blob: 5c861177aaed540156c4a017dee7ee421960d6ee [file] [log] [blame]
/**
******************************************************************************
* @file stm32wlxx_hal_pwr_ex.c
* @author MCD Application Team
* @brief Extended PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Extended Initialization and de-initialization functions
* + Extended Peripheral Control functions
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wlxx_hal.h"
/** @addtogroup STM32WLxx_HAL_Driver
* @{
*/
/** @addtogroup PWREx
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup PWREx_Private_Constants PWR Extended Private Constants
* @{
*/
#define PWR_PORTC_AVAILABLE_PINS (PWR_GPIO_BIT_15 | PWR_GPIO_BIT_14 | PWR_GPIO_BIT_13 | PWR_GPIO_BIT_6 | PWR_GPIO_BIT_5 | PWR_GPIO_BIT_4 | PWR_GPIO_BIT_3 | PWR_GPIO_BIT_2 | PWR_GPIO_BIT_1 | PWR_GPIO_BIT_0)
#define PWR_PORTH_AVAILABLE_PINS (PWR_GPIO_BIT_3)
/** @defgroup PWREx_TimeOut_Value PWR Extended Flag Setting Time Out Value
* @{
*/
#define PWR_FLAG_SETTING_DELAY_US 50UL /*!< Time out value for REGLPF and VOSF flags setting */
/**
* @}
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PWREx_Exported_Functions PWR Extended Exported Functions
* @{
*/
/** @addtogroup PWREx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Initialization and de-initialization functions #####
===============================================================================
[..]
@endverbatim
* @{
*/
/**
* @brief Return Voltage Scaling Range.
* @retval VOS bit field (PWR_REGULATOR_VOLTAGE_SCALE1 or PWPWR_REGULATOR_VOLTAGE_SCALE2)
*/
uint32_t HAL_PWREx_GetVoltageRange(void)
{
return (PWR->CR1 & PWR_CR1_VOS);
}
/**
* @brief Configure the main internal regulator output voltage.
* @param VoltageScaling specifies the regulator output voltage to achieve
* a trade-off between performance and power consumption.
* This parameter can be one of the following values:
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE1 Regulator voltage output range 1 mode,
* typical output voltage at 1.2 V,
* system frequency up to 48 MHz.
* @arg @ref PWR_REGULATOR_VOLTAGE_SCALE2 Regulator voltage output range 2 mode,
* typical output voltage at 1.0 V,
* system frequency up to 16 MHz.
* @note When moving from Range 1 to Range 2, the system frequency must be decreased to
* a value below 16 MHz before calling HAL_PWREx_ControlVoltageScaling() API.
* When moving from Range 2 to Range 1, the system frequency can be increased to
* a value up to 48 MHz after calling HAL_PWREx_ControlVoltageScaling() API.
* @note When moving from Range 2 to Range 1, the API waits for VOSF flag to be
* cleared before returning the status. If the flag is not cleared within
* 50 microseconds, HAL_TIMEOUT status is reported.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)
{
uint32_t wait_loop_index;
assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling));
/* If Set Range 1 */
if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE1)
{
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE1)
{
/* Set Range 1 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
/* Wait until VOSF is cleared */
wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000UL);
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_VOSF))
{
return HAL_TIMEOUT;
}
}
}
else
{
if (READ_BIT(PWR->CR1, PWR_CR1_VOS) != PWR_REGULATOR_VOLTAGE_SCALE2)
{
/* Set Range 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_VOS, PWR_REGULATOR_VOLTAGE_SCALE2);
/* No need to wait for VOSF to be cleared for this transition */
}
}
return HAL_OK;
}
/****************************************************************************/
/**
* @brief Enable battery charging.
* When VDD is present, charge the external battery on VBAT through an internal resistor.
* @param ResistorSelection specifies the resistor impedance.
