tickstart) != HAL_OK)
{
/* Abort any ongoing operation */
CLEAR_BIT(hpka->Instance->CR, PKA_CR_EN);
hpka->ErrorCode |= HAL_PKA_ERROR_TIMEOUT;
/* Make ready for the next operation */
SET_BIT(hpka->Instance->CR, PKA_CR_EN);
}
/* Check error */
hpka->ErrorCode |= PKA_CheckError(hpka, mode);
/* Clear all flags */
hpka->Instance->CLRFR |= (PKA_CLRFR_PROCENDFC | PKA_CLRFR_RAMERRFC | PKA_CLRFR_ADDRERRFC);
/* Set the state to ready */
hpka->State = HAL_PKA_STATE_READY;
/* Manage the result based on encountered errors */
if (hpka->ErrorCode != HAL_PKA_ERROR_NONE)
{
err = HAL_ERROR;
}
}
else
{
err = HAL_ERROR;
}
return err;
}
/**
* @brief Generic function to start a PKA operation in non-blocking mode with Interrupt.
* @param hpka PKA handle
* @param mode PKA operation
* @retval HAL status
*/
HAL_StatusTypeDef PKA_Process_IT(PKA_HandleTypeDef *hpka, uint32_t mode)
{
HAL_StatusTypeDef err = HAL_OK;
if (hpka->State == HAL_PKA_STATE_READY)
{
/* Set the state to busy */
hpka->State = HAL_PKA_STATE_BUSY;
/* Clear any pending error */
hpka->ErrorCode = HAL_PKA_ERROR_NONE;
/* Set the mode and activate interrupts */
MODIFY_REG(hpka->Instance->CR, PKA_CR_MODE | PKA_CR_PROCENDIE | PKA_CR_RAMERRIE | PKA_CR_ADDRERRIE,
(mode << PKA_CR_MODE_Pos) | PKA_CR_PROCENDIE | PKA_CR_RAMERRIE | PKA_CR_ADDRERRIE);
/* Start the computation */
hpka->Instance->CR |= PKA_CR_START;
}
else
{
err = HAL_ERROR;
}
return err;
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ModExp_Set(PKA_HandleTypeDef *hpka, PKA_ModExpInTypeDef *in)
{
/* Get the number of bit per operand */
hpka->Instance->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = PKA_GetBitSize_u8(in->OpSize);
/* Get the number of bit of the exponent */
hpka->Instance->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = PKA_GetBitSize_u8(in->expSize);
/* Move the input parameters pOp1 to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], in->pOp1, in->OpSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_EXP_IN_EXPONENT_BASE + ((in->OpSize + 3UL) / 4UL));
/* Move the exponent to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_EXP_IN_EXPONENT], in->pExp, in->expSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_EXP_IN_EXPONENT + ((in->expSize + 3UL) / 4UL));
/* Move the modulus to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_EXP_IN_MODULUS], in->pMod, in->OpSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_EXP_IN_MODULUS + ((in->OpSize + 3UL) / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ModExpFastMode_Set(PKA_HandleTypeDef *hpka, PKA_ModExpFastModeInTypeDef *in)
{
/* Get the number of bit per operand */
hpka->Instance->RAM[PKA_MODULAR_EXP_IN_OP_NB_BITS] = PKA_GetBitSize_u8(in->OpSize);
/* Get the number of bit of the exponent */
hpka->Instance->RAM[PKA_MODULAR_EXP_IN_EXP_NB_BITS] = PKA_GetBitSize_u8(in->expSize);
/* Move the input parameters pOp1 to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_EXP_IN_EXPONENT_BASE], in->pOp1, in->OpSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_EXP_IN_EXPONENT_BASE + (in->OpSize / 4UL));
/* Move the exponent to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_EXP_IN_EXPONENT], in->pExp, in->expSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_EXP_IN_EXPONENT + (in->expSize / 4UL));
/* Move the modulus to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_EXP_IN_MODULUS], in->pMod, in->OpSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_EXP_IN_MODULUS + (in->OpSize / 4UL));
/* Move the Montgomery parameter to PKA RAM */
PKA_Memcpy_u32_to_u32(&hpka->Instance->RAM[PKA_MODULAR_EXP_IN_MONTGOMERY_PARAM], in->pMontgomeryParam,
in->OpSize / 4UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_EXP_IN_MONTGOMERY_PARAM + (in->OpSize / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ECDSASign_Set(PKA_HandleTypeDef *hpka, PKA_ECDSASignInTypeDef *in)
{
/* Get the prime order n length */
hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_ORDER_NB_BITS] = PKA_GetOptBitSize_u8(in->primeOrderSize, *(in->primeOrder));
/* Get the modulus p length */
hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_MOD_NB_BITS] = PKA_GetOptBitSize_u8(in->modulusSize, *(in->modulus));
/* Get the coefficient a sign */
hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_A_COEFF_SIGN] = in->coefSign;
/* Move the input parameters coefficient |a| to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_A_COEFF], in->coef, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_A_COEFF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters modulus value p to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_MOD_GF], in->modulus, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_MOD_GF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters integer k to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_K], in->integer, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_K + ((in->primeOrderSize + 3UL) / 4UL));
