blob: bfbd46eaaa82ec90d357eeeaeed05d08ada3de18 [file] [log] [blame]
/**
******************************************************************************
* @file stm32wbxx_hal_rcc.c
* @author MCD Application Team
* @brief RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Reset and Clock Control (RCC) peripheral:
* + Initialization and de-initialization functions
* + Peripheral Control functions
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### RCC specific features #####
==============================================================================
[..]
After reset the device is running from Multiple Speed Internal oscillator
(4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache
and I-Cache are disabled, and all peripherals are off except internal
SRAM, Flash and JTAG.
(+) There is no prescaler on High speed (AHBs) and Low speed (APBs) buses:
all peripherals mapped on these buses are running at MSI speed.
(+) The clock for all peripherals is switched off, except the SRAM and FLASH.
(+) All GPIOs are in analog mode, except the JTAG pins which
are assigned to be used for debug purpose.
[..]
Once the device started from reset, the user application has to:
(+) Configure the clock source to be used to drive the System clock
(if the application needs higher frequency/performance)
(+) Configure the System clock frequency and Flash settings
(+) Configure the AHB and APB buses prescalers
(+) Enable the clock for the peripheral(s) to be used
(+) Configure the clock source(s) for peripherals which clocks are not
derived from the System clock (SAI1, RTC, ADC, USB/RNG, USART1, LPUART1, LPTIMx, I2Cx, SMPS)
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wbxx_hal.h"
/** @addtogroup STM32WBxx_HAL_Driver
* @{
*/
/** @defgroup RCC RCC
* @brief RCC HAL module driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCC_Private_Constants RCC Private Constants
* @{
*/
#define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
#define HSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define MSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define LSI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define LSI2_TIMEOUT_VALUE (3U) /* to be adjusted with DS */
#define HSI48_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#if defined(SAI1)
#define PLLSAI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#endif /* SAI1 */
#define PRESCALER_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define LATENCY_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */
#define CLOCKSWITCH_TIMEOUT_VALUE (5000U) /* 5 s */
#define PLLSOURCE_NONE (0U)
#define MEGA_HZ (1000000U) /* Division factor to convert Hz in Mhz */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCC_Private_Macros RCC Private Macros
* @{
*/
#define RCC_GET_MCO_GPIO_PIN(__RCC_MCOx__) ((__RCC_MCOx__) & GPIO_PIN_MASK)
#define RCC_GET_MCO_GPIO_AF(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOAF_MASK) >> RCC_MCO_GPIOAF_POS)
#define RCC_GET_MCO_GPIO_INDEX(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOPORT_MASK) >> RCC_MCO_GPIOPORT_POS)
#define RCC_GET_MCO_GPIO_PORT(__RCC_MCOx__) (IOPORT_BASE + ((0x00000400UL) * RCC_GET_MCO_GPIO_INDEX((__RCC_MCOx__))))
#define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
(MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__)))
#define __COUNTOF(_A_) (sizeof(_A_) / sizeof(*(_A_)))
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_Private_Variables RCC Private Variables
* @{
*/
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCC_Private_Functions RCC Private Functions
* @{
*/
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range);
static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCC_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
This section provides functions allowing to configure the internal and external oscillators
(HSE, HSI, LSE, MSI, LSI1, LSI2, PLL, CSS and MCO) and the System buses clocks (SYSCLK, HCLK1, HCLK2, HCLK4, PCLK1
and PCLK2).
[..] Internal/external clock and PLL configuration
(+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
the PLL as System clock source.
(+) MSI (Multiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ.
It can be used to generate the clock for the USB FS (48 MHz).
The number of flash wait states is automatically adjusted when MSI range is updated with
HAL_RCC_OscConfig() and the MSI is used as System clock source.
(+) LSI1/LSI2 (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
clock source.
(+) HSE (high-speed external): 32 MHz crystal oscillator used directly or
through the PLL as System clock source. Can be used also optionally as RTC clock source.
(+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source
or the RF system Auto-wakeup from Stop and Standby modes.
(+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
(++) The first output is used to generate the high speed system clock (up to 64MHz).
(++) The second output is used to generate the clock for the USB FS (48 MHz),
the random analog generator (<=48 MHz)
(++) The third output is used to generate an accurate clock to achieve
high-quality audio performance on SAI interface.
(+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
(++) The first output is used to generate SAR ADC clock.
(++) The second output is used to generate the clock for the USB FS (48 MHz),
the random analog generator (<=48 MHz).
(++) The Third output is used to generate an accurate clock to achieve
high-quality audio performance on SAI interface.
(+) CSS (Clock security system): once enabled, if a HSE clock failure occurs
(HSE used directly or through PLL as System clock source), the System clock
is automatically switched to MSI or the HSI oscillator (depending on the
STOPWUCK configuration) and an interrupt is generated if enabled.
The interrupt is linked to the CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector.
