| /** |
| ****************************************************************************** |
| * @file stm32wbxx_hal_rcc.c |
| * @author MCD Application Team |
| * @brief RCC HAL module driver. |
| * This file provides firmware functions to manage the following |
| * functionalities of the Reset and Clock Control (RCC) peripheral: |
| * + Initialization and de-initialization functions |
| * + Peripheral Control functions |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2019 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### RCC specific features ##### |
| ============================================================================== |
| [..] |
| After reset the device is running from Multiple Speed Internal oscillator |
| (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache |
| and I-Cache are disabled, and all peripherals are off except internal |
| SRAM, Flash and JTAG. |
| |
| (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) buses: |
| all peripherals mapped on these buses are running at MSI speed. |
| (+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
| (+) All GPIOs are in analog mode, except the JTAG pins which |
| are assigned to be used for debug purpose. |
| |
| [..] |
| Once the device started from reset, the user application has to: |
| (+) Configure the clock source to be used to drive the System clock |
| (if the application needs higher frequency/performance) |
| (+) Configure the System clock frequency and Flash settings |
| (+) Configure the AHB and APB buses prescalers |
| (+) Enable the clock for the peripheral(s) to be used |
| (+) Configure the clock source(s) for peripherals which clocks are not |
| derived from the System clock (SAI1, RTC, ADC, USB/RNG, USART1, LPUART1, LPTIMx, I2Cx, SMPS) |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32wbxx_hal.h" |
| |
| /** @addtogroup STM32WBxx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup RCC RCC |
| * @brief RCC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_RCC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Constants RCC Private Constants |
| * @{ |
| */ |
| #define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT |
| #define HSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define MSI_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define LSI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define LSI2_TIMEOUT_VALUE (3U) /* to be adjusted with DS */ |
| #define HSI48_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define PLL_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #if defined(SAI1) |
| #define PLLSAI1_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #endif /* SAI1 */ |
| #define PRESCALER_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define LATENCY_TIMEOUT_VALUE (2U) /* 2 ms (minimum Tick + 1) */ |
| #define CLOCKSWITCH_TIMEOUT_VALUE (5000U) /* 5 s */ |
| |
| #define PLLSOURCE_NONE (0U) |
| #define MEGA_HZ (1000000U) /* Division factor to convert Hz in Mhz */ |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Macros RCC Private Macros |
| * @{ |
| */ |
| |
| #define RCC_GET_MCO_GPIO_PIN(__RCC_MCOx__) ((__RCC_MCOx__) & GPIO_PIN_MASK) |
| |
| #define RCC_GET_MCO_GPIO_AF(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOAF_MASK) >> RCC_MCO_GPIOAF_POS) |
| |
| #define RCC_GET_MCO_GPIO_INDEX(__RCC_MCOx__) (((__RCC_MCOx__) & RCC_MCO_GPIOPORT_MASK) >> RCC_MCO_GPIOPORT_POS) |
| |
| #define RCC_GET_MCO_GPIO_PORT(__RCC_MCOx__) (IOPORT_BASE + ((0x00000400UL) * RCC_GET_MCO_GPIO_INDEX((__RCC_MCOx__)))) |
| |
| #define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \ |
| (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__))) |
| |
| #define __COUNTOF(_A_) (sizeof(_A_) / sizeof(*(_A_))) |
| /** |
| * @} |
| */ |
| |
| /* Private variables ---------------------------------------------------------*/ |
| /** @defgroup RCC_Private_Variables RCC Private Variables |
| * @{ |
| */ |
| |
| |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @defgroup RCC_Private_Functions RCC Private Functions |
| * @{ |
| */ |
| static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range); |
| static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage); |
| /** |
| * @} |
| */ |
| |
| /* Exported functions --------------------------------------------------------*/ |
| |
| /** @defgroup RCC_Exported_Functions RCC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] |
| This section provides functions allowing to configure the internal and external oscillators |
| (HSE, HSI, LSE, MSI, LSI1, LSI2, PLL, CSS and MCO) and the System buses clocks (SYSCLK, HCLK1, HCLK2, HCLK4, PCLK1 |
| and PCLK2). |
| |
| [..] Internal/external clock and PLL configuration |
| (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through |
| the PLL as System clock source. |
| |
| (+) MSI (Multiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ. |
| It can be used to generate the clock for the USB FS (48 MHz). |
| The number of flash wait states is automatically adjusted when MSI range is updated with |
| HAL_RCC_OscConfig() and the MSI is used as System clock source. |
| |
| (+) LSI1/LSI2 (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC |
| clock source. |
| |
| (+) HSE (high-speed external): 32 MHz crystal oscillator used directly or |
| through the PLL as System clock source. Can be used also optionally as RTC clock source. |
| |
| (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source |
| or the RF system Auto-wakeup from Stop and Standby modes. |
| |
| (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks: |
| (++) The first output is used to generate the high speed system clock (up to 64MHz). |
| (++) The second output is used to generate the clock for the USB FS (48 MHz), |
| the random analog generator (<=48 MHz) |
| (++) The third output is used to generate an accurate clock to achieve |
| high-quality audio performance on SAI interface. |
| |
| (+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks: |
| (++) The first output is used to generate SAR ADC clock. |
| (++) The second output is used to generate the clock for the USB FS (48 MHz), |
| the random analog generator (<=48 MHz). |
| (++) The Third output is used to generate an accurate clock to achieve |
| high-quality audio performance on SAI interface. |
| |
| |
| (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs |
| (HSE used directly or through PLL as System clock source), the System clock |