* This parameter can be one of the following values:
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_5 5 kOhms resistor
* @arg @ref PWR_BATTERY_CHARGING_RESISTOR_1_5 1.5 kOhms resistor
* @retval None
*/
void HAL_PWREx_EnableBatteryCharging(uint32_t ResistorSelection)
{
assert_param(IS_PWR_BATTERY_RESISTOR_SELECT(ResistorSelection));
/* Specify resistor selection */
MODIFY_REG(PWR->CR4, PWR_CR4_VBRS, ResistorSelection);
/* Enable battery charging */
SET_BIT(PWR->CR4, PWR_CR4_VBE);
}
/**
* @brief Disable battery charging.
* @retval None
*/
void HAL_PWREx_DisableBatteryCharging(void)
{
CLEAR_BIT(PWR->CR4, PWR_CR4_VBE);
}
/****************************************************************************/
/**
* @brief Enable Internal Wake-up Line.
* @retval None
*/
void HAL_PWREx_EnableInternalWakeUpLine(void)
{
#ifdef CORE_CM0PLUS
SET_BIT(PWR->C2CR3, PWR_C2CR3_EIWUL);
#else
SET_BIT(PWR->CR3, PWR_CR3_EIWUL);
#endif
}
/**
* @brief Disable Internal Wake-up Line.
* @retval None
*/
void HAL_PWREx_DisableInternalWakeUpLine(void)
{
#ifdef CORE_CM0PLUS
CLEAR_BIT(PWR->CR3, PWR_C2CR3_EIWUL);
#else
CLEAR_BIT(PWR->CR3, PWR_CR3_EIWUL);
#endif
}
/**
* @brief Set radio busy trigger polarity.
* @param RadioBusyPolarity This parameter can be one of the following values:
* @arg @ref PWR_RADIO_BUSY_POLARITY_RISING
* @arg @ref PWR_RADIO_BUSY_POLARITY_FALLING
* @retval HAL Status
*/
void HAL_PWREx_SetRadioBusyPolarity(uint32_t RadioBusyPolarity)
{
/* Check the parameters */
assert_param(IS_RADIO_BUSY_POLARITY(RadioBusyPolarity));
LL_PWR_SetRadioBusyPolarity(RadioBusyPolarity);
}
/**
* @brief Set radio busy trigger action: wake-up from low-power mode Standby,
* interruption.
* @note Signal polarity can be configured using function
* @ref HAL_PWREx_SetRadioBusyPolarity().
* @param RadioBusyTrigger This parameter can be one of the following values:
* @arg @ref PWR_RADIO_BUSY_TRIGGER_NONE
* @arg @ref PWR_RADIO_BUSY_TRIGGER_WU_IT
* @retval None
*/
void HAL_PWREx_SetRadioBusyTrigger(uint32_t RadioBusyTrigger)
{
/* Check the parameters */
assert_param(IS_PWR_RADIO_BUSY_TRIGGER(RadioBusyTrigger));
#ifdef CORE_CM0PLUS
LL_C2_PWR_SetRadioBusyTrigger(RadioBusyTrigger);
#else
LL_PWR_SetRadioBusyTrigger(RadioBusyTrigger);
#endif
}
/**
* @brief Set radio IRQ trigger action: wake-up from low-power mode Standby,
* interruption.
* @param RadioIRQTrigger This parameter can be one of the following values:
* @arg @ref PWR_RADIO_IRQ_TRIGGER_NONE
* @arg @ref PWR_RADIO_IRQ_TRIGGER_WU_IT
* @retval None
*/
void HAL_PWREx_SetRadioIRQTrigger(uint32_t RadioIRQTrigger)
{
/* Check the parameters */
assert_param(IS_RADIO_IRQ_TRIGGER(RadioIRQTrigger));
#ifdef CORE_CM0PLUS
LL_C2_PWR_SetRadioIRQTrigger(RadioIRQTrigger);
#else
LL_PWR_SetRadioIRQTrigger(RadioIRQTrigger);
#endif
}
#if defined(DUAL_CORE)
/**
* @brief Enable CPU2 on-Hold interrupt.