(+) LSECSS: once enabled, if a LSE clock failure occurs, the LSE
clock is no longer supplied to the RTC but no hardware action is made to the registers. If the
MSI was in PLL-mode, this mode is disabled.
In Standby mode a wakeup is generated. In other modes an interrupt can be sent to wakeup
the software
(+) MCO (microcontroller clock output): used to output MSI, LSI1, LSI2, HSI, LSE, HSE (before and
after stabilization), SYSCLK, HSI48 or main PLL clock (through a configurable prescaler)
on PA8, PB6 & PA15 pins.
[..] System, AHB and APB buses clocks configuration
(+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
HSE and main PLL.
The AHB clock (HCLK1) is derived from System clock through configurable
prescaler and used to clock the CPU, memory and peripherals mapped
on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
from AHB clock through configurable prescalers and used to clock
the peripherals mapped on these buses. You can use
HAL_RCC_GetSysClockFreq() function to retrieve the frequencies of these clocks.
The AHB4 clock (HCLK4) is derived from System clock through configurable
prescaler and used to clock the FLASH
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
(+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSYS) or
from an external clock mapped on the SAI_CKIN pin.
You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
(+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
divided by 32.
You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function
to configure this clock.
(+@) USB FS and RNG: USB FS requires a frequency equal to 48 MHz
to work correctly, while RNG peripherals requires a frequency
equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1
through PLLQ divider. You have to enable the peripheral clock and use
HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
(+@) IWDG clock which is always the LSI clock.
(+) The maximum frequency of the SYSCLK, HCLK1, HCLK4, PCLK1 and PCLK2 is 64 MHz.
The maximum frequency of the HCLK2 is 32 MHz.
The clock source frequency should be adapted depending on the device voltage range
as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter.
@endverbatim
Table 1. HCLK4 clock frequency.
+-------------------------------------------------------+
| Latency | HCLK4 clock frequency (MHz) |
| |-------------------------------------|
| | voltage range 1 | voltage range 2 |
| | 1.2 V | 1.0 V |
|-----------------|------------------|------------------|
|0WS(1 CPU cycles)| HCLK4 <= 18 | HCLK4 <= 6 |
|-----------------|------------------|------------------|
|1WS(2 CPU cycles)| HCLK4 <= 36 | HCLK4 <= 12 |
|-----------------|------------------|------------------|
|2WS(3 CPU cycles)| HCLK4 <= 54 | HCLK4 <= 16 |
|-----------------|------------------|------------------|
|3WS(4 CPU cycles)| HCLK4 <= 64 | HCLK4 <= n.a. |
|-----------------|------------------|------------------|
* @{
*/
/**
* @brief Reset the RCC clock configuration to the default reset state.
* @note The default reset state of the clock configuration is given below:
* - MSI ON and used as system clock source
* - HSE, HSI, PLL, PLLSAI1
* - HCLK1, HCLK2, HCLK4, PCLK1 and PCLK2 prescalers set to 1.
* - CSS, MCO OFF
* - All interrupts disabled
* @note This function doesn't modify the configuration of the
* - Peripheral clocks
* - LSI, LSE and RTC clocks
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCC_DeInit(void)
{
uint32_t tickstart;
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* MSI PLL OFF */
LL_RCC_MSI_DisablePLLMode();
/* Set MSION bit */
LL_RCC_MSI_Enable();
/* Wait till MSI is ready */
while (LL_RCC_MSI_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set MSIRANGE default value */
LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6);
/* Set MSITRIM bits to the reset value*/
LL_RCC_MSI_SetCalibTrimming(0);
/* Set HSITRIM bits to the reset value*/
LL_RCC_HSI_SetCalibTrimming(0x40U);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Reset CFGR register (MSI is selected as system clock source) */
CLEAR_REG(RCC->CFGR);
/* Wait till MSI is ready */
while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U)
{
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset HSION, HSIKERON, HSIASFS, HSEON, PLLON, PLLSAI11ON, HSEPRE bits */
#if defined(SAI1)
CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_HSEPRE | RCC_CR_PLLON |
RCC_CR_PLLSAI1ON);
#else
CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_HSEPRE | RCC_CR_PLLON);
#endif /* SAI1 */
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (LL_RCC_PLL_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* once PLL is OFF, reset PLLCFGR register to default value */
WRITE_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLR_0 | RCC_PLLCFGR_PLLQ_0 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLN_0);
#if defined(SAI1)
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (LL_RCC_PLLSAI1_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* once PLLSAI1 is OFF, reset PLLSAI1CFGR register to default value */
WRITE_REG(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLR_0 | RCC_PLLSAI1CFGR_PLLQ_0 |
RCC_PLLSAI1CFGR_PLLP_1 | RCC_PLLSAI1CFGR_PLLN_0);
#endif /* SAI1 */
/* Disable all interrupts */
CLEAR_REG(RCC->CIER);
/* Clear all interrupt flags */
WRITE_REG(RCC->CICR, 0xFFFFFFFFU);
/* EXTCFGR reset*/
LL_RCC_WriteReg(EXTCFGR, 0x00030000U);
/* Update the SystemCoreClock global variable */
SystemCoreClock = MSI_VALUE;
/* Adapt Systick interrupt period */
if (HAL_InitTick(uwTickPrio) != HAL_OK)
{
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
/**
* @brief Initialize the RCC Oscillators according to the specified parameters in the
* @ref RCC_OscInitTypeDef.