| is automatically switched to MSI or the HSI oscillator (depending on the |
| STOPWUCK configuration) and an interrupt is generated if enabled. |
| The interrupt is linked to the CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector. |
| |
| (+) LSECSS: once enabled, if a LSE clock failure occurs, the LSE |
| clock is no longer supplied to the RTC but no hardware action is made to the registers. If the |
| MSI was in PLL-mode, this mode is disabled. |
| In Standby mode a wakeup is generated. In other modes an interrupt can be sent to wakeup |
| the software |
| |
| (+) MCO (microcontroller clock output): used to output MSI, LSI1, LSI2, HSI, LSE, HSE (before and |
| after stabilization), SYSCLK, HSI48 or main PLL clock (through a configurable prescaler) |
| on PA8, PB6 & PA15 pins. |
| |
| [..] System, AHB and APB buses clocks configuration |
| (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI, |
| HSE and main PLL. |
| The AHB clock (HCLK1) is derived from System clock through configurable |
| prescaler and used to clock the CPU, memory and peripherals mapped |
| on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
| from AHB clock through configurable prescalers and used to clock |
| the peripherals mapped on these buses. You can use |
| HAL_RCC_GetSysClockFreq() function to retrieve the frequencies of these clocks. |
| The AHB4 clock (HCLK4) is derived from System clock through configurable |
| prescaler and used to clock the FLASH |
| |
| -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
| |
| (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSYS) or |
| from an external clock mapped on the SAI_CKIN pin. |
| You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock. |
| (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock |
| divided by 32. |
| You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function |
| to configure this clock. |
| (+@) USB FS and RNG: USB FS requires a frequency equal to 48 MHz |
| to work correctly, while RNG peripherals requires a frequency |
| equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1 |
| through PLLQ divider. You have to enable the peripheral clock and use |
| HAL_RCCEx_PeriphCLKConfig() function to configure this clock. |
| (+@) IWDG clock which is always the LSI clock. |
| |
| |
| (+) The maximum frequency of the SYSCLK, HCLK1, HCLK4, PCLK1 and PCLK2 is 64 MHz. |
| The maximum frequency of the HCLK2 is 32 MHz. |
| The clock source frequency should be adapted depending on the device voltage range |
| as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter. |
| |
| @endverbatim |
| |
| Table 1. HCLK4 clock frequency. |
| +-------------------------------------------------------+ |
| | Latency | HCLK4 clock frequency (MHz) | |
| | |-------------------------------------| |
| | | voltage range 1 | voltage range 2 | |
| | | 1.2 V | 1.0 V | |
| |-----------------|------------------|------------------| |
| |0WS(1 CPU cycles)| HCLK4 <= 18 | HCLK4 <= 6 | |
| |-----------------|------------------|------------------| |
| |1WS(2 CPU cycles)| HCLK4 <= 36 | HCLK4 <= 12 | |
| |-----------------|------------------|------------------| |
| |2WS(3 CPU cycles)| HCLK4 <= 54 | HCLK4 <= 16 | |
| |-----------------|------------------|------------------| |
| |3WS(4 CPU cycles)| HCLK4 <= 64 | HCLK4 <= n.a. | |
| |-----------------|------------------|------------------| |
| |
| * @{ |
| */ |
| |
| /** |
| * @brief Reset the RCC clock configuration to the default reset state. |
| * @note The default reset state of the clock configuration is given below: |
| * - MSI ON and used as system clock source |
| * - HSE, HSI, PLL, PLLSAI1 |
| * - HCLK1, HCLK2, HCLK4, PCLK1 and PCLK2 prescalers set to 1. |
| * - CSS, MCO OFF |
| * - All interrupts disabled |
| * @note This function doesn't modify the configuration of the |
| * - Peripheral clocks |
| * - LSI, LSE and RTC clocks |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_DeInit(void) |
| { |
| uint32_t tickstart; |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* MSI PLL OFF */ |
| LL_RCC_MSI_DisablePLLMode(); |
| |
| /* Set MSION bit */ |
| LL_RCC_MSI_Enable(); |
| |
| /* Wait till MSI is ready */ |
| while (LL_RCC_MSI_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Set MSIRANGE default value */ |
| LL_RCC_MSI_SetRange(LL_RCC_MSIRANGE_6); |
| |
| /* Set MSITRIM bits to the reset value*/ |
| LL_RCC_MSI_SetCalibTrimming(0); |
| |
| /* Set HSITRIM bits to the reset value*/ |
| LL_RCC_HSI_SetCalibTrimming(0x40U); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Reset CFGR register (MSI is selected as system clock source) */ |
| CLEAR_REG(RCC->CFGR); |
| |
| /* Wait till MSI is ready */ |
| while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Reset HSION, HSIKERON, HSIASFS, HSEON, PLLON, PLLSAI11ON, HSEPRE bits */ |
| #if defined(SAI1) |
| CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_HSEPRE | RCC_CR_PLLON | |
| RCC_CR_PLLSAI1ON); |
| #else |
| CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSIKERON | RCC_CR_HSIASFS | RCC_CR_HSEON | RCC_CR_HSEPRE | RCC_CR_PLLON); |
| #endif /* SAI1 */ |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (LL_RCC_PLL_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* once PLL is OFF, reset PLLCFGR register to default value */ |
| WRITE_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLR_0 | RCC_PLLCFGR_PLLQ_0 | RCC_PLLCFGR_PLLP_1 | RCC_PLLCFGR_PLLN_0); |
| |
| #if defined(SAI1) |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (LL_RCC_PLLSAI1_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* once PLLSAI1 is OFF, reset PLLSAI1CFGR register to default value */ |
| WRITE_REG(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLR_0 | RCC_PLLSAI1CFGR_PLLQ_0 | |
| RCC_PLLSAI1CFGR_PLLP_1 | RCC_PLLSAI1CFGR_PLLN_0); |
| #endif /* SAI1 */ |
| |
| /* Disable all interrupts */ |
| CLEAR_REG(RCC->CIER); |
| |
| /* Clear all interrupt flags */ |
| WRITE_REG(RCC->CICR, 0xFFFFFFFFU); |
| |
| /* EXTCFGR reset*/ |
| LL_RCC_WriteReg(EXTCFGR, 0x00030000U); |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = MSI_VALUE; |
| |
| /* Adapt Systick interrupt period */ |
| if (HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| else |
| { |
| return HAL_OK; |
| } |
| } |
| |
| /** |
| * @brief Initialize the RCC Oscillators according to the specified parameters in the |
| * @ref RCC_OscInitTypeDef. |
| * @param RCC_OscInitStruct pointer to a @ref RCC_OscInitTypeDef structure that |