* @retval None
*/
void HAL_PWREx_EnableHOLDC2IT(void)
{
SET_BIT(PWR->CR3, PWR_CR3_EC2H);
}
/**
* @brief Disable CPU2 on-Hold interrupt.
* @retval None
*/
void HAL_PWREx_DisableHOLDC2IT(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_EC2H);
}
#endif
/****************************************************************************/
/**
* @brief Enable GPIO pull-up state in Standby and Shutdown modes.
* @note Set the relevant PUy bits of PWR_PUCRx register to configure the I/O in
* pull-up state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PDy bit of PWR_PDCRx register is cleared unless it is reserved.
* @note Even if a PUy bit to set is reserved, the other PUy bits entered as input
* parameter at the same time are set.
* @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PUCRA, GPIONumber);
CLEAR_BIT(PWR->PDCRA, GPIONumber);
break;
case PWR_GPIO_B:
SET_BIT(PWR->PUCRB, GPIONumber);
CLEAR_BIT(PWR->PDCRB, GPIONumber);
break;
case PWR_GPIO_C:
SET_BIT(PWR->PUCRC, (GPIONumber & PWR_PORTC_AVAILABLE_PINS));
CLEAR_BIT(PWR->PDCRC, (GPIONumber & PWR_PORTC_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
SET_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-up state in Standby mode and Shutdown modes.
* @note Reset the relevant PUy bits of PWR_PUCRx register used to configure the I/O
* in pull-up state in Standby and Shutdown modes.
* @note Even if a PUy bit to reset is reserved, the other PUy bits entered as input
* parameter at the same time are reset.
* @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A, ..., PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullUp(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PUCRA, GPIONumber);
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PUCRC, (GPIONumber & PWR_PORTC_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable GPIO pull-down state in Standby and Shutdown modes.
* @note Set the relevant PDy bits of PWR_PDCRx register to configure the I/O in
* pull-down state in Standby and Shutdown modes.
* @note This state is effective in Standby and Shutdown modes only if APC bit
* is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note The configuration is lost when exiting the Shutdown mode due to the
* power-on reset, maintained when exiting the Standby mode.
* @note To avoid any conflict at Standby and Shutdown modes exits, the corresponding
* PUy bit of PWR_PUCRx register is cleared unless it is reserved.
* @note Even if a PDy bit to set is reserved, the other PDy bits entered as input
* parameter at the same time are set.
* @param GPIO Specify the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to set
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_EnableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
SET_BIT(PWR->PDCRA, GPIONumber);
CLEAR_BIT(PWR->PUCRA, GPIONumber);
break;
case PWR_GPIO_B:
SET_BIT(PWR->PDCRB, GPIONumber);
CLEAR_BIT(PWR->PUCRB, GPIONumber);
break;
case PWR_GPIO_C:
SET_BIT(PWR->PDCRC, (GPIONumber & PWR_PORTC_AVAILABLE_PINS));
CLEAR_BIT(PWR->PUCRC, (GPIONumber & PWR_PORTC_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
SET_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
CLEAR_BIT(PWR->PUCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Disable GPIO pull-down state in Standby and Shutdown modes.
* @note Reset the relevant PDy bits of PWR_PDCRx register used to configure the I/O
* in pull-down state in Standby and Shutdown modes.
* @note Even if a PDy bit to reset is reserved, the other PDy bits entered as input
* parameter at the same time are reset.
* @param GPIO Specifies the IO port. This parameter can be PWR_GPIO_A..PWR_GPIO_H
* to select the GPIO peripheral.
* @param GPIONumber Specify the I/O pins numbers.