* @param RCC_OscInitStruct pointer to a @ref RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC Oscillators.
* @note The PLL is not disabled when used as system clock.
* @note The PLL source is not updated when used as PLLSAI1 clock source.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
uint32_t tickstart;
/* Check Null pointer */
if (RCC_OscInitStruct == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
/*----------------------------- MSI Configuration --------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
{
/* Check the parameters */
assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
/* When the MSI is used as system clock it will not be disabled */
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE();
if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI) ||
((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_MSI)))
{
if (RCC_OscInitStruct->MSIState == RCC_MSI_OFF)
{
return HAL_ERROR;
}
/* Otherwise, just the calibration and MSI range change are allowed */
else
{
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
must be correctly programmed according to the frequency of the AHB4 clock
and the supply voltage of the device. */
if (RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
{
/* First increase number of wait states update if necessary */
if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
{
return HAL_ERROR;
}
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
}
else
{
/* Else, keep current flash latency while decreasing applies */
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
/* Decrease number of wait states update if necessary */
if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
{
return HAL_ERROR;
}
}
/* Update the SystemCoreClock global variable */
SystemCoreClock = HAL_RCC_GetHCLKFreq();
if (HAL_InitTick(uwTickPrio) != HAL_OK)
{
return HAL_ERROR;
}
}
}
else
{
/* Check the MSI State */
if (RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
{
/* Enable the Internal High Speed oscillator (MSI). */
__HAL_RCC_MSI_ENABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till MSI is ready */
while (LL_RCC_MSI_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Selects the Multiple Speed oscillator (MSI) clock range .*/
__HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
/* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
__HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
}
else
{
/* Disable the Internal High Speed oscillator (MSI). */
__HAL_RCC_MSI_DISABLE();
/* Get timeout */
tickstart = HAL_GetTick();
/* Wait till MSI is disabled */
while (LL_RCC_MSI_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*------------------------------- HSE Configuration ------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE();
if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE) ||
((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSE)))
{
if (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)
{
return HAL_ERROR;
}
}
else
{
/* Set the new HSE configuration ---------------------------------------*/
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
/* Check the HSE State */
if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSE is ready */
while (LL_RCC_HSE_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSE is disabled */
while (LL_RCC_HSE_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*----------------------------- HSI Configuration --------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
{
/* Check the parameters */
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE();
if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI) ||
((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSI)))
{
/* When HSI is used as system clock it will not be disabled */
if (RCC_OscInitStruct->HSIState == RCC_HSI_OFF)
{
return HAL_ERROR;
}
/* Otherwise, just the calibration is allowed */
else
{
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
}
else
{
/* Check the HSI State */
if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
{
/* Enable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while (LL_RCC_HSI_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
else
{
/* Disable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI is disabled */
while (LL_RCC_HSI_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*------------------------------ LSI Configuration (LSI1 or LSI2) -------------------------*/
if ((((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI1) == RCC_OSCILLATORTYPE_LSI1) || \
(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2))
{
/* Check the parameters */
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
/* Check the LSI State */
if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
{
/*------------------------------ LSI2 selected by default (when Switch ON) -------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2)
{
assert_param(IS_RCC_LSI2_CALIBRATION_VALUE(RCC_OscInitStruct->LSI2CalibrationValue));
/* 1. Check LSI1 state and enable if required */
if (LL_RCC_LSI1_IsReady() == 0U)
{
/* This is required to enable LSI1 before enabling LSI2 */
__HAL_RCC_LSI1_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI1 is ready */
while (LL_RCC_LSI1_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* 2. Enable the Internal Low Speed oscillator (LSI2) and set trimming value */
__HAL_RCC_LSI2_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI2 is ready */
while (LL_RCC_LSI2_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal Low Spee oscillator (LSI2) calibration value */
__HAL_RCC_LSI2_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->LSI2CalibrationValue);
/* 3. Disable LSI1 */
/* LSI1 was initially not enable, require to disable it */
__HAL_RCC_LSI1_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI1 is disabled */
while (LL_RCC_LSI1_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/*------------------------------ LSI1 selected (only if LSI2 OFF)-------------------------*/
/* 1. Enable the Internal Low Speed oscillator (LSI1). */
__HAL_RCC_LSI1_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI1 is ready */
while (LL_RCC_LSI1_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/*2. Switch OFF LSI2*/
/* Disable the Internal Low Speed oscillator (LSI2). */
__HAL_RCC_LSI2_DISABLE();
/* Wait till LSI2 is disabled */
while (LL_RCC_LSI2_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
else
{