| * contains the configuration information for the RCC Oscillators. |
| * @note The PLL is not disabled when used as system clock. |
| * @note The PLL source is not updated when used as PLLSAI1 clock source. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| uint32_t tickstart; |
| |
| /* Check Null pointer */ |
| if (RCC_OscInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
| |
| /*----------------------------- MSI Configuration --------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState)); |
| assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue)); |
| assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange)); |
| |
| /* When the MSI is used as system clock it will not be disabled */ |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE(); |
| if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI) || |
| ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_MSI))) |
| { |
| if (RCC_OscInitStruct->MSIState == RCC_MSI_OFF) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration and MSI range change are allowed */ |
| else |
| { |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the AHB4 clock |
| and the supply voltage of the device. */ |
| if (RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE()) |
| { |
| /* First increase number of wait states update if necessary */ |
| if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
| __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
| /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
| __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
| } |
| else |
| { |
| /* Else, keep current flash latency while decreasing applies */ |
| /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
| __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
| /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
| __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
| |
| /* Decrease number of wait states update if necessary */ |
| if (RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HAL_RCC_GetHCLKFreq(); |
| |
| if (HAL_InitTick(uwTickPrio) != HAL_OK) |
| { |
| return HAL_ERROR; |
| } |
| } |
| } |
| else |
| { |
| /* Check the MSI State */ |
| if (RCC_OscInitStruct->MSIState != RCC_MSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (MSI). */ |
| __HAL_RCC_MSI_ENABLE(); |
| |
| /* Get timeout */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till MSI is ready */ |
| while (LL_RCC_MSI_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Selects the Multiple Speed oscillator (MSI) clock range .*/ |
| __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); |
| /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ |
| __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); |
| |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (MSI). */ |
| __HAL_RCC_MSI_DISABLE(); |
| |
| /* Get timeout */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till MSI is disabled */ |
| while (LL_RCC_MSI_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| |
| /*------------------------------- HSE Configuration ------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
| |
| /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE(); |
| if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE) || |
| ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSE))) |
| { |
| if (RCC_OscInitStruct->HSEState == RCC_HSE_OFF) |
| { |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* Set the new HSE configuration ---------------------------------------*/ |
| __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
| |
| /* Check the HSE State */ |
| if (RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is ready */ |
| while (LL_RCC_HSE_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSE is disabled */ |
| while (LL_RCC_HSE_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| |
| /*----------------------------- HSI Configuration --------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
| assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
| |
| /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| const uint32_t temp_plloscsrc = __HAL_RCC_GET_PLL_OSCSOURCE(); |
| if ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI) || |
| ((temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (temp_plloscsrc == RCC_PLLSOURCE_HSI))) |
| { |
| /* When HSI is used as system clock it will not be disabled */ |
| if (RCC_OscInitStruct->HSIState == RCC_HSI_OFF) |
| { |
| return HAL_ERROR; |
| } |
| /* Otherwise, just the calibration is allowed */ |
| else |
| { |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| } |
| else |
| { |
| /* Check the HSI State */ |
| if (RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
| { |
| /* Enable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is ready */ |
| while (LL_RCC_HSI_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
| __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
| } |
| else |
| { |
| /* Disable the Internal High Speed oscillator (HSI). */ |
| __HAL_RCC_HSI_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI is disabled */ |
| while (LL_RCC_HSI_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| /*------------------------------ LSI Configuration (LSI1 or LSI2) -------------------------*/ |
| |
| if ((((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI1) == RCC_OSCILLATORTYPE_LSI1) || \ |
| (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2)) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
| |
| /* Check the LSI State */ |
| if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
| { |
| /*------------------------------ LSI2 selected by default (when Switch ON) -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI2) == RCC_OSCILLATORTYPE_LSI2) |
| { |
| assert_param(IS_RCC_LSI2_CALIBRATION_VALUE(RCC_OscInitStruct->LSI2CalibrationValue)); |
| |
| /* 1. Check LSI1 state and enable if required */ |
| if (LL_RCC_LSI1_IsReady() == 0U) |
| { |
| /* This is required to enable LSI1 before enabling LSI2 */ |
| __HAL_RCC_LSI1_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI1 is ready */ |
| while (LL_RCC_LSI1_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* 2. Enable the Internal Low Speed oscillator (LSI2) and set trimming value */ |
| __HAL_RCC_LSI2_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI2 is ready */ |
| while (LL_RCC_LSI2_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /* Adjusts the Internal Low Spee oscillator (LSI2) calibration value */ |