* This parameter can be one of the following values:
* PWR_GPIO_BIT_0, ..., PWR_GPIO_BIT_15 (except for PORTH where less
* I/O pins are available) or the logical OR of several of them to reset
* several bits for a given port in a single API call.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableGPIOPullDown(uint32_t GPIO, uint32_t GPIONumber)
{
HAL_StatusTypeDef status = HAL_OK;
assert_param(IS_PWR_GPIO(GPIO));
assert_param(IS_PWR_GPIO_BIT_NUMBER(GPIONumber));
switch (GPIO)
{
case PWR_GPIO_A:
CLEAR_BIT(PWR->PDCRA, GPIONumber);
break;
case PWR_GPIO_B:
CLEAR_BIT(PWR->PDCRB, GPIONumber);
break;
case PWR_GPIO_C:
CLEAR_BIT(PWR->PDCRC, (GPIONumber & PWR_PORTC_AVAILABLE_PINS));
break;
case PWR_GPIO_H:
CLEAR_BIT(PWR->PDCRH, (GPIONumber & PWR_PORTH_AVAILABLE_PINS));
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Enable pull-up and pull-down configuration.
* @note When APC bit is set, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are applied in Standby and Shutdown modes.
* @note Pull-up set by PUy bit of PWR_PUCRx register is not activated if the corresponding
* PDy bit of PWR_PDCRx register is also set (pull-down configuration priority is higher).
* HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown() API's ensure there
* is no conflict when setting PUy or PDy bit.
* @retval None
*/
void HAL_PWREx_EnablePullUpPullDownConfig(void)
{
#ifdef CORE_CM0PLUS
SET_BIT(PWR->C2CR3, PWR_C2CR3_APC);
#else
SET_BIT(PWR->CR3, PWR_CR3_APC);
#endif
}
/**
* @brief Disable pull-up and pull-down configuration.
* @note When APC bit is cleared, the I/O pull-up and pull-down configurations defined in
* PWR_PUCRx and PWR_PDCRx registers are not applied in Standby and Shutdown modes.
* @retval None
*/
void HAL_PWREx_DisablePullUpPullDownConfig(void)
{
#ifdef CORE_CM0PLUS
CLEAR_BIT(PWR->C2CR3, PWR_C2CR3_APC);
#else
CLEAR_BIT(PWR->CR3, PWR_CR3_APC);
#endif
}
/****************************************************************************/
#if defined(DUAL_CORE)
/**
* @brief Hold CPU and allocated peripherals after reset or wakeup from Stop or Standby.
* @param CPU Specifies the core to be held.
* This parameter can be one of the following values:
* @arg PWR_CORE_CPU2: Hold CPU2.
* @note Hold CPU2 with CPU1 as master by default.
* @retval None
*/
void HAL_PWREx_HoldCore(uint32_t CPU)
{
/* Check the parameters */
assert_param(IS_PWR_CORE_HOLD_RELEASE(CPU));
LL_PWR_DisableBootC2();
}
/**
* @brief Release CPU and allocated peripherals after reset or wakeup from Stop or Standby.
* @param CPU Specifies the core to be released.
* This parameter can be one of the following values:
* @arg PWR_CORE_CPU2: Release the CPU2 from holding.
* @retval None
*/
void HAL_PWREx_ReleaseCore(uint32_t CPU)
{
/* Check the parameters */
assert_param(IS_PWR_CORE_HOLD_RELEASE(CPU));
LL_PWR_EnableBootC2();
}
/****************************************************************************/
#ifdef CORE_CM0PLUS
/**
* @brief Enable CPU2 wake-up from low-power mode on illegal access occurrence
* @note Can be configured from CPU2 only
* @retval None
*/
void HAL_PWREx_EnableWakeUp_ILAC(void)
{
LL_PWR_C2_EnableWakeUp_ILAC();
}
/**
* @brief Disable CPU2 wake-up from low-power mode on illegal access occurrence
* @note Can be configured from CPU2 only
* @retval None
*/
void HAL_PWREx_DisableWakeUp_ILAC(void)
{
LL_PWR_C2_DisableWakeUp_ILAC();
}
/**
* @brief Check if bit to wake-up CPU2 from low-power mode on illegal access
* occurrence is set
* @note Can be used from CPU2 only
* @retval State of bit (1 or 0)
*/
uint32_t HAL_PWREx_IsEnabledWakeUp_ILAC(void)
{
return LL_PWR_C2_IsEnabledWakeUp_ILAC();
}
#endif
#endif
/****************************************************************************/
/**
* @brief Enable SRAM2 content retention in Standby mode.