/* Disable the Internal Low Speed oscillator (LSI2). */
__HAL_RCC_LSI2_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI2 is disabled */
while (LL_RCC_LSI2_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Disable the Internal Low Speed oscillator (LSI1). */
__HAL_RCC_LSI1_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI1 is disabled */
while (LL_RCC_LSI1_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
/*------------------------------ LSE Configuration -------------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
/* Update LSE configuration in Backup Domain control register */
/* Requires to enable write access to Backup Domain of necessary */
if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
{
/* Enable write access to Backup domain */
HAL_PWR_EnableBkUpAccess();
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
{
if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* Set the new LSE configuration -----------------------------------------*/
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
/* Check the LSE State */
if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while (LL_RCC_LSE_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is disabled */
while (LL_RCC_LSE_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
#if defined(RCC_HSI48_SUPPORT)
/*------------------------------ HSI48 Configuration -----------------------*/
if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
{
/* Check the parameters */
assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
/* Check the HSI State */
if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
{
/* Enable the Internal Low Speed oscillator (HSI48). */
__HAL_RCC_HSI48_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI48 is ready */
while (LL_RCC_HSI48_IsReady() == 0U)
{
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal Low Speed oscillator (HSI48). */
__HAL_RCC_HSI48_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI48 is disabled */
while (LL_RCC_HSI48_IsReady() != 0U)
{
if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
#endif /* RCC_HSI48_SUPPORT */
/*-------------------------------- PLL Configuration -----------------------*/
/* Check the parameters */
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
{
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
const uint32_t temp_pllconfig = RCC->PLLCFGR;
/* PLL On ? */
if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
{
/* Check the parameters */
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
/* Do nothing if PLL configuration is unchanged */
if ((READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
(READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) ||
((READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) != RCC_OscInitStruct->PLL.PLLN) ||
(READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) ||
(READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ) ||
(READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLR) != RCC_OscInitStruct->PLL.PLLR))
{
/* Check if the PLL is used as system clock or not */
if (temp_sysclksrc != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
#if defined(SAI1)
/* Check if main PLL can be updated */
/* Not possible if the source is shared by other enabled PLLSAIx */
if (READ_BIT(RCC->CR, RCC_CR_PLLSAI1ON) != 0U)
{
return HAL_ERROR;
}
else
#endif /* SAI1 */
{
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Configure the main PLL clock source, multiplication and division factors. */
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
RCC_OscInitStruct->PLL.PLLM,
RCC_OscInitStruct->PLL.PLLN,
RCC_OscInitStruct->PLL.PLLP,
RCC_OscInitStruct->PLL.PLLQ,
RCC_OscInitStruct->PLL.PLLR);
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
/* Enable PLL System Clock output. */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
else
{
/* PLL is already used as System core clock */
return HAL_ERROR;
}
}
else
{
/* PLL configuration is unchanged */
/* Re-enable PLL if it was disabled (ie. low power mode) */
if (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
{
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
/* Enable PLL System Clock output. */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
else
{
/* Check that PLL is not used as system clock or not */
if (temp_sysclksrc != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
{
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is disabled */
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
{
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Disable the PLL source and outputs to save power when PLL is off */
#if defined(SAI1) && defined(USB)
CLEAR_BIT(RCC->PLLCFGR, (RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLQEN | RCC_PLLCFGR_PLLREN));
#else
CLEAR_BIT(RCC->PLLCFGR, (RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLREN));
#endif /* SAI1 && USB */
}
else
{
/* PLL is already used as System core clock */
return HAL_ERROR;
}
}
}
return HAL_OK;
}
/**
* @brief Initialize the CPU, AHB and APB buses clocks according to the specified
* parameters in the RCC_ClkInitStruct.
* @param RCC_ClkInitStruct pointer to a @ref RCC_ClkInitTypeDef structure that
* contains the configuration information for the RCC peripheral.
* @param FLatency FLASH Latency
* This parameter can be one of the following values:
* @arg FLASH_LATENCY_0 FLASH 0 Latency cycle
* @arg FLASH_LATENCY_1 FLASH 1 Latency cycle
* @arg FLASH_LATENCY_2 FLASH 2 Latency cycle
* @arg FLASH_LATENCY_3 FLASH 3 Latency cycle
*
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
* and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
*
* @note The MSI is used by default as system clock source after
* startup from Reset, wake-up from STANDBY mode. After restart from Reset,
* the MSI frequency is set to its default value 4 MHz.
*
* @note The HSI can be selected as system clock source after
* from STOP modes or in case of failure of the HSE used directly or indirectly
* as system clock (if the Clock Security System CSS is enabled).
*
* @note A switch from one clock source to another occurs only if the target
* clock source is ready (clock stable after startup delay or PLL locked).
* If a clock source which is not yet ready is selected, the switch will
* occur when the clock source is ready.
*
* @note You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
* currently used as system clock source.