| __HAL_RCC_LSI2_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->LSI2CalibrationValue); |
| |
| /* 3. Disable LSI1 */ |
| |
| /* LSI1 was initially not enable, require to disable it */ |
| __HAL_RCC_LSI1_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI1 is disabled */ |
| while (LL_RCC_LSI1_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /*------------------------------ LSI1 selected (only if LSI2 OFF)-------------------------*/ |
| |
| /* 1. Enable the Internal Low Speed oscillator (LSI1). */ |
| __HAL_RCC_LSI1_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI1 is ready */ |
| while (LL_RCC_LSI1_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| /*2. Switch OFF LSI2*/ |
| |
| /* Disable the Internal Low Speed oscillator (LSI2). */ |
| __HAL_RCC_LSI2_DISABLE(); |
| |
| /* Wait till LSI2 is disabled */ |
| while (LL_RCC_LSI2_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| |
| /* Disable the Internal Low Speed oscillator (LSI2). */ |
| __HAL_RCC_LSI2_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI2 is disabled */ |
| while (LL_RCC_LSI2_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI2_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Disable the Internal Low Speed oscillator (LSI1). */ |
| __HAL_RCC_LSI1_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSI1 is disabled */ |
| while (LL_RCC_LSI1_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > LSI1_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| |
| /*------------------------------ LSE Configuration -------------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
| |
| /* Update LSE configuration in Backup Domain control register */ |
| /* Requires to enable write access to Backup Domain of necessary */ |
| |
| if (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) |
| { |
| /* Enable write access to Backup domain */ |
| HAL_PWR_EnableBkUpAccess(); |
| |
| /* Wait for Backup domain Write protection disable */ |
| tickstart = HAL_GetTick(); |
| |
| while (HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Set the new LSE configuration -----------------------------------------*/ |
| __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
| |
| /* Check the LSE State */ |
| if (RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is ready */ |
| while (LL_RCC_LSE_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till LSE is disabled */ |
| while (LL_RCC_LSE_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| } |
| #if defined(RCC_HSI48_SUPPORT) |
| /*------------------------------ HSI48 Configuration -----------------------*/ |
| if (((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); |
| |
| /* Check the HSI State */ |
| if (RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) |
| { |
| /* Enable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_ENABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is ready */ |
| while (LL_RCC_HSI48_IsReady() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| else |
| { |
| /* Disable the Internal Low Speed oscillator (HSI48). */ |
| __HAL_RCC_HSI48_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till HSI48 is disabled */ |
| while (LL_RCC_HSI48_IsReady() != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| #endif /* RCC_HSI48_SUPPORT */ |
| /*-------------------------------- PLL Configuration -----------------------*/ |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
| |
| if (RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE) |
| { |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| const uint32_t temp_pllconfig = RCC->PLLCFGR; |
| |
| /* PLL On ? */ |
| if (RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON) |
| { |
| /* Check the parameters */ |
| assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
| assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); |
| assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); |
| assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); |
| assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); |
| assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); |
| |
| /* Do nothing if PLL configuration is unchanged */ |
| if ((READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) || |
| (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLM) != RCC_OscInitStruct->PLL.PLLM) || |
| ((READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos) != RCC_OscInitStruct->PLL.PLLN) || |
| (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLP) != RCC_OscInitStruct->PLL.PLLP) || |
| (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLQ) != RCC_OscInitStruct->PLL.PLLQ) || |
| (READ_BIT(temp_pllconfig, RCC_PLLCFGR_PLLR) != RCC_OscInitStruct->PLL.PLLR)) |
| { |
| /* Check if the PLL is used as system clock or not */ |
| if (temp_sysclksrc != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
| { |
| #if defined(SAI1) |
| /* Check if main PLL can be updated */ |
| /* Not possible if the source is shared by other enabled PLLSAIx */ |
| if (READ_BIT(RCC->CR, RCC_CR_PLLSAI1ON) != 0U) |
| |
| { |
| return HAL_ERROR; |
| } |
| else |
| #endif /* SAI1 */ |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Configure the main PLL clock source, multiplication and division factors. */ |
| __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
| RCC_OscInitStruct->PLL.PLLM, |
| RCC_OscInitStruct->PLL.PLLN, |
| RCC_OscInitStruct->PLL.PLLP, |
| RCC_OscInitStruct->PLL.PLLQ, |
| RCC_OscInitStruct->PLL.PLLR); |
| |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Enable PLL System Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| else |
| { |
| /* PLL is already used as System core clock */ |
| return HAL_ERROR; |
| } |
| } |
| else |
| { |
| /* PLL configuration is unchanged */ |
| /* Re-enable PLL if it was disabled (ie. low power mode) */ |
| if (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| /* Enable the main PLL. */ |
| __HAL_RCC_PLL_ENABLE(); |
| |
| /* Enable PLL System Clock output. */ |
| __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is ready */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| } |
| else |
| { |
| /* Check that PLL is not used as system clock or not */ |
| if (temp_sysclksrc != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
| { |
| /* Disable the main PLL. */ |
| __HAL_RCC_PLL_DISABLE(); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait till PLL is disabled */ |
| while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| |