* @note When RRS bit is set, SRAM is powered by the low-power regulator in
* Standby mode and its content is kept.
* @retval None
*/
void HAL_PWREx_EnableSRAMRetention(void)
{
LL_PWR_EnableSRAM2Retention();
}
/**
* @brief Disable SRAM2 content retention in Standby mode.
* @note When RRS bit is reset, SRAM is powered off in Standby mode
* and its content is lost.
* @retval None
*/
void HAL_PWREx_DisableSRAMRetention(void)
{
LL_PWR_DisableSRAM2Retention();
}
/****************************************************************************/
/**
* @brief Enable Flash Power Down.
* @note This API allows to enable flash power down capabilities in low power
* run and low power sleep modes.
* @note This configuration is effective when both CPU have selected it.
* @param PowerMode this can be a combination of following values:
* @arg @ref PWR_FLASHPD_LPRUN
* @arg @ref PWR_FLASHPD_LPSLEEP
* @retval None
*/
void HAL_PWREx_EnableFlashPowerDown(uint32_t PowerMode)
{
assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode));
#ifdef CORE_CM0PLUS
if ((PowerMode & PWR_FLASHPD_LPRUN) != 0U)
{
/* Unlock bit FPDR */
WRITE_REG(PWR->C2CR1, PWR_FLASH_POWER_MODE_UNLOCK_CODE);
}
/* Set flash power down mode */
SET_BIT(PWR->C2CR1, PowerMode);
#else
if ((PowerMode & PWR_FLASHPD_LPRUN) != 0U)
{
/* Unlock bit FPDR */
WRITE_REG(PWR->CR1, PWR_FLASH_POWER_MODE_UNLOCK_CODE);
}
/* Set flash power down mode */
SET_BIT(PWR->CR1, PowerMode);
#endif
}
/**
* @brief Disable Flash Power Down.
* @note This API allows to disable flash power down capabilities in low power
* run and low power sleep modes.
* @note This configuration is effective when both CPU have selected it.
* @param PowerMode this can be a combination of following values:
* @arg @ref PWR_FLASHPD_LPRUN
* @arg @ref PWR_FLASHPD_LPSLEEP
* @retval None
*/
void HAL_PWREx_DisableFlashPowerDown(uint32_t PowerMode)
{
assert_param(IS_PWR_FLASH_POWERDOWN(PowerMode));
#ifdef CORE_CM0PLUS
/* Set flash power down mode */
CLEAR_BIT(PWR->C2CR1, PowerMode);
#else
/* Set flash power down mode */
CLEAR_BIT(PWR->CR1, PowerMode);
#endif
}
/****************************************************************************/
/**
* @brief Enable wake-up power voltage detection
* @note Wake-up power voltage detection status can be checked
* using flag @ref PWR_FLAG_WPVD.
* @retval None
*/
void HAL_PWREx_EnableWPVD(void)
{
#ifdef CORE_CM0PLUS
LL_C2_PWR_EnableWPVD();
#else
LL_PWR_EnableWPVD();
#endif
}
/**
* @brief Disable wake-up power voltage detection
* @retval None
*/
void HAL_PWREx_DisableWPVD(void)
{
#ifdef CORE_CM0PLUS
LL_C2_PWR_DisableWPVD();
#else
LL_PWR_DisableWPVD();
#endif
}
/**
* @brief Enable periodical sampling of supply voltage in Stop and Standby
* modes for detecting condition of PDR and BOR reset.
* @note Caution: When enabled, and if the supply voltage drops below
* the minimum operating condition between two supply voltage samples,
* the reset condition is missed and no reset is generated.
* @retval None
*/
void HAL_PWREx_EnableBORPVD_ULP(void)
{
SET_BIT(PWR->CR3, PWR_CR3_ULPEN);
}
/**
* @brief Disable periodical sampling of supply voltage in Stop and Standby
* modes for detecting condition of PDR and BOR reset.