*
* @note Depending on the device voltage range, the software has to set correctly
* HPRE[3:0] bits to ensure that HCLK1 not exceed the maximum allowed frequency
* (for more details refer to section above "Initialization/de-initialization functions")
* @retval None
*/
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
{
uint32_t tickstart;
/* Check Null pointer */
if (RCC_ClkInitStruct == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
assert_param(IS_FLASH_LATENCY(FLatency));
/* To correctly read data from FLASH memory, the number of wait states (LATENCY)
must be correctly programmed according to the frequency of the FLASH clock
(HCLK4) and the supply voltage of the device. */
/* Increasing the number of wait states because of higher CPU frequency */
if (FLatency > __HAL_FLASH_GET_LATENCY())
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
while (__HAL_FLASH_GET_LATENCY() != FLatency)
{
if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*-------------------------- HCLK1 Configuration --------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
{
assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLKDivider));
LL_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLKDivider);
/* HCLK1 prescaler flag when value applied */
tickstart = HAL_GetTick();
while (LL_RCC_IsActiveFlag_HPRE() == 0U)
{
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*-------------------------- HCLK2 Configuration --------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK2) == RCC_CLOCKTYPE_HCLK2)
{
assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK2Divider));
LL_C2_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLK2Divider);
/* HCLK2 prescaler flag when value applied */
tickstart = HAL_GetTick();
while (LL_RCC_IsActiveFlag_C2HPRE() == 0U)
{
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*-------------------------- HCLK4 Configuration --------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK4) == RCC_CLOCKTYPE_HCLK4)
{
assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK4Divider));
LL_RCC_SetAHB4Prescaler(RCC_ClkInitStruct->AHBCLK4Divider);
/* AHB shared prescaler flag when value applied */
tickstart = HAL_GetTick();
while (LL_RCC_IsActiveFlag_SHDHPRE() == 0U)
{
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*-------------------------- PCLK1 Configuration ---------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
{
assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB1CLKDivider));
LL_RCC_SetAPB1Prescaler(RCC_ClkInitStruct->APB1CLKDivider);
/* APB1 prescaler flag when value applied */
tickstart = HAL_GetTick();
while (LL_RCC_IsActiveFlag_PPRE1() == 0U)
{
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*-------------------------- PCLK2 Configuration ---------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
{
assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB2CLKDivider));
LL_RCC_SetAPB2Prescaler((RCC_ClkInitStruct->APB2CLKDivider) << 3U);
/* APB2 prescaler flag when value applied */
tickstart = HAL_GetTick();
while (LL_RCC_IsActiveFlag_PPRE2() == 0U)
{
if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*------------------------- SYSCLK Configuration ---------------------------*/
if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
{
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
/* HSE is selected as System Clock Source */
if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
{
/* Check the HSE ready flag */
if (LL_RCC_HSE_IsReady() == 0U)
{
return HAL_ERROR;
}
}
/* PLL is selected as System Clock Source */
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
{
/* Check the PLL ready flag */
if (LL_RCC_PLL_IsReady() == 0U)
{
return HAL_ERROR;
}
}
/* MSI is selected as System Clock Source */
else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
{
/* Check the MSI ready flag */
if (LL_RCC_MSI_IsReady() == 0U)
{
return HAL_ERROR;
}
}
/* HSI is selected as System Clock Source */
else
{
/* Check the HSI ready flag */
if (LL_RCC_HSI_IsReady() == 0U)
{
return HAL_ERROR;
}
}
/* apply system clock switch */
LL_RCC_SetSysClkSource(RCC_ClkInitStruct->SYSCLKSource);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* check system clock source switch status */
while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos))
{
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/* Decreasing the number of wait states because of lower CPU frequency */
if (FLatency < __HAL_FLASH_GET_LATENCY())
{
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
__HAL_FLASH_SET_LATENCY(FLatency);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
while (__HAL_FLASH_GET_LATENCY() != FLatency)
{
if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
/*---------------------------------------------------------------------------*/
/* Update the SystemCoreClock global variable */
SystemCoreClock = HAL_RCC_GetHCLKFreq();
/* Configure the source of time base considering new system clocks settings*/
return HAL_InitTick(HAL_GetTickPrio());
}
/**
* @}
*/
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
* @brief RCC clocks control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to:
(+) Output clock to MCO pin.
(+) Retrieve current clock frequencies.
(+) Enable the Clock Security System.
@endverbatim
* @{
*/
/**
* @brief Select the clock source to output on MCO1 pin(PA8) or MCO2 pin (PB6) or MCO3 pin (PA15).
* @note PA8, PB6 or PA15 should be configured in alternate function mode.
* @param RCC_MCOx specifies the output direction for the clock source.
* @arg @ref RCC_MCO1_PA8 Clock source to output on MCO1 pin(PA8)
* @arg @ref RCC_MCO2_PB6 Clock source to output on MCO2 pin(PB6)
* @arg @ref RCC_MCO3_PA15 Clock source to output on MCO3 pin(PA15)
* @param RCC_MCOSource specifies the clock source to output.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO
* @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
* @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSI1 LSI1 clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSI2 LSI2 clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
* @arg @ref RCC_MCO1SOURCE_HSE_BEFORE_STAB HSE clock before stabilization selected as MCO source
* @param RCC_MCODiv specifies the MCO prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock
* @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
* @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
* @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
* @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
* @retval None
*/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
{
GPIO_InitTypeDef gpio_initstruct;
uint32_t mcoindex;
uint32_t mco_gpio_index;
GPIO_TypeDef *mco_gpio_port;
/* Check the parameters */
assert_param(IS_RCC_MCO(RCC_MCOx));
/* Common GPIO init parameters */
gpio_initstruct.Mode = GPIO_MODE_AF_PP;
gpio_initstruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
gpio_initstruct.Pull = GPIO_NOPULL;
/* Get MCOx selection */
mcoindex = RCC_MCOx & RCC_MCO_INDEX_MASK;
/* Get MCOx GPIO Port */
mco_gpio_port = (GPIO_TypeDef *) RCC_GET_MCO_GPIO_PORT(RCC_MCOx);
/* MCOx Clock Enable */
mco_gpio_index = RCC_GET_MCO_GPIO_INDEX(RCC_MCOx);
SET_BIT(RCC->AHB2ENR, (1UL << mco_gpio_index));
/* Configure the MCOx pin in alternate function mode */
gpio_initstruct.Pin = RCC_GET_MCO_GPIO_PIN(RCC_MCOx);
gpio_initstruct.Alternate = RCC_GET_MCO_GPIO_AF(RCC_MCOx);
HAL_GPIO_Init(mco_gpio_port, &gpio_initstruct);
if (mcoindex == RCC_MCO1_INDEX)
{
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv);
}
else if (mcoindex == RCC_MCO2_INDEX)
{
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource));
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv);
}
#if defined(RCC_MCO3_SUPPORT)
else if (mcoindex == RCC_MCO3_INDEX)
{
assert_param(IS_RCC_MCODIV(RCC_MCODiv));
assert_param(IS_RCC_MCO3SOURCE(RCC_MCOSource));
/* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */
LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv);
}
#endif /* RCC_MCO3_SUPPORT */
else
{}
}
/**
* @brief Return the SYSCLK frequency.
*
* @note The system computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
* @note If SYSCLK source is MSI, function returns values based on MSI range
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
* HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors.
* @note (*) HSI_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (**) HSE_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value
* 32 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* @note The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @note This function can be used by the user application to compute the
* baudrate for the communication peripherals or configure other parameters.
*
* @note Each time SYSCLK changes, this function must be called to update the
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
*
*
* @retval SYSCLK frequency
*/
uint32_t HAL_RCC_GetSysClockFreq(void)
{
uint32_t pllsource;
uint32_t sysclockfreq;
uint32_t pllinputfreq;
const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE();
if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI)
{
/* Retrieve MSI frequency range in HZ*/
/* MSI used as system clock source */
sysclockfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
}
else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI)
{
/* HSI used as system clock source */
sysclockfreq = HSI_VALUE;
}
else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE)
{
/* HSE used as system clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
sysclockfreq = HSE_VALUE / 2U;
}
else
{
sysclockfreq = HSE_VALUE;
}
}
else
{
/* PLL used as system clock source */
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
break;
}
sysclockfreq = __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), LL_RCC_PLL_GetN(),
LL_RCC_PLL_GetR());
}
return sysclockfreq;
}
/**
* @brief Return the HCLK frequency.
* @retval HCLK frequency in Hz
*/
uint32_t HAL_RCC_GetHCLKFreq(void)
{
/* Get SysClock and Compute HCLK1 frequency ---------------------------*/
return ((uint32_t)(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHBPrescaler())));
}
/**
* @brief Return the HCLK2 frequency.
* @retval HCLK2 frequency in Hz
*/
uint32_t HAL_RCC_GetHCLK2Freq(void)
{
/* Get SysClock and Compute HCLK2 frequency ---------------------------*/
return ((uint32_t)(__LL_RCC_CALC_HCLK2_FREQ(HAL_RCC_GetSysClockFreq(), LL_C2_RCC_GetAHBPrescaler())));
}
/**
* @brief Return the HCLK4 frequency.
* @retval HCLK4 frequency in Hz
*/
uint32_t HAL_RCC_GetHCLK4Freq(void)
{
/* Get SysClock and Compute AHB4 frequency ---------------------------*/
return ((uint32_t)(__LL_RCC_CALC_HCLK4_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHB4Prescaler())));
}
/**
* @brief Return the PCLK1 frequency.
* @note Each time PCLK1 changes, this function must be called to update the
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
* @retval PCLK1 frequency in Hz
*/
uint32_t HAL_RCC_GetPCLK1Freq(void)
{
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
return ((uint32_t)(__LL_RCC_CALC_PCLK1_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB1Prescaler())));
}
/**
* @brief Return the PCLK2 frequency.
* @note Each time PCLK2 changes, this function must be called to update the
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
* @retval PCLK2 frequency in Hz
*/
uint32_t HAL_RCC_GetPCLK2Freq(void)
{
/* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
return ((uint32_t)(__LL_RCC_CALC_PCLK2_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB2Prescaler())));
}
/**
* @brief Configure the RCC_OscInitStruct according to the internal
* RCC configuration registers.
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
* will be configured.
* @retval None
*/
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
/* Check the parameters */
assert_param(RCC_OscInitStruct != (void *)NULL);
/* Set all possible values for the Oscillator type parameter ---------------*/
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI1 | RCC_OSCILLATORTYPE_LSI2;
#if defined(RCC_HSI48_SUPPORT)
RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48;
#endif /* RCC_HSI48_SUPPORT */
/* Get the HSE configuration -----------------------------------------------*/
if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
{
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
}
else
{
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
}
/* Get the MSI configuration -----------------------------------------------*/
if ((RCC->CR & RCC_CR_MSION) == RCC_CR_MSION)
{
RCC_OscInitStruct->MSIState = RCC_MSI_ON;
}
else
{
RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
}
RCC_OscInitStruct->MSICalibrationValue = LL_RCC_MSI_GetCalibTrimming();
RCC_OscInitStruct->MSIClockRange = LL_RCC_MSI_GetRange();
/* Get the HSI configuration -----------------------------------------------*/
if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
{
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
}
else
{
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
}
RCC_OscInitStruct->HSICalibrationValue = LL_RCC_HSI_GetCalibTrimming();
/* Get the LSE configuration -----------------------------------------------*/
if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
{
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
}
else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
{
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
}
else
{
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
}
/* Get the LSI configuration -----------------------------------------------*/
const uint32_t temp_lsi1on = (RCC->CSR & RCC_CSR_LSI1ON);
const uint32_t temp_lsi2on = (RCC->CSR & RCC_CSR_LSI2ON);
if ((temp_lsi1on == RCC_CSR_LSI1ON) || (temp_lsi2on == RCC_CSR_LSI2ON))
{
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
}
else
{
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
}
#if defined(RCC_HSI48_SUPPORT)
/* Get the HSI48 configuration ---------------------------------------------*/
if ((RCC->CRRCR & RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON)
{
RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
}
else
{
RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
}
#endif /* RCC_HSI48_SUPPORT */
/* Get the PLL configuration -----------------------------------------------*/
if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
}
else
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
}
RCC_OscInitStruct->PLL.PLLSource = LL_RCC_PLL_GetMainSource();
RCC_OscInitStruct->PLL.PLLM = LL_RCC_PLL_GetDivider();
RCC_OscInitStruct->PLL.PLLN = LL_RCC_PLL_GetN();
RCC_OscInitStruct->PLL.PLLP = LL_RCC_PLL_GetP();
RCC_OscInitStruct->PLL.PLLQ = LL_RCC_PLL_GetQ();
RCC_OscInitStruct->PLL.PLLR = LL_RCC_PLL_GetR();
}
/**
* @brief Configure the RCC_ClkInitStruct according to the internal
* RCC configuration registers.
* @param RCC_ClkInitStruct Pointer to a @ref RCC_ClkInitTypeDef structure that
* will be configured.
* @param pFLatency Pointer on the Flash Latency.
* @retval None
*/
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
{
/* Check the parameters */
assert_param(RCC_ClkInitStruct != (void *)NULL);
assert_param(pFLatency != (void *)NULL);
/* Set all possible values for the Clock type parameter --------------------*/
RCC_ClkInitStruct->ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 |
RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_HCLK2 | RCC_CLOCKTYPE_HCLK4);
/* Get the SYSCLK configuration --------------------------------------------*/
RCC_ClkInitStruct->SYSCLKSource = LL_RCC_GetSysClkSource();
/* Get the HCLK configuration ----------------------------------------------*/
RCC_ClkInitStruct->AHBCLKDivider = LL_RCC_GetAHBPrescaler();
/* Get the APB1 configuration ----------------------------------------------*/
RCC_ClkInitStruct->APB1CLKDivider = LL_RCC_GetAPB1Prescaler();
/* Get the APB2 configuration ----------------------------------------------*/
RCC_ClkInitStruct->APB2CLKDivider = LL_RCC_GetAPB2Prescaler();
/* Get the AHBCLK2Divider configuration ------------------------------------*/
RCC_ClkInitStruct->AHBCLK2Divider = LL_C2_RCC_GetAHBPrescaler();
/* Get the AHBCLK4Divider configuration ------------------------------------*/
RCC_ClkInitStruct->AHBCLK4Divider = LL_RCC_GetAHB4Prescaler();
/* Get the Flash Wait State (Latency) configuration ------------------------*/
*pFLatency = __HAL_FLASH_GET_LATENCY();
}
/**
* @brief Enable the Clock Security System.
* @note If a failure is detected on the HSE oscillator clock, this oscillator
* is automatically disabled and an interrupt is generated to inform the
* software about the failure (Clock Security System Interrupt, CSSI),
* allowing the MCU to perform rescue operations. The CSSI is linked to
* CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector.
* @note The Clock Security System can only be cleared by reset.
* @retval None
*/
void HAL_RCC_EnableCSS(void)
{
LL_RCC_HSE_EnableCSS();
}
/**
* @brief Handle the RCC HSE Clock Security System interrupt request.
* @note This API should be called under the NMI_Handler().
* @retval None
*/
void HAL_RCC_NMI_IRQHandler(void)
{
/* Check RCC CSSF interrupt flag */
if (__HAL_RCC_GET_IT(RCC_IT_HSECSS))
{
/* RCC Clock Security System interrupt user callback */
HAL_RCC_CSSCallback();
/* Clear RCC CSS pending bit */
__HAL_RCC_CLEAR_IT(RCC_IT_HSECSS);
}
}
/**
* @brief Handle the RCC HSE Clock Security System interrupt callback.
* @retval none
*/
__weak void HAL_RCC_CSSCallback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCC_CSSCallback should be implemented in the user file
*/
}
/**
* @brief Get and clear reset flags
* @param None
* @note Once reset flags are retrieved, this API is clearing them in order
* to isolate next reset reason.
* @retval can be a combination of @ref RCC_Reset_Flag
*/
uint32_t HAL_RCC_GetResetSource(void)
{
uint32_t reset;
/* Get all reset flags */
reset = RCC->CSR & RCC_RESET_FLAG_ALL;
/* Clear Reset flags */
RCC->CSR |= RCC_CSR_RMVF;
return reset;
}
/**
* @}
*/
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup RCC_Private_Functions
* @{
*/
/**
* @brief Update number of Flash wait states in line with MSI range and current
voltage range.
* @param MSI_Range MSI range value from @ref RCC_MSIRANGE_0 to @ref RCC_MSIRANGE_11
* @retval HAL status
*/
static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range)
{
uint32_t flash_clksrcfreq;
uint32_t msifreq;
/* Check the parameters */
assert_param(IS_RCC_MSI_CLOCK_RANGE(MSI_Range));
/* MSI frequency range in Hz */
if (MSI_Range > RCC_MSIRANGE_11)
{
msifreq = __LL_RCC_CALC_MSI_FREQ(RCC_MSIRANGE_11);
}
else
{
msifreq = __LL_RCC_CALC_MSI_FREQ(MSI_Range);
}
flash_clksrcfreq = __LL_RCC_CALC_HCLK4_FREQ(msifreq, LL_RCC_GetAHB4Prescaler());
#if defined(PWR_CR1_VOS)
return RCC_SetFlashLatency((flash_clksrcfreq / MEGA_HZ), HAL_PWREx_GetVoltageRange());
#else
return RCC_SetFlashLatency((flash_clksrcfreq / MEGA_HZ), PWR_REGULATOR_VOLTAGE_SCALE1);
#endif /* PWR_CR1_VOS */
}
/**
* @brief Update number of Flash wait states.
* @param Flash_ClkSrcFreq Flash Clock Source (in MHz)
* @param VCORE_Voltage Current Vcore voltage (PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2)
* @retval HAL status
*/
static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage)
{
/* Flash Clock source (HCLK4) range in MHz with a VCORE is range1 */
const uint32_t FLASH_CLK_SRC_RANGE_VOS1[] = {18UL, 36UL, 54UL, 64UL};
#if defined(PWR_CR1_VOS)
/* Flash Clock source (HCLK4) range in MHz with a VCORE is range2 */
const uint32_t FLASH_CLK_SRC_RANGE_VOS2[] = {6UL, 12UL, 16UL};
#endif /* PWR_CR1_VOS */
/* Flash Latency range */
const uint32_t FLASH_LATENCY_RANGE[] = {FLASH_LATENCY_0, FLASH_LATENCY_1, FLASH_LATENCY_2, FLASH_LATENCY_3};
uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */
uint32_t tickstart;
#if defined(PWR_CR1_VOS)
if (VCORE_Voltage == PWR_REGULATOR_VOLTAGE_SCALE1)
{
for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS1); index++)
{
if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS1[index])
{
latency = FLASH_LATENCY_RANGE[index];
break;
}
}
}
else /* PWR_REGULATOR_VOLTAGE_SCALE2 */
{
for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS2); index++)
{
if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS2[index])
{
latency = FLASH_LATENCY_RANGE[index];
break;
}
}
}
#else
for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS1); index++)
{
if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS1[index])
{
latency = FLASH_LATENCY_RANGE[index];
break;
}
}
#endif /* PWR_CR1_VOS */
__HAL_FLASH_SET_LATENCY(latency);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register */
while (__HAL_FLASH_GET_LATENCY() != latency)
{
if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/