| /* Disable the PLL source and outputs to save power when PLL is off */ |
| #if defined(SAI1) && defined(USB) |
| CLEAR_BIT(RCC->PLLCFGR, (RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLPEN | RCC_PLLCFGR_PLLQEN | RCC_PLLCFGR_PLLREN)); |
| #else |
| CLEAR_BIT(RCC->PLLCFGR, (RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLREN)); |
| #endif /* SAI1 && USB */ |
| } |
| else |
| { |
| /* PLL is already used as System core clock */ |
| return HAL_ERROR; |
| } |
| } |
| } |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief Initialize the CPU, AHB and APB buses clocks according to the specified |
| * parameters in the RCC_ClkInitStruct. |
| * @param RCC_ClkInitStruct pointer to a @ref RCC_ClkInitTypeDef structure that |
| * contains the configuration information for the RCC peripheral. |
| * @param FLatency FLASH Latency |
| * This parameter can be one of the following values: |
| * @arg FLASH_LATENCY_0 FLASH 0 Latency cycle |
| * @arg FLASH_LATENCY_1 FLASH 1 Latency cycle |
| * @arg FLASH_LATENCY_2 FLASH 2 Latency cycle |
| * @arg FLASH_LATENCY_3 FLASH 3 Latency cycle |
| * |
| * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
| * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function |
| * |
| * @note The MSI is used by default as system clock source after |
| * startup from Reset, wake-up from STANDBY mode. After restart from Reset, |
| * the MSI frequency is set to its default value 4 MHz. |
| * |
| * @note The HSI can be selected as system clock source after |
| * from STOP modes or in case of failure of the HSE used directly or indirectly |
| * as system clock (if the Clock Security System CSS is enabled). |
| * |
| * @note A switch from one clock source to another occurs only if the target |
| * clock source is ready (clock stable after startup delay or PLL locked). |
| * If a clock source which is not yet ready is selected, the switch will |
| * occur when the clock source is ready. |
| * |
| * @note You can use @ref HAL_RCC_GetClockConfig() function to know which clock is |
| * currently used as system clock source. |
| * |
| * @note Depending on the device voltage range, the software has to set correctly |
| * HPRE[3:0] bits to ensure that HCLK1 not exceed the maximum allowed frequency |
| * (for more details refer to section above "Initialization/de-initialization functions") |
| * @retval None |
| */ |
| HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
| { |
| uint32_t tickstart; |
| |
| /* Check Null pointer */ |
| if (RCC_ClkInitStruct == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
| assert_param(IS_FLASH_LATENCY(FLatency)); |
| |
| /* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
| must be correctly programmed according to the frequency of the FLASH clock |
| (HCLK4) and the supply voltage of the device. */ |
| |
| /* Increasing the number of wait states because of higher CPU frequency */ |
| if (FLatency > __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| while (__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*-------------------------- HCLK1 Configuration --------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
| { |
| assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLKDivider)); |
| LL_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLKDivider); |
| |
| /* HCLK1 prescaler flag when value applied */ |
| tickstart = HAL_GetTick(); |
| while (LL_RCC_IsActiveFlag_HPRE() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*-------------------------- HCLK2 Configuration --------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK2) == RCC_CLOCKTYPE_HCLK2) |
| { |
| assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK2Divider)); |
| LL_C2_RCC_SetAHBPrescaler(RCC_ClkInitStruct->AHBCLK2Divider); |
| |
| /* HCLK2 prescaler flag when value applied */ |
| tickstart = HAL_GetTick(); |
| while (LL_RCC_IsActiveFlag_C2HPRE() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| /*-------------------------- HCLK4 Configuration --------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK4) == RCC_CLOCKTYPE_HCLK4) |
| { |
| assert_param(IS_RCC_HCLKx(RCC_ClkInitStruct->AHBCLK4Divider)); |
| LL_RCC_SetAHB4Prescaler(RCC_ClkInitStruct->AHBCLK4Divider); |
| |
| /* AHB shared prescaler flag when value applied */ |
| tickstart = HAL_GetTick(); |
| while (LL_RCC_IsActiveFlag_SHDHPRE() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*-------------------------- PCLK1 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
| { |
| assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB1CLKDivider)); |
| LL_RCC_SetAPB1Prescaler(RCC_ClkInitStruct->APB1CLKDivider); |
| |
| /* APB1 prescaler flag when value applied */ |
| tickstart = HAL_GetTick(); |
| while (LL_RCC_IsActiveFlag_PPRE1() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*-------------------------- PCLK2 Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
| { |
| assert_param(IS_RCC_PCLKx(RCC_ClkInitStruct->APB2CLKDivider)); |
| LL_RCC_SetAPB2Prescaler((RCC_ClkInitStruct->APB2CLKDivider) << 3U); |
| |
| /* APB2 prescaler flag when value applied */ |
| tickstart = HAL_GetTick(); |
| while (LL_RCC_IsActiveFlag_PPRE2() == 0U) |
| { |
| if ((HAL_GetTick() - tickstart) > PRESCALER_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*------------------------- SYSCLK Configuration ---------------------------*/ |
| if (((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
| { |
| assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
| |
| /* HSE is selected as System Clock Source */ |
| if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
| { |
| /* Check the HSE ready flag */ |
| if (LL_RCC_HSE_IsReady() == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* PLL is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
| { |
| /* Check the PLL ready flag */ |
| if (LL_RCC_PLL_IsReady() == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* MSI is selected as System Clock Source */ |
| else if (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI) |
| { |
| /* Check the MSI ready flag */ |
| if (LL_RCC_MSI_IsReady() == 0U) |
| { |
| return HAL_ERROR; |
| } |
| } |
| /* HSI is selected as System Clock Source */ |
| else |
| { |
| /* Check the HSI ready flag */ |
| if (LL_RCC_HSI_IsReady() == 0U) |
| { |
| return HAL_ERROR; |
| } |
| |
| } |
| |
| /* apply system clock switch */ |
| LL_RCC_SetSysClkSource(RCC_ClkInitStruct->SYSCLKSource); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* check system clock source switch status */ |