/* Move the input parameters base point G coordinate x to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_INITIAL_POINT_X], in->basePointX, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_INITIAL_POINT_X + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters base point G coordinate y to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_INITIAL_POINT_Y], in->basePointY, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_INITIAL_POINT_Y + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters hash of message z to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_HASH_E], in->hash, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_HASH_E + ((in->primeOrderSize + 3UL) / 4UL));
/* Move the input parameters private key d to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_PRIVATE_KEY_D], in->privateKey, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_PRIVATE_KEY_D + ((in->primeOrderSize + 3UL) / 4UL));
/* Move the input parameters prime order n to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_SIGN_IN_ORDER_N], in->primeOrder, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_SIGN_IN_ORDER_N + ((in->primeOrderSize + 3UL) / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ECDSAVerif_Set(PKA_HandleTypeDef *hpka, PKA_ECDSAVerifInTypeDef *in)
{
/* Get the prime order n length */
hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_ORDER_NB_BITS] = PKA_GetOptBitSize_u8(in->primeOrderSize, *(in->primeOrder));
/* Get the modulus p length */
hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_MOD_NB_BITS] = PKA_GetOptBitSize_u8(in->modulusSize, *(in->modulus));
/* Get the coefficient a sign */
hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_A_COEFF_SIGN] = in->coefSign;
/* Move the input parameters coefficient |a| to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_A_COEFF], in->coef, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_A_COEFF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters modulus value p to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_MOD_GF], in->modulus, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_MOD_GF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters base point G coordinate x to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_INITIAL_POINT_X], in->basePointX, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_INITIAL_POINT_X + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters base point G coordinate y to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_INITIAL_POINT_Y], in->basePointY, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_INITIAL_POINT_Y + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters public-key curve point Q coordinate xQ to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_PUBLIC_KEY_POINT_X], in->pPubKeyCurvePtX,
in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_PUBLIC_KEY_POINT_X + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters public-key curve point Q coordinate xQ to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_PUBLIC_KEY_POINT_Y], in->pPubKeyCurvePtY,
in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_PUBLIC_KEY_POINT_Y + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters signature part r to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_SIGNATURE_R], in->RSign, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_SIGNATURE_R + ((in->primeOrderSize + 3UL) / 4UL));
/* Move the input parameters signature part s to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_SIGNATURE_S], in->SSign, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_SIGNATURE_S + ((in->primeOrderSize + 3UL) / 4UL));
/* Move the input parameters hash of message z to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_HASH_E], in->hash, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_HASH_E + ((in->primeOrderSize + 3UL) / 4UL));
/* Move the input parameters curve prime order n to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECDSA_VERIF_IN_ORDER_N], in->primeOrder, in->primeOrderSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECDSA_VERIF_IN_ORDER_N + ((in->primeOrderSize + 3UL) / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_RSACRTExp_Set(PKA_HandleTypeDef *hpka, PKA_RSACRTExpInTypeDef *in)
{
/* Get the operand length M */
hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_MOD_NB_BITS] = PKA_GetBitSize_u8(in->size);
/* Move the input parameters operand dP to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_DP_CRT], in->pOpDp, in->size / 2UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_RSA_CRT_EXP_IN_DP_CRT + (in->size / 8UL));
/* Move the input parameters operand dQ to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_DQ_CRT], in->pOpDq, in->size / 2UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_RSA_CRT_EXP_IN_DQ_CRT + (in->size / 8UL));
/* Move the input parameters operand qinv to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_QINV_CRT], in->pOpQinv, in->size / 2UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_RSA_CRT_EXP_IN_QINV_CRT + (in->size / 8UL));
/* Move the input parameters prime p to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_PRIME_P], in->pPrimeP, in->size / 2UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_RSA_CRT_EXP_IN_PRIME_P + (in->size / 8UL));
/* Move the input parameters prime q to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_PRIME_Q], in->pPrimeQ, in->size / 2UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_RSA_CRT_EXP_IN_PRIME_Q + (in->size / 8UL));
/* Move the input parameters operand A to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_RSA_CRT_EXP_IN_EXPONENT_BASE], in->popA, in->size);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_RSA_CRT_EXP_IN_EXPONENT_BASE + (in->size / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_PointCheck_Set(PKA_HandleTypeDef *hpka, PKA_PointCheckInTypeDef *in)
{
/* Get the modulus length */
hpka->Instance->RAM[PKA_POINT_CHECK_IN_MOD_NB_BITS] = PKA_GetOptBitSize_u8(in->modulusSize, *(in->modulus));
/* Get the coefficient a sign */
hpka->Instance->RAM[PKA_POINT_CHECK_IN_A_COEFF_SIGN] = in->coefSign;
/* Move the input parameters coefficient |a| to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_POINT_CHECK_IN_A_COEFF], in->coefA, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_POINT_CHECK_IN_A_COEFF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters coefficient b to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_POINT_CHECK_IN_B_COEFF], in->coefB, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_POINT_CHECK_IN_B_COEFF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters modulus value p to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_POINT_CHECK_IN_MOD_GF], in->modulus, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_POINT_CHECK_IN_MOD_GF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters Point P coordinate x to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_POINT_CHECK_IN_INITIAL_POINT_X], in->pointX, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_POINT_CHECK_IN_INITIAL_POINT_X + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters Point P coordinate y to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_POINT_CHECK_IN_INITIAL_POINT_Y], in->pointY, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_POINT_CHECK_IN_INITIAL_POINT_Y + ((in->modulusSize + 3UL) / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ECCMul_Set(PKA_HandleTypeDef *hpka, PKA_ECCMulInTypeDef *in)
{
/* Get the scalar multiplier k length */
hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_EXP_NB_BITS] = PKA_GetOptBitSize_u8(in->scalarMulSize, *(in->scalarMul));
/* Get the modulus length */
hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_OP_NB_BITS] = PKA_GetOptBitSize_u8(in->modulusSize, *(in->modulus));
/* Get the coefficient a sign */
hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_A_COEFF_SIGN] = in->coefSign;
/* Move the input parameters coefficient |a| to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_A_COEFF], in->coefA, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_A_COEFF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters modulus value p to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_MOD_GF], in->modulus, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_MOD_GF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters scalar multiplier k to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_K], in->scalarMul, in->scalarMulSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_K + ((in->scalarMulSize + 3UL) / 4UL));
/* Move the input parameters Point P coordinate x to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_INITIAL_POINT_X], in->pointX, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_INITIAL_POINT_X + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters Point P coordinate y to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_INITIAL_POINT_Y], in->pointY, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_INITIAL_POINT_Y + ((in->modulusSize + 3UL) / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ECCMulFastMode_Set(PKA_HandleTypeDef *hpka, PKA_ECCMulFastModeInTypeDef *in)
{
/* Get the scalar multiplier k length */
hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_EXP_NB_BITS] = PKA_GetOptBitSize_u8(in->scalarMulSize, *(in->scalarMul));
/* Get the modulus length */
hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_OP_NB_BITS] = PKA_GetOptBitSize_u8(in->modulusSize, *(in->modulus));
/* Get the coefficient a sign */
hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_A_COEFF_SIGN] = in->coefSign;
/* Move the input parameters coefficient |a| to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_A_COEFF], in->coefA, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_A_COEFF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters modulus value p to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_MOD_GF], in->modulus, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_MOD_GF + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters scalar multiplier k to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_K], in->scalarMul, in->scalarMulSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_K + ((in->scalarMulSize + 3UL) / 4UL));
/* Move the input parameters Point P coordinate x to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_POINT_CHECK_IN_INITIAL_POINT_X], in->pointX, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_POINT_CHECK_IN_INITIAL_POINT_X + ((in->modulusSize + 3UL) / 4UL));
/* Move the input parameters Point P coordinate y to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_POINT_CHECK_IN_INITIAL_POINT_Y], in->pointY, in->modulusSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_POINT_CHECK_IN_INITIAL_POINT_Y + ((in->modulusSize + 3UL) / 4UL));
/* Move the Montgomery parameter to PKA RAM */
PKA_Memcpy_u32_to_u32(&hpka->Instance->RAM[PKA_ECC_SCALAR_MUL_IN_MONTGOMERY_PARAM], in->pMontgomeryParam,
(in->modulusSize + 3UL) / 4UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ECC_SCALAR_MUL_IN_MONTGOMERY_PARAM + ((in->modulusSize + 3UL) / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ModInv_Set(PKA_HandleTypeDef *hpka, PKA_ModInvInTypeDef *in)
{
/* Get the number of bit per operand */
hpka->Instance->RAM[PKA_MODULAR_INV_NB_BITS] = PKA_GetBitSize_u32(in->size);
/* Move the input parameters operand A to PKA RAM */
PKA_Memcpy_u32_to_u32(&hpka->Instance->RAM[PKA_MODULAR_INV_IN_OP1], in->pOp1, in->size);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_INV_IN_OP1 + in->size);
/* Move the input parameters modulus value n to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_INV_IN_OP2_MOD], in->pMod, in->size * 4UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_INV_IN_OP2_MOD + in->size);
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param in Input information
*/
void PKA_ModRed_Set(PKA_HandleTypeDef *hpka, PKA_ModRedInTypeDef *in)
{
/* Get the number of bit per operand */
hpka->Instance->RAM[PKA_MODULAR_REDUC_IN_OP_LENGTH] = PKA_GetBitSize_u32(in->OpSize);
/* Get the number of bit per modulus */
hpka->Instance->RAM[PKA_MODULAR_REDUC_IN_MOD_LENGTH] = PKA_GetBitSize_u8(in->modSize);
/* Move the input parameters operand A to PKA RAM */
PKA_Memcpy_u32_to_u32(&hpka->Instance->RAM[PKA_MODULAR_REDUC_IN_OPERAND], in->pOp1, in->OpSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_REDUC_IN_OPERAND + in->OpSize);
/* Move the input parameters modulus value n to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MODULAR_REDUC_IN_MODULUS], in->pMod, in->modSize);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MODULAR_REDUC_IN_MODULUS + (in->modSize / 4UL));
}
/**
* @brief Set input parameters.
* @param hpka PKA handle
* @param size Size of the operand
* @param pOp1 Generic pointer to input data
*/
void PKA_MontgomeryParam_Set(PKA_HandleTypeDef *hpka, const uint32_t size, const uint8_t *pOp1)
{
uint32_t bytetoskip = 0UL;
uint32_t newSize;
if (pOp1 != NULL)
{
/* Count the number of zero bytes */
while ((bytetoskip < size) && (pOp1[bytetoskip] == 0UL))
{
bytetoskip++;
}
/* Get new size after skipping zero bytes */
newSize = size - bytetoskip;
/* Get the number of bit per operand */
hpka->Instance->RAM[PKA_MONTGOMERY_PARAM_IN_MOD_NB_BITS] = PKA_GetOptBitSize_u8(newSize, pOp1[bytetoskip]);
/* Move the input parameters pOp1 to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_MONTGOMERY_PARAM_IN_MODULUS], pOp1, size);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_MONTGOMERY_PARAM_IN_MODULUS + ((size + 3UL) / 4UL));
}
}
/**
* @brief Generic function to set input parameters.
* @param hpka PKA handle
* @param size Size of the operand
* @param pOp1 Generic pointer to input data
* @param pOp2 Generic pointer to input data
* @param pOp3 Generic pointer to input data
*/
void PKA_ARI_Set(PKA_HandleTypeDef *hpka, const uint32_t size, const uint32_t *pOp1, const uint32_t *pOp2,
const uint8_t *pOp3)
{
/* Get the number of bit per operand */
hpka->Instance->RAM[PKA_ARITHMETIC_ALL_OPS_NB_BITS] = PKA_GetBitSize_u32(size);
if (pOp1 != NULL)
{
/* Move the input parameters pOp1 to PKA RAM */
PKA_Memcpy_u32_to_u32(&hpka->Instance->RAM[PKA_ARITHMETIC_ALL_OPS_IN_OP1], pOp1, size);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ARITHMETIC_ALL_OPS_IN_OP1 + size);
}
if (pOp2 != NULL)
{
/* Move the input parameters pOp2 to PKA RAM */
PKA_Memcpy_u32_to_u32(&hpka->Instance->RAM[PKA_ARITHMETIC_ALL_OPS_IN_OP2], pOp2, size);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ARITHMETIC_ALL_OPS_IN_OP2 + size);
}
if (pOp3 != NULL)
{
/* Move the input parameters pOp3 to PKA RAM */
PKA_Memcpy_u8_to_u32(&hpka->Instance->RAM[PKA_ARITHMETIC_ALL_OPS_IN_OP3], pOp3, size * 4UL);
__PKA_RAM_PARAM_END(hpka->Instance->RAM, PKA_ARITHMETIC_ALL_OPS_IN_OP3 + size);
}
}
/**
* @}
*/
/**
* @}
*/
#endif /* defined(PKA) && defined(HAL_PKA_MODULE_ENABLED) */
/**
* @}
*/