* @note All the other modes are not affected by this bit
* @retval None
*/
void HAL_PWREx_DisableBORPVD_ULP(void)
{
CLEAR_BIT(PWR->CR3, PWR_CR3_ULPEN);
}
/****************************************************************************/
/**
* @brief Enable the Power Voltage Monitoring 3: VDDA versus 1.62V.
* @retval None
*/
void HAL_PWREx_EnablePVM3(void)
{
SET_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Disable the Power Voltage Monitoring 3: VDDA versus 1.62V.
* @retval None
*/
void HAL_PWREx_DisablePVM3(void)
{
CLEAR_BIT(PWR->CR2, PWR_PVM_3);
}
/**
* @brief Configure the Peripheral Voltage Monitoring (PVM).
* @param sConfigPVM pointer to a PWR_PVMTypeDef structure that contains the
* PVM configuration information.
* @note The API configures a single PVM according to the information contained
* in the input structure. To configure several PVMs, the API must be singly
* called for each PVM used.
* @note Refer to the electrical characteristics of your device datasheet for
* more details about the voltage thresholds corresponding to each
* detection level and to each monitored supply.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_PWREx_ConfigPVM(PWR_PVMTypeDef *sConfigPVM)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check the parameters */
assert_param(IS_PWR_PVM_TYPE(sConfigPVM->PVMType));
assert_param(IS_PWR_PVM_MODE(sConfigPVM->Mode));
/* Configure EXTI lines if so required:
scan through PVMType to detect which PVMx is set and
configure the corresponding EXTI line accordingly. */
switch (sConfigPVM->PVMType)
{
case PWR_PVM_3:
/* Clear any previous config. Keep it clear if no event or IT mode is selected */
__HAL_PWR_PVM3_EXTI_DISABLE_EVENT();
__HAL_PWR_PVM3_EXTI_DISABLE_IT();
__HAL_PWR_PVM3_EXTI_DISABLE_FALLING_EDGE();
__HAL_PWR_PVM3_EXTI_DISABLE_RISING_EDGE();
/* Configure interrupt mode */
if ((sConfigPVM->Mode & PVM_MODE_IT) == PVM_MODE_IT)
{
__HAL_PWR_PVM3_EXTI_ENABLE_IT();
}
/* Configure the edge */
if ((sConfigPVM->Mode & PVM_RISING_EDGE) == PVM_RISING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_RISING_EDGE();
}
if ((sConfigPVM->Mode & PVM_FALLING_EDGE) == PVM_FALLING_EDGE)
{
__HAL_PWR_PVM3_EXTI_ENABLE_FALLING_EDGE();
}
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Set monitoring of supply voltage for radio operating level
* (radio End Of Life), radio must be in active mode.
* @param RadioEOL This parameter can be one of the following values:
* @arg @ref PWR_RADIO_EOL_ENABLE
* @arg @ref PWR_RADIO_EOL_DISABLE
* @retval None
*/
void HAL_PWREx_SetRadioEOL(uint32_t RadioEOL)
{
MODIFY_REG(PWR->CR5, PWR_CR5_RFEOLEN, RadioEOL);
}
/****************************************************************************/
/**
* @brief Set SMPS operating mode.
* @note In case of a board without SMPS coil mounted, SMPS should not be activated.
* @param OperatingMode This parameter can be one of the following values:
* @arg @ref PWR_SMPS_BYPASS
* @arg @ref PWR_SMPS_STEP_DOWN
* @retval None
*/
void HAL_PWREx_SMPS_SetMode(uint32_t OperatingMode)
{
MODIFY_REG(PWR->CR5, PWR_CR5_SMPSEN, OperatingMode);
}
/**
* @brief Get SMPS effective operating mode
* @note SMPS operating mode can be changed by hardware, therefore
* requested operating mode can differ from effective low power mode.
* - dependency SubGhz Radio IP: can switch SMPS on for radio activity.
* @note In case of a board without SMPS coil mounted, SMPS should not be activated
* and this function is not relevant.
* @retval Returned value can be one of the following values:
* @arg @ref PWR_SMPS_BYPASS
* @arg @ref PWR_SMPS_STEP_DOWN
*/
uint32_t HAL_PWREx_SMPS_GetEffectiveMode(void)
{
/* Return a value corresponding to definition of literals */
/* PWR_SMPS_BYPASS or PWR_SMPS_STEP_DOWN. */
return (uint32_t)(READ_BIT(PWR->SR2, PWR_SR2_SMPSRDY) << (PWR_CR5_SMPSEN_Pos - PWR_SR2_SMPSRDY_Pos));
}
/****************************************************************************/
/**
* @brief Enter Low-power Run mode
* @note In Low-power Run mode, all I/O pins keep the same state as in Run mode.
* @note Clock frequency must be reduced below 2 MHz.
* @retval None
*/
void HAL_PWREx_EnableLowPowerRunMode(void)
{
/* Set Regulator parameter */
SET_BIT(PWR->CR1, PWR_CR1_LPR);
}
/**
* @brief Exit Low-power Run mode.
* @note Before HAL_PWREx_DisableLowPowerRunMode() completion, the function checks that
* REGLPF has been properly reset (otherwise, HAL_PWREx_DisableLowPowerRunMode
* returns HAL_TIMEOUT status). The system clock frequency can then be
* increased above 2 MHz.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_PWREx_DisableLowPowerRunMode(void)
{
uint32_t wait_loop_index;
/* Clear LPR bit */
CLEAR_BIT(PWR->CR1, PWR_CR1_LPR);
/* Wait until REGLPF is reset */
wait_loop_index = ((PWR_FLAG_SETTING_DELAY_US * SystemCoreClock) / 1000000UL);
while ((HAL_IS_BIT_SET(PWR->SR2, PWR_SR2_REGLPF)) && (wait_loop_index != 0U))
{
wait_loop_index--;
}
if (HAL_IS_BIT_SET(PWR->SR2, (PWR_SR2_REGLPF)))
{
return HAL_TIMEOUT;
}
return HAL_OK;
}
/****************************************************************************/
/**
* @brief Enter Stop 0 mode.
* @note In Stop 0 mode, main and low voltage regulators are ON.
* @note In Stop 0 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 0 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note By keeping the internal regulator ON during Stop 0 mode, the consumption
* is higher although the startup time is reduced.
* @note According to system power policy, system entering in Stop mode
* is depending on other CPU power mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP0Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
#ifdef CORE_CM0PLUS
/* Stop 0 mode with Main Regulator */
MODIFY_REG(PWR->C2CR1, PWR_C2CR1_LPMS, PWR_LOWPOWERMODE_STOP0);
#else
/* Stop 0 mode with Main Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP0);
#endif
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Stop 1 mode.
* @note In Stop 1 mode, only low power voltage regulator is ON.
* @note In Stop 1 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with the wakeup capability
* (I2Cx, USARTx and LPUART) can switch on the HSI to receive a frame, and switch off the HSI
* after receiving the frame if it is not a wakeup frame. In this case, the HSI clock is propagated
* only to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* @note When exiting Stop 1 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note Due to low power mode, an additional startup delay is incurred when waking up from Stop 1 mode.
* @note According to system power policy, system entering in Stop mode
* is depending on other CPU power mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP1Mode(uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
#ifdef CORE_CM0PLUS
/* Stop 1 mode with Low-Power Regulator */
MODIFY_REG(PWR->C2CR1, PWR_C2CR1_LPMS, PWR_LOWPOWERMODE_STOP1);
#else
/* Stop 1 mode with Low-Power Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP1);
#endif
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Stop 2 mode.
* @note In Stop 2 mode, only low power voltage regulator is ON.
* @note In Stop 2 mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped, the PLL, the MSI,
* the HSI and the HSE oscillators are disabled. Some peripherals with wakeup capability
* (LCD, LPTIM1, I2C3 and LPUART) can switch on the HSI to receive a frame, and switch off the HSI after
* receiving the frame if it is not a wakeup frame. In this case the HSI clock is propagated only
* to the peripheral requesting it.
* SRAM1, SRAM2 and register contents are preserved.
* The BOR is available.
* The voltage regulator is set in low-power mode but LPR bit must be cleared to enter stop 2 mode.
* Otherwise, Stop 1 mode is entered.
* @note When exiting Stop 2 mode by issuing an interrupt or a wakeup event,
* the HSI RC oscillator is selected as system clock if STOPWUCK bit in RCC_CFGR register
* is set; the MSI oscillator is selected if STOPWUCK is cleared.
* @note According to system power policy, system entering in Stop mode
* is depending on other CPU power mode.
* @param STOPEntry specifies if Stop mode in entered with WFI or WFE instruction.
* This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop mode with WFI instruction
* @arg @ref PWR_STOPENTRY_WFE Enter Stop mode with WFE instruction
* @retval None
*/
void HAL_PWREx_EnterSTOP2Mode(uint8_t STOPEntry)
{
/* Check the parameter */
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
#ifdef CORE_CM0PLUS
/* Set Stop mode 2 */
MODIFY_REG(PWR->C2CR1, PWR_C2CR1_LPMS, PWR_LOWPOWERMODE_STOP2);
#else
/* Set Stop mode 2 */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP2);
#endif
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Shutdown mode.
* @note In Shutdown mode, the PLL, the HSI, the MSI, the LSI and the HSE oscillators are switched
* off. The voltage regulator is disabled and Vcore domain is powered off.
* SRAM1, SRAM2 and registers contents are lost except for registers in the Backup domain.
* The BOR is not available.
* @note The I/Os can be configured either with a pull-up or pull-down or can be kept in analog state.
* @note According to system power policy, system entering in Shutdown mode
* is depending on other CPU power mode.
* @retval None
*/
void HAL_PWREx_EnterSHUTDOWNMode(void)
{
#ifdef CORE_CM0PLUS
/* Set Shutdown mode */
MODIFY_REG(PWR->C2CR1, PWR_C2CR1_LPMS, PWR_LOWPOWERMODE_SHUTDOWN);
#else
/* Set Shutdown mode */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_SHUTDOWN);
#endif
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
__force_stores();
#endif
/* Request Wait For Interrupt */
__WFI();
/* Note: After this request to enter in Shutdown mode, at wake-up, program
execution depends on system low-power mode:
- If system was in Shutdown mode (other CPU in Shutdown),
then at wake-up program restarts at reset state
- If system was in Run or Stop mode (other CPU in Run, Sleep, Stop),
then at wake-up program continues from this point
*/
}
/**
* @brief This function handles the PWR PVD/PVMx interrupt request.
* @note This API should be called under the PVD_PVM_IRQHandler().
* @retval None
*/
void HAL_PWREx_PVD_PVM_IRQHandler(void)
{
/* Check PWR exti flag */
if (__HAL_PWR_PVD_EXTI_GET_FLAG() != 0UL)
{
/* Clear PVD exti pending bit */
__HAL_PWR_PVD_EXTI_CLEAR_FLAG();
/* PWR PVD interrupt user callback */
HAL_PWR_PVDCallback();
}
if (__HAL_PWR_PVM3_EXTI_GET_FLAG() != 0UL)
{
/* Clear PVM3 exti pending bit */
__HAL_PWR_PVM3_EXTI_CLEAR_FLAG();
/* PWR PVM3 interrupt user callback */
HAL_PWREx_PVM3Callback();
}
}
/**
* @brief PWR PVM3 interrupt callback
* @retval None
*/
__weak void HAL_PWREx_PVM3Callback(void)
{
/* NOTE : This function should not be modified; when the callback is needed,
HAL_PWREx_PVM3Callback() API can be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/