| while (__HAL_RCC_GET_SYSCLK_SOURCE() != (RCC_ClkInitStruct->SYSCLKSource << RCC_CFGR_SWS_Pos)) |
| { |
| if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /* Decreasing the number of wait states because of lower CPU frequency */ |
| if (FLatency < __HAL_FLASH_GET_LATENCY()) |
| { |
| /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
| __HAL_FLASH_SET_LATENCY(FLatency); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| while (__HAL_FLASH_GET_LATENCY() != FLatency) |
| { |
| if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| |
| /*---------------------------------------------------------------------------*/ |
| |
| /* Update the SystemCoreClock global variable */ |
| SystemCoreClock = HAL_RCC_GetHCLKFreq(); |
| |
| /* Configure the source of time base considering new system clocks settings*/ |
| return HAL_InitTick(HAL_GetTickPrio()); |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
| * @brief RCC clocks control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides a set of functions allowing to: |
| |
| (+) Output clock to MCO pin. |
| (+) Retrieve current clock frequencies. |
| (+) Enable the Clock Security System. |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Select the clock source to output on MCO1 pin(PA8) or MCO2 pin (PB6) or MCO3 pin (PA15). |
| * @note PA8, PB6 or PA15 should be configured in alternate function mode. |
| * @param RCC_MCOx specifies the output direction for the clock source. |
| * @arg @ref RCC_MCO1_PA8 Clock source to output on MCO1 pin(PA8) |
| * @arg @ref RCC_MCO2_PB6 Clock source to output on MCO2 pin(PB6) |
| * @arg @ref RCC_MCO3_PA15 Clock source to output on MCO3 pin(PA15) |
| * @param RCC_MCOSource specifies the clock source to output. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO |
| * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee |
| * @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_LSI1 LSI1 clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_LSI2 LSI2 clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source |
| * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48 |
| * @arg @ref RCC_MCO1SOURCE_HSE_BEFORE_STAB HSE clock before stabilization selected as MCO source |
| * @param RCC_MCODiv specifies the MCO prescaler. |
| * This parameter can be one of the following values: |
| * @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
| * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock |
| * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock |
| * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock |
| * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock |
| * @retval None |
| */ |
| void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
| { |
| GPIO_InitTypeDef gpio_initstruct; |
| uint32_t mcoindex; |
| uint32_t mco_gpio_index; |
| GPIO_TypeDef *mco_gpio_port; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_MCO(RCC_MCOx)); |
| |
| /* Common GPIO init parameters */ |
| gpio_initstruct.Mode = GPIO_MODE_AF_PP; |
| gpio_initstruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; |
| gpio_initstruct.Pull = GPIO_NOPULL; |
| |
| /* Get MCOx selection */ |
| mcoindex = RCC_MCOx & RCC_MCO_INDEX_MASK; |
| |
| /* Get MCOx GPIO Port */ |
| mco_gpio_port = (GPIO_TypeDef *) RCC_GET_MCO_GPIO_PORT(RCC_MCOx); |
| |
| /* MCOx Clock Enable */ |
| mco_gpio_index = RCC_GET_MCO_GPIO_INDEX(RCC_MCOx); |
| SET_BIT(RCC->AHB2ENR, (1UL << mco_gpio_index)); |
| |
| /* Configure the MCOx pin in alternate function mode */ |
| gpio_initstruct.Pin = RCC_GET_MCO_GPIO_PIN(RCC_MCOx); |
| gpio_initstruct.Alternate = RCC_GET_MCO_GPIO_AF(RCC_MCOx); |
| HAL_GPIO_Init(mco_gpio_port, &gpio_initstruct); |
| |
| if (mcoindex == RCC_MCO1_INDEX) |
| { |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
| /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ |
| LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv); |
| } |
| else if (mcoindex == RCC_MCO2_INDEX) |
| { |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); |
| /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ |
| LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv); |
| } |
| #if defined(RCC_MCO3_SUPPORT) |
| else if (mcoindex == RCC_MCO3_INDEX) |
| { |
| assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
| assert_param(IS_RCC_MCO3SOURCE(RCC_MCOSource)); |
| /* Mask MCOSEL[] and MCOPRE[] bits then set MCO clock source and prescaler */ |
| LL_RCC_ConfigMCO(RCC_MCOSource, RCC_MCODiv); |
| } |
| #endif /* RCC_MCO3_SUPPORT */ |
| else |
| {} |
| } |
| |
| /** |
| * @brief Return the SYSCLK frequency. |
| * |
| * @note The system computed by this function is not the real |
| * frequency in the chip. It is calculated based on the predefined |
| * constant and the selected clock source: |
| * @note If SYSCLK source is MSI, function returns values based on MSI range |
| * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
| * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) |
| * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**), |
| * HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors. |
| * @note (*) HSI_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value |
| * 16 MHz) but the real value may vary depending on the variations |
| * in voltage and temperature. |
| * @note (**) HSE_VALUE is a constant defined in stm32wbxx_hal_conf.h file (default value |
| * 32 MHz), user has to ensure that HSE_VALUE is same as the real |
| * frequency of the crystal used. Otherwise, this function may |
| * have wrong result. |
| * |
| * @note The result of this function could be not correct when using fractional |
| * value for HSE crystal. |
| * |
| * @note This function can be used by the user application to compute the |
| * baudrate for the communication peripherals or configure other parameters. |
| * |
| * @note Each time SYSCLK changes, this function must be called to update the |
| * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
| * |
| * |
| * @retval SYSCLK frequency |
| */ |
| uint32_t HAL_RCC_GetSysClockFreq(void) |
| { |
| uint32_t pllsource; |
| uint32_t sysclockfreq; |
| uint32_t pllinputfreq; |
| const uint32_t temp_sysclksrc = __HAL_RCC_GET_SYSCLK_SOURCE(); |
| |
| if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_MSI) |
| { |
| /* Retrieve MSI frequency range in HZ*/ |
| /* MSI used as system clock source */ |
| sysclockfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); |
| } |
| else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSI) |
| { |
| /* HSI used as system clock source */ |
| sysclockfreq = HSI_VALUE; |
| } |
| else if (temp_sysclksrc == RCC_SYSCLKSOURCE_STATUS_HSE) |
| { |
| /* HSE used as system clock source */ |
| if (LL_RCC_HSE_IsEnabledDiv2() == 1U) |
| { |
| sysclockfreq = HSE_VALUE / 2U; |
| } |
| else |
| { |
| sysclockfreq = HSE_VALUE; |
| } |
| } |
| else |
| { |
| /* PLL used as system clock source */ |
| pllsource = LL_RCC_PLL_GetMainSource(); |
| switch (pllsource) |
| { |
| case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ |
| pllinputfreq = HSI_VALUE; |
| break; |
| case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ |
| if (LL_RCC_HSE_IsEnabledDiv2() == 1U) |
| { |
| pllinputfreq = HSE_VALUE / 2U; |
| } |
| else |
| { |
| pllinputfreq = HSE_VALUE; |
| } |
| break; |
| case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ |
| default: |
| pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange()); |
| break; |
| } |
| sysclockfreq = __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(), LL_RCC_PLL_GetN(), |
| LL_RCC_PLL_GetR()); |
| } |
| |
| return sysclockfreq; |
| } |
| |
| /** |
| * @brief Return the HCLK frequency. |
| * @retval HCLK frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetHCLKFreq(void) |
| { |
| /* Get SysClock and Compute HCLK1 frequency ---------------------------*/ |
| return ((uint32_t)(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHBPrescaler()))); |
| } |
| |
| /** |
| * @brief Return the HCLK2 frequency. |
| * @retval HCLK2 frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetHCLK2Freq(void) |
| { |
| /* Get SysClock and Compute HCLK2 frequency ---------------------------*/ |
| return ((uint32_t)(__LL_RCC_CALC_HCLK2_FREQ(HAL_RCC_GetSysClockFreq(), LL_C2_RCC_GetAHBPrescaler()))); |
| } |
| |
| /** |
| * @brief Return the HCLK4 frequency. |
| * @retval HCLK4 frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetHCLK4Freq(void) |
| { |
| /* Get SysClock and Compute AHB4 frequency ---------------------------*/ |
| return ((uint32_t)(__LL_RCC_CALC_HCLK4_FREQ(HAL_RCC_GetSysClockFreq(), LL_RCC_GetAHB4Prescaler()))); |
| } |
| |
| /** |
| * @brief Return the PCLK1 frequency. |
| * @note Each time PCLK1 changes, this function must be called to update the |
| * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK1 frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetPCLK1Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
| return ((uint32_t)(__LL_RCC_CALC_PCLK1_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB1Prescaler()))); |
| } |
| |
| /** |
| * @brief Return the PCLK2 frequency. |
| * @note Each time PCLK2 changes, this function must be called to update the |
| * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
| * @retval PCLK2 frequency in Hz |
| */ |
| uint32_t HAL_RCC_GetPCLK2Freq(void) |
| { |
| /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
| return ((uint32_t)(__LL_RCC_CALC_PCLK2_FREQ(HAL_RCC_GetHCLKFreq(), LL_RCC_GetAPB2Prescaler()))); |
| } |
| |
| /** |
| * @brief Configure the RCC_OscInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
| * will be configured. |
| * @retval None |
| */ |
| void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_OscInitStruct != (void *)NULL); |
| |
| /* Set all possible values for the Oscillator type parameter ---------------*/ |
| RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ |
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI1 | RCC_OSCILLATORTYPE_LSI2; |
| |
| #if defined(RCC_HSI48_SUPPORT) |
| RCC_OscInitStruct->OscillatorType |= RCC_OSCILLATORTYPE_HSI48; |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /* Get the HSE configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
| } |
| |
| /* Get the MSI configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_MSION) == RCC_CR_MSION) |
| { |
| RCC_OscInitStruct->MSIState = RCC_MSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->MSIState = RCC_MSI_OFF; |
| } |
| RCC_OscInitStruct->MSICalibrationValue = LL_RCC_MSI_GetCalibTrimming(); |
| RCC_OscInitStruct->MSIClockRange = LL_RCC_MSI_GetRange(); |
| |
| /* Get the HSI configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION) |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
| } |
| |
| RCC_OscInitStruct->HSICalibrationValue = LL_RCC_HSI_GetCalibTrimming(); |
| |
| /* Get the LSE configuration -----------------------------------------------*/ |
| if ((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
| } |
| else if ((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
| } |
| |
| /* Get the LSI configuration -----------------------------------------------*/ |
| const uint32_t temp_lsi1on = (RCC->CSR & RCC_CSR_LSI1ON); |
| const uint32_t temp_lsi2on = (RCC->CSR & RCC_CSR_LSI2ON); |
| if ((temp_lsi1on == RCC_CSR_LSI1ON) || (temp_lsi2on == RCC_CSR_LSI2ON)) |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
| } |
| |
| #if defined(RCC_HSI48_SUPPORT) |
| /* Get the HSI48 configuration ---------------------------------------------*/ |
| if ((RCC->CRRCR & RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON) |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; |
| } |
| #endif /* RCC_HSI48_SUPPORT */ |
| |
| /* Get the PLL configuration -----------------------------------------------*/ |
| if ((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON) |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
| } |
| else |
| { |
| RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
| } |
| RCC_OscInitStruct->PLL.PLLSource = LL_RCC_PLL_GetMainSource(); |
| RCC_OscInitStruct->PLL.PLLM = LL_RCC_PLL_GetDivider(); |
| RCC_OscInitStruct->PLL.PLLN = LL_RCC_PLL_GetN(); |
| RCC_OscInitStruct->PLL.PLLP = LL_RCC_PLL_GetP(); |
| RCC_OscInitStruct->PLL.PLLQ = LL_RCC_PLL_GetQ(); |
| RCC_OscInitStruct->PLL.PLLR = LL_RCC_PLL_GetR(); |
| } |
| |
| /** |
| * @brief Configure the RCC_ClkInitStruct according to the internal |
| * RCC configuration registers. |
| * @param RCC_ClkInitStruct Pointer to a @ref RCC_ClkInitTypeDef structure that |
| * will be configured. |
| * @param pFLatency Pointer on the Flash Latency. |
| * @retval None |
| */ |
| void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
| { |
| /* Check the parameters */ |
| assert_param(RCC_ClkInitStruct != (void *)NULL); |
| assert_param(pFLatency != (void *)NULL); |
| |
| /* Set all possible values for the Clock type parameter --------------------*/ |
| RCC_ClkInitStruct->ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | |
| RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_HCLK2 | RCC_CLOCKTYPE_HCLK4); |
| |
| /* Get the SYSCLK configuration --------------------------------------------*/ |
| RCC_ClkInitStruct->SYSCLKSource = LL_RCC_GetSysClkSource(); |
| |
| /* Get the HCLK configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLKDivider = LL_RCC_GetAHBPrescaler(); |
| |
| /* Get the APB1 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB1CLKDivider = LL_RCC_GetAPB1Prescaler(); |
| |
| /* Get the APB2 configuration ----------------------------------------------*/ |
| RCC_ClkInitStruct->APB2CLKDivider = LL_RCC_GetAPB2Prescaler(); |
| |
| /* Get the AHBCLK2Divider configuration ------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLK2Divider = LL_C2_RCC_GetAHBPrescaler(); |
| |
| /* Get the AHBCLK4Divider configuration ------------------------------------*/ |
| RCC_ClkInitStruct->AHBCLK4Divider = LL_RCC_GetAHB4Prescaler(); |
| |
| /* Get the Flash Wait State (Latency) configuration ------------------------*/ |
| *pFLatency = __HAL_FLASH_GET_LATENCY(); |
| } |
| |
| /** |
| * @brief Enable the Clock Security System. |
| * @note If a failure is detected on the HSE oscillator clock, this oscillator |
| * is automatically disabled and an interrupt is generated to inform the |
| * software about the failure (Clock Security System Interrupt, CSSI), |
| * allowing the MCU to perform rescue operations. The CSSI is linked to |
| * CPU1 and CPU2 NMI (Non-Maskable Interrupt) exception vector. |
| * @note The Clock Security System can only be cleared by reset. |
| * @retval None |
| */ |
| void HAL_RCC_EnableCSS(void) |
| { |
| LL_RCC_HSE_EnableCSS(); |
| } |
| |
| /** |
| * @brief Handle the RCC HSE Clock Security System interrupt request. |
| * @note This API should be called under the NMI_Handler(). |
| * @retval None |
| */ |
| void HAL_RCC_NMI_IRQHandler(void) |
| { |
| /* Check RCC CSSF interrupt flag */ |
| if (__HAL_RCC_GET_IT(RCC_IT_HSECSS)) |
| { |
| /* RCC Clock Security System interrupt user callback */ |
| HAL_RCC_CSSCallback(); |
| |
| /* Clear RCC CSS pending bit */ |
| __HAL_RCC_CLEAR_IT(RCC_IT_HSECSS); |
| } |
| } |
| |
| /** |
| * @brief Handle the RCC HSE Clock Security System interrupt callback. |
| * @retval none |
| */ |
| __weak void HAL_RCC_CSSCallback(void) |
| { |
| /* NOTE : This function should not be modified, when the callback is needed, |
| the @ref HAL_RCC_CSSCallback should be implemented in the user file |
| */ |
| } |
| |
| /** |
| * @brief Get and clear reset flags |
| * @param None |
| * @note Once reset flags are retrieved, this API is clearing them in order |
| * to isolate next reset reason. |
| * @retval can be a combination of @ref RCC_Reset_Flag |
| */ |
| uint32_t HAL_RCC_GetResetSource(void) |
| { |
| uint32_t reset; |
| |
| /* Get all reset flags */ |
| reset = RCC->CSR & RCC_RESET_FLAG_ALL; |
| |
| /* Clear Reset flags */ |
| RCC->CSR |= RCC_CSR_RMVF; |
| |
| return reset; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @addtogroup RCC_Private_Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief Update number of Flash wait states in line with MSI range and current |
| voltage range. |
| * @param MSI_Range MSI range value from @ref RCC_MSIRANGE_0 to @ref RCC_MSIRANGE_11 |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSI_Range) |
| { |
| uint32_t flash_clksrcfreq; |
| uint32_t msifreq; |
| |
| /* Check the parameters */ |
| assert_param(IS_RCC_MSI_CLOCK_RANGE(MSI_Range)); |
| |
| /* MSI frequency range in Hz */ |
| if (MSI_Range > RCC_MSIRANGE_11) |
| { |
| msifreq = __LL_RCC_CALC_MSI_FREQ(RCC_MSIRANGE_11); |
| } |
| else |
| { |
| msifreq = __LL_RCC_CALC_MSI_FREQ(MSI_Range); |
| } |
| |
| flash_clksrcfreq = __LL_RCC_CALC_HCLK4_FREQ(msifreq, LL_RCC_GetAHB4Prescaler()); |
| |
| #if defined(PWR_CR1_VOS) |
| return RCC_SetFlashLatency((flash_clksrcfreq / MEGA_HZ), HAL_PWREx_GetVoltageRange()); |
| #else |
| return RCC_SetFlashLatency((flash_clksrcfreq / MEGA_HZ), PWR_REGULATOR_VOLTAGE_SCALE1); |
| #endif /* PWR_CR1_VOS */ |
| } |
| |
| |
| /** |
| * @brief Update number of Flash wait states. |
| * @param Flash_ClkSrcFreq Flash Clock Source (in MHz) |
| * @param VCORE_Voltage Current Vcore voltage (PWR_REGULATOR_VOLTAGE_SCALE1 or PWR_REGULATOR_VOLTAGE_SCALE2) |
| * @retval HAL status |
| */ |
| static HAL_StatusTypeDef RCC_SetFlashLatency(uint32_t Flash_ClkSrcFreq, uint32_t VCORE_Voltage) |
| { |
| /* Flash Clock source (HCLK4) range in MHz with a VCORE is range1 */ |
| const uint32_t FLASH_CLK_SRC_RANGE_VOS1[] = {18UL, 36UL, 54UL, 64UL}; |
| #if defined(PWR_CR1_VOS) |
| /* Flash Clock source (HCLK4) range in MHz with a VCORE is range2 */ |
| const uint32_t FLASH_CLK_SRC_RANGE_VOS2[] = {6UL, 12UL, 16UL}; |
| #endif /* PWR_CR1_VOS */ |
| /* Flash Latency range */ |
| const uint32_t FLASH_LATENCY_RANGE[] = {FLASH_LATENCY_0, FLASH_LATENCY_1, FLASH_LATENCY_2, FLASH_LATENCY_3}; |
| uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */ |
| uint32_t tickstart; |
| |
| #if defined(PWR_CR1_VOS) |
| if (VCORE_Voltage == PWR_REGULATOR_VOLTAGE_SCALE1) |
| { |
| for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS1); index++) |
| { |
| if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS1[index]) |
| { |
| latency = FLASH_LATENCY_RANGE[index]; |
| break; |
| } |
| } |
| } |
| else /* PWR_REGULATOR_VOLTAGE_SCALE2 */ |
| { |
| for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS2); index++) |
| { |
| if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS2[index]) |
| { |
| latency = FLASH_LATENCY_RANGE[index]; |
| break; |
| } |
| } |
| } |
| #else |
| for (uint32_t index = 0; index < __COUNTOF(FLASH_CLK_SRC_RANGE_VOS1); index++) |
| { |
| if (Flash_ClkSrcFreq <= FLASH_CLK_SRC_RANGE_VOS1[index]) |
| { |
| latency = FLASH_LATENCY_RANGE[index]; |
| break; |
| } |
| } |
| #endif /* PWR_CR1_VOS */ |
| |
| __HAL_FLASH_SET_LATENCY(latency); |
| |
| /* Get Start Tick*/ |
| tickstart = HAL_GetTick(); |
| |
| /* Check that the new number of wait states is taken into account to access the Flash |
| memory by reading the FLASH_ACR register */ |
| while (__HAL_FLASH_GET_LATENCY() != latency) |
| { |
| if ((HAL_GetTick() - tickstart) > LATENCY_TIMEOUT_VALUE) |
| { |
| return HAL_TIMEOUT; |
| } |
| } |
| return HAL_OK; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_RCC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |