blob: 1febd507697596462ce4c71251cc3a845b5bc3eb [file] [log] [blame]
/**
******************************************************************************
* @file stm32wlxx_ll_rcc.h
* @author MCD Application Team
* @brief Header file of RCC LL module.
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32WLxx_LL_RCC_H
#define __STM32WLxx_LL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32wlxx.h"
/** @addtogroup STM32WLxx_LL_Driver
* @{
*/
#if defined(RCC)
/** @defgroup RCC_LL RCC
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_LL_Private_Variables RCC Private Variables
* @{
*/
#define HSE_CONTROL_UNLOCK_KEY 0xCAFECAFEU
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Private_Macros RCC Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Exported_Types RCC Exported Types
* @{
*/
/** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure
* @{
*/
/**
* @brief RCC Clocks Frequency Structure
*/
typedef struct
{
uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */
uint32_t HCLK1_Frequency; /*!< HCLK1 clock frequency */
#if defined(DUAL_CORE)
uint32_t HCLK2_Frequency; /*!< HCLK2 clock frequency */
#endif /* DUAL_CORE */
uint32_t HCLK3_Frequency; /*!< HCLK3 clock frequency */
uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */
uint32_t PCLK2_Frequency; /*!< PCLK2 clock frequency */
} LL_RCC_ClocksTypeDef;
/**
* @}
*/
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation
* @brief Defines used to adapt values of different oscillators
* @note These values could be modified in the user environment according to
* HW set-up.
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE 32000000U /*!< Value of the HSE oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 16000000U /*!< Value of the HSI oscillator in Hz */
#endif /* HSI_VALUE */
#if !defined (LSE_VALUE)
#define LSE_VALUE 32768U /*!< Value of the LSE oscillator in Hz */
#endif /* LSE_VALUE */
#if !defined (LSI_VALUE)
#define LSI_VALUE 32000U /*!< Value of the LSI oscillator in Hz */
#endif /* LSI_VALUE */
#if !defined (EXTERNAL_CLOCK_VALUE)
#define EXTERNAL_CLOCK_VALUE 48000U /*!< Value of the I2S_CKIN external oscillator in Hz */
#endif /* EXTERNAL_CLOCK_VALUE */
/**
* @}
*/
/** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines
* @brief Flags defines which can be used with LL_RCC_WriteReg function
* @{
*/
#define LL_RCC_CICR_LSIRDYC RCC_CICR_LSIRDYC /*!< LSI Ready Interrupt Clear */
#define LL_RCC_CICR_LSERDYC RCC_CICR_LSERDYC /*!< LSE Ready Interrupt Clear */
#define LL_RCC_CICR_MSIRDYC RCC_CICR_MSIRDYC /*!< MSI Ready Interrupt Clear */
#define LL_RCC_CICR_HSIRDYC RCC_CICR_HSIRDYC /*!< HSI Ready Interrupt Clear */
#define LL_RCC_CICR_HSERDYC RCC_CICR_HSERDYC /*!< HSE Ready Interrupt Clear */
#define LL_RCC_CICR_PLLRDYC RCC_CICR_PLLRDYC /*!< PLL Ready Interrupt Clear */
#define LL_RCC_CICR_LSECSSC RCC_CICR_LSECSSC /*!< LSE Clock Security System Interrupt Clear */
#define LL_RCC_CICR_CSSC RCC_CICR_CSSC /*!< Clock Security System Interrupt Clear */
/**
* @}
*/
/** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_RCC_ReadReg function
* @{
*/
#define LL_RCC_CIFR_LSIRDYF RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define LL_RCC_CIFR_LSERDYF RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */
#define LL_RCC_CIFR_MSIRDYF RCC_CIFR_MSIRDYF /*!< MSI Ready Interrupt flag */
#define LL_RCC_CIFR_HSIRDYF RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */
#define LL_RCC_CIFR_HSERDYF RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */
#define LL_RCC_CIFR_PLLRDYF RCC_CIFR_PLLRDYF /*!< PLL Ready Interrupt flag */
#define LL_RCC_CIFR_LSECSSF RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */
#define LL_RCC_CIFR_CSSF RCC_CIFR_CSSF /*!< Clock Security System Interrupt flag */
#define LL_RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF /*!< Low-Power reset flag */
#define LL_RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF /*!< OBL reset flag */
#define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */
#define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */
#define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */
#define LL_RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF /*!< Window watchdog reset flag */
#define LL_RCC_CSR_BORRSTF RCC_CSR_BORRSTF /*!< BOR reset flag */
#define LL_RCC_CSR_RFILASTF RCC_CSR_RFILARSTF /*!< Radio illegal access flag */
/**
* @}
*/
/** @defgroup RCC_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions
* @{
*/
#define LL_RCC_CIER_LSIRDYIE RCC_CIER_LSIRDYIE /*!< LSI Ready Interrupt Enable */
#define LL_RCC_CIER_LSERDYIE RCC_CIER_LSERDYIE /*!< LSE Ready Interrupt Enable */
#define LL_RCC_CIER_MSIRDYIE RCC_CIER_MSIRDYIE /*!< MSI Ready Interrupt Enable */
#define LL_RCC_CIER_HSIRDYIE RCC_CIER_HSIRDYIE /*!< HSI Ready Interrupt Enable */
#define LL_RCC_CIER_HSERDYIE RCC_CIER_HSERDYIE /*!< HSE Ready Interrupt Enable */
#define LL_RCC_CIER_PLLRDYIE RCC_CIER_PLLRDYIE /*!< PLL Ready Interrupt Enable */
#define LL_RCC_CIER_LSECSSIE RCC_CIER_LSECSSIE /*!< LSE CSS Interrupt Enable */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LSEDRIVE LSE oscillator drive capability
* @{
*/
#define LL_RCC_LSEDRIVE_LOW 0x00000000U /*!< Xtal mode lower driving capability */
#define LL_RCC_LSEDRIVE_MEDIUMLOW RCC_BDCR_LSEDRV_0 /*!< Xtal mode medium low driving capability */
#define LL_RCC_LSEDRIVE_MEDIUMHIGH RCC_BDCR_LSEDRV_1 /*!< Xtal mode medium high driving capability */
#define LL_RCC_LSEDRIVE_HIGH RCC_BDCR_LSEDRV /*!< Xtal mode higher driving capability */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MSIRANGE MSI clock ranges
* @{
*/
#define LL_RCC_MSIRANGE_0 RCC_CR_MSIRANGE_0 /*!< MSI = 100 KHz */
#define LL_RCC_MSIRANGE_1 RCC_CR_MSIRANGE_1 /*!< MSI = 200 KHz */
#define LL_RCC_MSIRANGE_2 RCC_CR_MSIRANGE_2 /*!< MSI = 400 KHz */
#define LL_RCC_MSIRANGE_3 RCC_CR_MSIRANGE_3 /*!< MSI = 800 KHz */
#define LL_RCC_MSIRANGE_4 RCC_CR_MSIRANGE_4 /*!< MSI = 1 MHz */
#define LL_RCC_MSIRANGE_5 RCC_CR_MSIRANGE_5 /*!< MSI = 2 MHz */
#define LL_RCC_MSIRANGE_6 RCC_CR_MSIRANGE_6 /*!< MSI = 4 MHz */
#define LL_RCC_MSIRANGE_7 RCC_CR_MSIRANGE_7 /*!< MSI = 8 MHz */
#define LL_RCC_MSIRANGE_8 RCC_CR_MSIRANGE_8 /*!< MSI = 16 MHz */
#define LL_RCC_MSIRANGE_9 RCC_CR_MSIRANGE_9 /*!< MSI = 24 MHz */
#define LL_RCC_MSIRANGE_10 RCC_CR_MSIRANGE_10 /*!< MSI = 32 MHz */
#define LL_RCC_MSIRANGE_11 RCC_CR_MSIRANGE_11 /*!< MSI = 48 MHz */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MSISRANGE MSI range after Standby mode
* @{
*/
#define LL_RCC_MSISRANGE_4 RCC_CSR_MSISRANGE_1 /*!< MSI = 1 MHz */
#define LL_RCC_MSISRANGE_5 RCC_CSR_MSISRANGE_2 /*!< MSI = 2 MHz */
#define LL_RCC_MSISRANGE_6 RCC_CSR_MSISRANGE_4 /*!< MSI = 4 MHz */
#define LL_RCC_MSISRANGE_7 RCC_CSR_MSISRANGE_8 /*!< MSI = 8 MHz */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LSCO_CLKSOURCE LSCO Selection
* @{
*/
#define LL_RCC_LSCO_CLKSOURCE_LSI 0x00000000U /*!< LSI selection for low speed clock */
#define LL_RCC_LSCO_CLKSOURCE_LSE RCC_BDCR_LSCOSEL /*!< LSE selection for low speed clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_MSI 0x00000000U /*!< MSI selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_HSI RCC_CFGR_SW_0 /*!< HSI selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_1 /*!< HSE selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_PLL (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< PLL selection as system clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_STATUS_MSI 0x00000000U /*!< MSI used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSI RCC_CFGR_SWS_0 /*!< HSI used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_1 /*!< HSE used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_PLL (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< PLL used as system clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler
* @{
*/
#define LL_RCC_SYSCLK_DIV_1 0x00000000U /*!< SYSCLK not divided */
#define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */
#define LL_RCC_SYSCLK_DIV_3 RCC_CFGR_HPRE_0 /*!< SYSCLK divided by 3 */
#define LL_RCC_SYSCLK_DIV_4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */
#define LL_RCC_SYSCLK_DIV_5 RCC_CFGR_HPRE_1 /*!< SYSCLK divided by 5 */
#define LL_RCC_SYSCLK_DIV_6 (RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 6 */
#define LL_RCC_SYSCLK_DIV_8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */
#define LL_RCC_SYSCLK_DIV_10 (RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 10 */
#define LL_RCC_SYSCLK_DIV_16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */
#define LL_RCC_SYSCLK_DIV_32 (RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 32 */
#define LL_RCC_SYSCLK_DIV_64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */
#define LL_RCC_SYSCLK_DIV_128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */
#define LL_RCC_SYSCLK_DIV_256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */
#define LL_RCC_SYSCLK_DIV_512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB1_DIV APB low-speed prescaler (APB1)
* @{
*/
#define LL_RCC_APB1_DIV_1 0x00000000U /*!< HCLK1 not divided */
#define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE1_2 /*!< HCLK1 divided by 2 */
#define LL_RCC_APB1_DIV_4 (RCC_CFGR_PPRE1_2 | RCC_CFGR_PPRE1_0) /*!< HCLK1 divided by 4 */
#define LL_RCC_APB1_DIV_8 (RCC_CFGR_PPRE1_2 | RCC_CFGR_PPRE1_1) /*!< HCLK1 divided by 8 */
#define LL_RCC_APB1_DIV_16 (RCC_CFGR_PPRE1_2 | RCC_CFGR_PPRE1_1 | RCC_CFGR_PPRE1_0) /*!< HCLK1 divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB2_DIV APB high-speed prescaler (APB2)
* @{
*/
#define LL_RCC_APB2_DIV_1 0x00000000U /*!< HCLK1 not divided */
#define LL_RCC_APB2_DIV_2 RCC_CFGR_PPRE2_2 /*!< HCLK1 divided by 2 */
#define LL_RCC_APB2_DIV_4 (RCC_CFGR_PPRE2_2 | RCC_CFGR_PPRE2_0) /*!< HCLK1 divided by 4 */
#define LL_RCC_APB2_DIV_8 (RCC_CFGR_PPRE2_2 | RCC_CFGR_PPRE2_1) /*!< HCLK1 divided by 8 */
#define LL_RCC_APB2_DIV_16 (RCC_CFGR_PPRE2_2 | RCC_CFGR_PPRE2_1 | RCC_CFGR_PPRE2_0) /*!< HCLK1 divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_STOP_WAKEUPCLOCK Wakeup from Stop and CSS backup clock selection
* @{
*/
#define LL_RCC_STOP_WAKEUPCLOCK_MSI 0x00000000U /*!< MSI selection after wake-up from STOP */
#define LL_RCC_STOP_WAKEUPCLOCK_HSI RCC_CFGR_STOPWUCK /*!< HSI selection after wake-up from STOP */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO1SOURCE MCO1 SOURCE selection
* @{
*/
#define LL_RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO output disabled, no clock on MCO */
#define LL_RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_MSI RCC_CFGR_MCOSEL_1 /*!< MSI selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE after stabilization selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_PLLCLK (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_2) /*!< Main PLLR selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_LSE RCC_CFGR_MCOSEL_3 /*!< LSE selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_PLLPCLK (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_2|RCC_CFGR_MCOSEL_3) /*!< Main PLLQ selection as MCO1 source */
#define LL_RCC_MCO1SOURCE_PLLQCLK (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2|RCC_CFGR_MCOSEL_3) /*!< Main PLLP selection as MCO1 source */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO1_DIV MCO1 prescaler
* @{
*/
#define LL_RCC_MCO1_DIV_1 0x00000000U /*!< MCO not divided */
#define LL_RCC_MCO1_DIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO divided by 2 */
#define LL_RCC_MCO1_DIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO divided by 4 */
#define LL_RCC_MCO1_DIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 8 */
#define LL_RCC_MCO1_DIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO divided by 16 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency
* @{
*/
#define LL_RCC_PERIPH_FREQUENCY_NO 0x00000000U /*!< No clock enabled for the peripheral */
#define LL_RCC_PERIPH_FREQUENCY_NA 0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/** @defgroup RCC_LL_EC_USART1_CLKSOURCE USARTx CLKSOURCE
* @{
*/
#define LL_RCC_USART1_CLKSOURCE_PCLK2 (RCC_CCIPR_USART1SEL << 16U) /*!< PCLK2 clock used as USART1 clock source */
#define LL_RCC_USART1_CLKSOURCE_SYSCLK ((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL_0) /*!< SYSCLK clock used as USART1 clock source */
#define LL_RCC_USART1_CLKSOURCE_HSI ((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL_1) /*!< HSI clock used as USART1 clock source */
#define LL_RCC_USART1_CLKSOURCE_LSE ((RCC_CCIPR_USART1SEL << 16U) | RCC_CCIPR_USART1SEL) /*!< LSE clock used as USART1 clock source */
#define LL_RCC_USART2_CLKSOURCE_PCLK1 (RCC_CCIPR_USART2SEL << 16U) /*!< PCLK1 clock used as USART2 clock source */
#define LL_RCC_USART2_CLKSOURCE_SYSCLK ((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL_0) /*!< SYSCLK clock used as USART2 clock source */
#define LL_RCC_USART2_CLKSOURCE_HSI ((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL_1) /*!< HSI clock used as USART2 clock source */
#define LL_RCC_USART2_CLKSOURCE_LSE ((RCC_CCIPR_USART2SEL << 16U) | RCC_CCIPR_USART2SEL) /*!< LSE clock used as USART2 clock source */
/**
* @}
*/
/** @defgroup RCC_LL_EC_I2S2_CLKSOURCE Peripheral I2S clock source selection
* @{
*/
#define LL_RCC_I2S2_CLKSOURCE_PLL RCC_CCIPR_I2S2SEL_0 /*!< PLL clock used as I2S2 clock source */
#define LL_RCC_I2S2_CLKSOURCE_HSI RCC_CCIPR_I2S2SEL_1 /*!< HSI clock used as I2S2 clock source */
#define LL_RCC_I2S2_CLKSOURCE_PIN RCC_CCIPR_I2S2SEL /*!< External clock used as I2S2 clock source */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPUART1_CLKSOURCE LPUART1 CLKSOURCE
* @{
*/
#define LL_RCC_LPUART1_CLKSOURCE_PCLK1 0x00000000U /*!< PCLK1 selected as LPUART1 clock */
#define LL_RCC_LPUART1_CLKSOURCE_SYSCLK RCC_CCIPR_LPUART1SEL_0 /*!< SYCLK selected as LPUART1 clock */
#define LL_RCC_LPUART1_CLKSOURCE_HSI RCC_CCIPR_LPUART1SEL_1 /*!< HSI selected as LPUART1 clock */
#define LL_RCC_LPUART1_CLKSOURCE_LSE RCC_CCIPR_LPUART1SEL /*!< LSE selected as LPUART1 clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_I2Cx_CLKSOURCE I2Cx CLKSOURCE
* @{
*/
#define LL_RCC_I2C1_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_I2C1SEL << 4) | (0x00000000U >> 4)) /*!< PCLK1 selected as I2C1 clock */
#define LL_RCC_I2C1_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_I2C1SEL << 4) | (RCC_CCIPR_I2C1SEL_0 >> 4)) /*!< SYSCLK selected as I2C1 clock */
#define LL_RCC_I2C1_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_I2C1SEL << 4) | (RCC_CCIPR_I2C1SEL_1 >> 4)) /*!< HSI selected as I2C1 clock */
#define LL_RCC_I2C2_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_I2C2SEL << 4) | (0x00000000U >> 4)) /*!< PCLK1 selected as I2C2 clock */
#define LL_RCC_I2C2_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_I2C2SEL << 4) | (RCC_CCIPR_I2C2SEL_0 >> 4)) /*!< SYSCLK selected as I2C2 clock */
#define LL_RCC_I2C2_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_I2C2SEL << 4) | (RCC_CCIPR_I2C2SEL_1 >> 4)) /*!< HSI selected as I2C2 clock */
#define LL_RCC_I2C3_CLKSOURCE_PCLK1 (uint32_t)((RCC_CCIPR_I2C3SEL << 4) | (0x00000000U >> 4)) /*!< PCLK1 selected as I2C3 clock */
#define LL_RCC_I2C3_CLKSOURCE_SYSCLK (uint32_t)((RCC_CCIPR_I2C3SEL << 4) | (RCC_CCIPR_I2C3SEL_0 >> 4)) /*!< SYSCLK selected as I2C3 clock */
#define LL_RCC_I2C3_CLKSOURCE_HSI (uint32_t)((RCC_CCIPR_I2C3SEL << 4) | (RCC_CCIPR_I2C3SEL_1 >> 4)) /*!< HSI selected as I2C3 clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPTIMx_CLKSOURCE LPTIMx CLKSOURCE
* @{
*/
#define LL_RCC_LPTIM1_CLKSOURCE_PCLK1 (uint32_t)(RCC_CCIPR_LPTIM1SEL | (0x00000000U >> 16)) /*!< PCLK1 selected as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_LSI (uint32_t)(RCC_CCIPR_LPTIM1SEL | (RCC_CCIPR_LPTIM1SEL_0 >> 16)) /*!< LSI selected as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_HSI (uint32_t)(RCC_CCIPR_LPTIM1SEL | (RCC_CCIPR_LPTIM1SEL_1 >> 16)) /*!< HSI selected as LPTIM1 clock */
#define LL_RCC_LPTIM1_CLKSOURCE_LSE (uint32_t)(RCC_CCIPR_LPTIM1SEL | (RCC_CCIPR_LPTIM1SEL >> 16)) /*!< LSE selected as LPTIM1 clock */
#define LL_RCC_LPTIM2_CLKSOURCE_PCLK1 (uint32_t)(RCC_CCIPR_LPTIM2SEL | (0x00000000U >> 16)) /*!< PCLK1 selected as LPTIM2 clock */
#define LL_RCC_LPTIM2_CLKSOURCE_LSI (uint32_t)(RCC_CCIPR_LPTIM2SEL | (RCC_CCIPR_LPTIM2SEL_0 >> 16)) /*!< LSI selected as LPTIM2 clock */
#define LL_RCC_LPTIM2_CLKSOURCE_HSI (uint32_t)(RCC_CCIPR_LPTIM2SEL | (RCC_CCIPR_LPTIM2SEL_1 >> 16)) /*!< HSI selected as LPTIM2 clock */
#define LL_RCC_LPTIM2_CLKSOURCE_LSE (uint32_t)(RCC_CCIPR_LPTIM2SEL | (RCC_CCIPR_LPTIM2SEL >> 16)) /*!< LSE selected as LPTIM2 clock */
#define LL_RCC_LPTIM3_CLKSOURCE_PCLK1 (uint32_t)(RCC_CCIPR_LPTIM3SEL | (0x00000000U >> 16)) /*!< PCLK1 selected as LPTIM3 clock */
#define LL_RCC_LPTIM3_CLKSOURCE_LSI (uint32_t)(RCC_CCIPR_LPTIM3SEL | (RCC_CCIPR_LPTIM3SEL_0 >> 16)) /*!< LSI selected as LPTIM3 clock */
#define LL_RCC_LPTIM3_CLKSOURCE_HSI (uint32_t)(RCC_CCIPR_LPTIM3SEL | (RCC_CCIPR_LPTIM3SEL_1 >> 16)) /*!< HSI selected as LPTIM3 clock */
#define LL_RCC_LPTIM3_CLKSOURCE_LSE (uint32_t)(RCC_CCIPR_LPTIM3SEL | (RCC_CCIPR_LPTIM3SEL >> 16)) /*!< LSE selected as LPTIM3 clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_ADC_CLKSRC ADC CLKSRC
* @{
*/
#define LL_RCC_ADC_CLKSOURCE_NONE 0x00000000U /*!< no Clock used as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_HSI RCC_CCIPR_ADCSEL_0 /*!< HSI selected as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_PLL RCC_CCIPR_ADCSEL_1 /*!< PLL selected as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_SYSCLK RCC_CCIPR_ADCSEL /*!< SYSCLK selected as ADC clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_RNG_CLKSRC RNG CLKSRC
* @{
*/
#define LL_RCC_RNG_CLKSOURCE_PLL 0x00000000U /*!< PLL selected as RNG Clock */
#define LL_RCC_RNG_CLKSOURCE_LSI RCC_CCIPR_RNGSEL_0 /*!< LSI selected as RNG clock */
#define LL_RCC_RNG_CLKSOURCE_LSE RCC_CCIPR_RNGSEL_1 /*!< LSE selected as RNG clock */
#define LL_RCC_RNG_CLKSOURCE_MSI (RCC_CCIPR_RNGSEL_1 | RCC_CCIPR_RNGSEL_0) /*!< MSI selected as RNG clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_USARTx USARTx
* @{
*/
#define LL_RCC_USART1_CLKSOURCE RCC_CCIPR_USART1SEL /*!< USART1 clock source selection bits */
#define LL_RCC_USART2_CLKSOURCE RCC_CCIPR_USART2SEL /*!< USART2 clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_I2S2 Peripheral I2S get clock source
* @{
*/
#define LL_RCC_I2S2_CLKSOURCE RCC_CCIPR_I2S2SEL /*!< I2S2 Clock source selection */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPUART1 LPUART1
* @{
*/
#define LL_RCC_LPUART1_CLKSOURCE RCC_CCIPR_LPUART1SEL /*!< LPUART1 clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_I2Cx I2Cx
* @{
*/
#define LL_RCC_I2C1_CLKSOURCE RCC_CCIPR_I2C1SEL /*!< I2C1 clock source selection bits */
#define LL_RCC_I2C2_CLKSOURCE RCC_CCIPR_I2C2SEL /*!< I2C2 clock source selection bits */
#define LL_RCC_I2C3_CLKSOURCE RCC_CCIPR_I2C3SEL /*!< I2C3 clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LPTIMx LPTIMx
* @{
*/
#define LL_RCC_LPTIM1_CLKSOURCE RCC_CCIPR_LPTIM1SEL /*!< LPTIM1 clock source selection bits */
#define LL_RCC_LPTIM2_CLKSOURCE RCC_CCIPR_LPTIM2SEL /*!< LPTIM2 clock source selection bits */
#define LL_RCC_LPTIM3_CLKSOURCE RCC_CCIPR_LPTIM3SEL /*!< LPTIM2 clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_RNG RNG
* @{
*/
#define LL_RCC_RNG_CLKSOURCE RCC_CCIPR_RNGSEL /*!< RNG clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_ADC ADC
* @{
*/
#define LL_RCC_ADC_CLKSOURCE RCC_CCIPR_ADCSEL /*!< ADC clock source selection bits */
/**
* @}
*/
/** @defgroup RCC_LL_EC_RTC_CLKSOURCE RTC clock source selection
* @{
*/
#define LL_RCC_RTC_CLKSOURCE_NONE 0x00000000U /*!< No clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_HSE_DIV32 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 32 used as RTC clock */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLSOURCE PLL entry clock source
* @{
*/
#define LL_RCC_PLLSOURCE_NONE 0x00000000U /*!< No clock */
#define LL_RCC_PLLSOURCE_MSI RCC_PLLCFGR_PLLSRC_0 /*!< MSI clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSI RCC_PLLCFGR_PLLSRC_1 /*!< HSI clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE (RCC_PLLCFGR_PLLSRC_1 | RCC_PLLCFGR_PLLSRC_0) /*!< HSE clock selected as PLL entry clock source */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLM_DIV PLL.division factor
* @{
*/
#define LL_RCC_PLLM_DIV_1 0x00000000U /*!< PLL division factor by 1 */
#define LL_RCC_PLLM_DIV_2 (RCC_PLLCFGR_PLLM_0) /*!< PLL division factor by 2 */
#define LL_RCC_PLLM_DIV_3 (RCC_PLLCFGR_PLLM_1) /*!< PLL division factor by 3 */
#define LL_RCC_PLLM_DIV_4 ((RCC_PLLCFGR_PLLM_1 | RCC_PLLCFGR_PLLM_0)) /*!< PLL division factor by 4 */
#define LL_RCC_PLLM_DIV_5 (RCC_PLLCFGR_PLLM_2) /*!< PLL division factor by 5 */
#define LL_RCC_PLLM_DIV_6 ((RCC_PLLCFGR_PLLM_2 | RCC_PLLCFGR_PLLM_0)) /*!< PLL division factor by 6 */
#define LL_RCC_PLLM_DIV_7 ((RCC_PLLCFGR_PLLM_2 | RCC_PLLCFGR_PLLM_1)) /*!< PLL division factor by 7 */
#define LL_RCC_PLLM_DIV_8 (RCC_PLLCFGR_PLLM) /*!< PLL division factor by 8 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLR_DIV PLL division factor (PLLR)
* @{
*/
#define LL_RCC_PLLR_DIV_2 (RCC_PLLCFGR_PLLR_0) /*!< Main PLL division factor for PLLCLK (system clock) by 2 */
#define LL_RCC_PLLR_DIV_3 (RCC_PLLCFGR_PLLR_1) /*!< Main PLL division factor for PLLCLK (system clock) by 3 */
#define LL_RCC_PLLR_DIV_4 (RCC_PLLCFGR_PLLR_1|RCC_PLLCFGR_PLLR_0) /*!< Main PLL division factor for PLLCLK (system clock) by 4 */
#define LL_RCC_PLLR_DIV_5 (RCC_PLLCFGR_PLLR_2) /*!< Main PLL division factor for PLLCLK (system clock) by 5 */
#define LL_RCC_PLLR_DIV_6 (RCC_PLLCFGR_PLLR_2|RCC_PLLCFGR_PLLR_0) /*!< Main PLL division factor for PLLCLK (system clock) by 6 */
#define LL_RCC_PLLR_DIV_7 (RCC_PLLCFGR_PLLR_2|RCC_PLLCFGR_PLLR_1) /*!< Main PLL division factor for PLLCLK (system clock) by 7 */
#define LL_RCC_PLLR_DIV_8 (RCC_PLLCFGR_PLLR) /*!< Main PLL division factor for PLLCLK (system clock) by 8 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLP_DIV PLL division factor (PLLP)
* @{
*/
#define LL_RCC_PLLP_DIV_2 (RCC_PLLCFGR_PLLP_0) /*!< Main PLL division factor for PLLP output by 2 */
#define LL_RCC_PLLP_DIV_3 (RCC_PLLCFGR_PLLP_1) /*!< Main PLL division factor for PLLP output by 3 */
#define LL_RCC_PLLP_DIV_4 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1) /*!< Main PLL division factor for PLLP output by 4 */
#define LL_RCC_PLLP_DIV_5 (RCC_PLLCFGR_PLLP_2) /*!< Main PLL division factor for PLLP output by 5 */
#define LL_RCC_PLLP_DIV_6 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_2) /*!< Main PLL division factor for PLLP output by 6 */
#define LL_RCC_PLLP_DIV_7 (RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2) /*!< Main PLL division factor for PLLP output by 7 */
#define LL_RCC_PLLP_DIV_8 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2) /*!< Main PLL division factor for PLLP output by 8 */
#define LL_RCC_PLLP_DIV_9 (RCC_PLLCFGR_PLLP_3) /*!< Main PLL division factor for PLLP output by 9 */
#define LL_RCC_PLLP_DIV_10 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_3) /*!< Main PLL division factor for PLLP output by 10 */
#define LL_RCC_PLLP_DIV_11 (RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_3) /*!< Main PLL division factor for PLLP output by 11 */
#define LL_RCC_PLLP_DIV_12 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_3) /*!< Main PLL division factor for PLLP output by 12 */
#define LL_RCC_PLLP_DIV_13 (RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3) /*!< Main PLL division factor for PLLP output by 13 */
#define LL_RCC_PLLP_DIV_14 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3) /*!< Main PLL division factor for PLLP output by 14 */
#define LL_RCC_PLLP_DIV_15 (RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3) /*!< Main PLL division factor for PLLP output by 15 */
#define LL_RCC_PLLP_DIV_16 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3)/*!< Main PLL division factor for PLLP output by 16 */
#define LL_RCC_PLLP_DIV_17 (RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 17 */
#define LL_RCC_PLLP_DIV_18 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 18 */
#define LL_RCC_PLLP_DIV_19 (RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 19 */
#define LL_RCC_PLLP_DIV_20 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 20 */
#define LL_RCC_PLLP_DIV_21 (RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 21 */
#define LL_RCC_PLLP_DIV_22 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 22 */
#define LL_RCC_PLLP_DIV_23 (RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 23 */
#define LL_RCC_PLLP_DIV_24 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_4)/*!< Main PLL division factor for PLLP output by 24 */
#define LL_RCC_PLLP_DIV_25 (RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 25 */
#define LL_RCC_PLLP_DIV_26 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 26 */
#define LL_RCC_PLLP_DIV_27 (RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 27*/
#define LL_RCC_PLLP_DIV_28 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4)/*!< Main PLL division factor for PLLP output by 28 */
#define LL_RCC_PLLP_DIV_29 (RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4) /*!< Main PLL division factor for PLLP output by 29 */
#define LL_RCC_PLLP_DIV_30 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4)/*!< Main PLL division factor for PLLP output by 30 */
#define LL_RCC_PLLP_DIV_31 (RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4)/*!< Main PLL division factor for PLLP output by 31 */
#define LL_RCC_PLLP_DIV_32 (RCC_PLLCFGR_PLLP_0|RCC_PLLCFGR_PLLP_1|RCC_PLLCFGR_PLLP_2|RCC_PLLCFGR_PLLP_3|RCC_PLLCFGR_PLLP_4)/*!< Main PLL division factor for PLLP output by 32 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLQ_DIV PLL division factor (PLLQ)
* @{
*/
#define LL_RCC_PLLQ_DIV_2 (RCC_PLLCFGR_PLLQ_0) /*!< Main PLL division factor for PLLQ output by 2 */
#define LL_RCC_PLLQ_DIV_3 (RCC_PLLCFGR_PLLQ_1) /*!< Main PLL division factor for PLLQ output by 3 */
#define LL_RCC_PLLQ_DIV_4 (RCC_PLLCFGR_PLLQ_1|RCC_PLLCFGR_PLLQ_0) /*!< Main PLL division factor for PLLQ output by 4 */
#define LL_RCC_PLLQ_DIV_5 (RCC_PLLCFGR_PLLQ_2) /*!< Main PLL division factor for PLLQ output by 5 */
#define LL_RCC_PLLQ_DIV_6 (RCC_PLLCFGR_PLLQ_2|RCC_PLLCFGR_PLLQ_0) /*!< Main PLL division factor for PLLQ output by 6 */
#define LL_RCC_PLLQ_DIV_7 (RCC_PLLCFGR_PLLQ_2|RCC_PLLCFGR_PLLQ_1) /*!< Main PLL division factor for PLLQ output by 7 */
#define LL_RCC_PLLQ_DIV_8 (RCC_PLLCFGR_PLLQ) /*!< Main PLL division factor for PLLQ output by 8 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MSIRANGESEL MSI clock range selection
* @{
*/
#define LL_RCC_MSIRANGESEL_STANDBY 0U /*!< MSI Range is provided by MSISRANGE */
#define LL_RCC_MSIRANGESEL_RUN 1U /*!< MSI Range is provided by MSIRANGE */
/**
* @}
*/
/** @defgroup RCC_LL_EC_LSIPRE LSI division factor
* @{
*/
#define LL_RCC_LSI_PREDIV_1 0x00000000U /*!< LSI division factor by 1 */
#define LL_RCC_LSI_PREDIV_128 RCC_CSR_LSIPRE /*!< LSI division factor by 128 */
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in RCC register
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG(RCC->__REG__, (__VALUE__))
/**
* @brief Read a value in RCC register
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__)
/**
* @}
*/
/** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies
* @{
*/
/**
* @brief Helper macro to calculate the PLLRCLK frequency on system domain
* @note ex: @ref __LL_RCC_CALC_PLLCLK_FREQ (HSE_VALUE,@ref LL_RCC_PLL_GetDivider (),
* @ref LL_RCC_PLL_GetN (), @ref LL_RCC_PLL_GetR ());
* @param __INPUTFREQ__ PLL Input frequency (based on MSI/HSE/HSI)
* @param __PLLM__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param __PLLN__ Between Min_Data = 6 and Max_Data = 127
* @param __PLLR__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLR_DIV_2
* @arg @ref LL_RCC_PLLR_DIV_3
* @arg @ref LL_RCC_PLLR_DIV_4
* @arg @ref LL_RCC_PLLR_DIV_5
* @arg @ref LL_RCC_PLLR_DIV_6
* @arg @ref LL_RCC_PLLR_DIV_7
* @arg @ref LL_RCC_PLLR_DIV_8
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLM__, __PLLN__, __PLLR__) \
((__INPUTFREQ__) * (__PLLN__) / ((((__PLLM__)>> RCC_PLLCFGR_PLLM_Pos) + 1U)) / \
(((__PLLR__) >> RCC_PLLCFGR_PLLR_Pos) + 1U))
/**
* @brief Helper macro to calculate the PLLPCLK frequency used on ADC domain
* @note ex: @ref __LL_RCC_CALC_PLLCLK_ADC_FREQ (HSE_VALUE,@ref LL_RCC_PLL_GetDivider (),
* @ref LL_RCC_PLL_GetN (), @ref LL_RCC_PLL_GetP ());
* @param __INPUTFREQ__ PLL Input frequency (based on MSI/HSE/HSI)
* @param __PLLM__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param __PLLN__ Between Min_Data = 6 and Max_Data = 127
* @param __PLLP__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLP_DIV_2
* @arg @ref LL_RCC_PLLP_DIV_3
* @arg @ref LL_RCC_PLLP_DIV_4
* @arg @ref LL_RCC_PLLP_DIV_5
* @arg @ref LL_RCC_PLLP_DIV_6
* @arg @ref LL_RCC_PLLP_DIV_7
* @arg @ref LL_RCC_PLLP_DIV_8
* @arg @ref LL_RCC_PLLP_DIV_9
* @arg @ref LL_RCC_PLLP_DIV_10
* @arg @ref LL_RCC_PLLP_DIV_11
* @arg @ref LL_RCC_PLLP_DIV_12
* @arg @ref LL_RCC_PLLP_DIV_13
* @arg @ref LL_RCC_PLLP_DIV_14
* @arg @ref LL_RCC_PLLP_DIV_15
* @arg @ref LL_RCC_PLLP_DIV_16
* @arg @ref LL_RCC_PLLP_DIV_17
* @arg @ref LL_RCC_PLLP_DIV_18
* @arg @ref LL_RCC_PLLP_DIV_19
* @arg @ref LL_RCC_PLLP_DIV_20
* @arg @ref LL_RCC_PLLP_DIV_21
* @arg @ref LL_RCC_PLLP_DIV_22
* @arg @ref LL_RCC_PLLP_DIV_23
* @arg @ref LL_RCC_PLLP_DIV_24
* @arg @ref LL_RCC_PLLP_DIV_25
* @arg @ref LL_RCC_PLLP_DIV_26
* @arg @ref LL_RCC_PLLP_DIV_27
* @arg @ref LL_RCC_PLLP_DIV_28
* @arg @ref LL_RCC_PLLP_DIV_29
* @arg @ref LL_RCC_PLLP_DIV_30
* @arg @ref LL_RCC_PLLP_DIV_31
* @arg @ref LL_RCC_PLLP_DIV_32
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_ADC_FREQ(__INPUTFREQ__, __PLLM__, __PLLN__, __PLLP__) \
((__INPUTFREQ__) * (__PLLN__) / ((((__PLLM__)>> RCC_PLLCFGR_PLLM_Pos) + 1U)) / \
(((__PLLP__) >> RCC_PLLCFGR_PLLP_Pos) + 1U))
/**
* @brief Helper macro to calculate the PLLQCLK frequency used on RNG domain
* @note ex: @ref __LL_RCC_CALC_PLLCLK_RNG_FREQ (HSE_VALUE,@ref LL_RCC_PLL_GetDivider (),
* @ref LL_RCC_PLL_GetN (), @ref LL_RCC_PLL_GetQ ());
* @param __INPUTFREQ__ PLL Input frequency (based on MSI/HSE/HSI)
* @param __PLLM__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param __PLLN__ Between Min_Data = 6 and Max_Data = 127
* @param __PLLQ__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLQ_DIV_2
* @arg @ref LL_RCC_PLLQ_DIV_3
* @arg @ref LL_RCC_PLLQ_DIV_4
* @arg @ref LL_RCC_PLLQ_DIV_5
* @arg @ref LL_RCC_PLLQ_DIV_6
* @arg @ref LL_RCC_PLLQ_DIV_7
* @arg @ref LL_RCC_PLLQ_DIV_8
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_RNG_FREQ(__INPUTFREQ__, __PLLM__, __PLLN__, __PLLQ__) \
((__INPUTFREQ__) * (__PLLN__) / ((((__PLLM__)>> RCC_PLLCFGR_PLLM_Pos) + 1U)) / \
(((__PLLQ__) >> RCC_PLLCFGR_PLLQ_Pos) + 1U))
/**
* @brief Helper macro to calculate the PLLQCLK frequency used on I2S domain
* @note ex: @ref __LL_RCC_CALC_PLLCLK_I2S2_FREQ (HSE_VALUE,@ref LL_RCC_PLL_GetDivider (),
* @ref LL_RCC_PLL_GetN (), @ref LL_RCC_PLL_GetQ ());
* @param __INPUTFREQ__ PLL Input frequency (based on MSI/HSE/HSI)
* @param __PLLM__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param __PLLN__ Between Min_Data = 6 and Max_Data = 127
* @param __PLLQ__ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLQ_DIV_2
* @arg @ref LL_RCC_PLLQ_DIV_3
* @arg @ref LL_RCC_PLLQ_DIV_4
* @arg @ref LL_RCC_PLLQ_DIV_5
* @arg @ref LL_RCC_PLLQ_DIV_6
* @arg @ref LL_RCC_PLLQ_DIV_7
* @arg @ref LL_RCC_PLLQ_DIV_8
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_I2S2_FREQ __LL_RCC_CALC_PLLCLK_RNG_FREQ
/**
* @brief Helper macro to calculate the HCLK1 frequency
* @param __SYSCLKFREQ__ SYSCLK frequency (based on MSI/HSE/HSI/PLLCLK)
* @param __CPU1PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval HCLK1 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HCLK1_FREQ(__SYSCLKFREQ__,__CPU1PRESCALER__) \
((__SYSCLKFREQ__) / AHBPrescTable[((__CPU1PRESCALER__) & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos])
#if defined(DUAL_CORE)
/**
* @brief Helper macro to calculate the HCLK2 frequency
* @param __SYSCLKFREQ__ SYSCLK frequency (based on MSI/HSE/HSI/PLLCLK)
* @param __CPU2PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval HCLK2 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HCLK2_FREQ(__SYSCLKFREQ__, __CPU2PRESCALER__) \
((__SYSCLKFREQ__) / AHBPrescTable[((__CPU2PRESCALER__) & RCC_EXTCFGR_C2HPRE) >> RCC_EXTCFGR_C2HPRE_Pos])
#endif /* DUAL_CORE */
/**
* @brief Helper macro to calculate the HCLK3 frequency
* @param __SYSCLKFREQ__ SYSCLK frequency (based on MSI/HSE/HSI/PLLCLK)
* @param __AHB3PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval HCLK3 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HCLK3_FREQ(__SYSCLKFREQ__, __AHB3PRESCALER__) \
((__SYSCLKFREQ__) / AHBPrescTable[(((__AHB3PRESCALER__) >> 4U) & RCC_EXTCFGR_SHDHPRE) >> RCC_EXTCFGR_SHDHPRE_Pos])
/**
* @brief Helper macro to calculate the PCLK1 frequency (ABP1)
* @param __HCLKFREQ__ HCLK frequency
* @param __APB1PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval PCLK1 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) \
((__HCLKFREQ__) >> APBPrescTable[(__APB1PRESCALER__) >> RCC_CFGR_PPRE1_Pos])
/**
* @brief Helper macro to calculate the PCLK2 frequency (ABP2)
* @param __HCLKFREQ__ HCLK frequency
* @param __APB2PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval PCLK2 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK2_FREQ(__HCLKFREQ__, __APB2PRESCALER__) \
((__HCLKFREQ__) >> APBPrescTable[(__APB2PRESCALER__) >> RCC_CFGR_PPRE2_Pos])
/**
* @brief Helper macro to calculate the MSI frequency (in Hz)
* @note __MSISEL__ can be retrieved thanks to function LL_RCC_MSI_IsEnabledRangeSelect()
* @note if __MSISEL__ is equal to LL_RCC_MSIRANGESEL_STANDBY,
* __MSIRANGE__can be retrieved by LL_RCC_MSI_GetRangeAfterStandby()
* else by LL_RCC_MSI_GetRange()
* ex: __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
* (LL_RCC_MSI_IsEnabledRangeSelect()?
* LL_RCC_MSI_GetRange():
* LL_RCC_MSI_GetRangeAfterStandby()))
* @param __MSISEL__ This parameter can be one of the following values:
* @arg @ref LL_RCC_MSIRANGESEL_STANDBY
* @arg @ref LL_RCC_MSIRANGESEL_RUN
* @param __MSIRANGE__ This parameter can be one of the following values:
* @arg @ref LL_RCC_MSIRANGE_0
* @arg @ref LL_RCC_MSIRANGE_1
* @arg @ref LL_RCC_MSIRANGE_2
* @arg @ref LL_RCC_MSIRANGE_3
* @arg @ref LL_RCC_MSIRANGE_4
* @arg @ref LL_RCC_MSIRANGE_5
* @arg @ref LL_RCC_MSIRANGE_6
* @arg @ref LL_RCC_MSIRANGE_7
* @arg @ref LL_RCC_MSIRANGE_8
* @arg @ref LL_RCC_MSIRANGE_9
* @arg @ref LL_RCC_MSIRANGE_10
* @arg @ref LL_RCC_MSIRANGE_11
* @arg @ref LL_RCC_MSISRANGE_4
* @arg @ref LL_RCC_MSISRANGE_5
* @arg @ref LL_RCC_MSISRANGE_6
* @arg @ref LL_RCC_MSISRANGE_7
* @retval MSI clock frequency (in Hz)
*/
#define __LL_RCC_CALC_MSI_FREQ(__MSISEL__, __MSIRANGE__) \
(((__MSISEL__) == LL_RCC_MSIRANGESEL_STANDBY) ? \
(MSIRangeTable[((__MSIRANGE__) & RCC_CSR_MSISRANGE_Msk) >> RCC_CSR_MSISRANGE_Pos ]) : \
(MSIRangeTable[((__MSIRANGE__) & RCC_CR_MSIRANGE_Msk) >> RCC_CR_MSIRANGE_Pos]))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_LL_EF_HSE HSE
* @{
*/
/**
* @brief Enable HSE VDDTCXO output on package pin PB0-VDDTCXO
* @note PB0 must be configured in analog mode prior enabling VDDTCXO supply
* @rmtoll CR HSEBYPPWR LL_RCC_HSE_EnableTcxo
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableTcxo(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEBYPPWR);
}
/**
* @brief Disable HSE VDDTCXO output on package pin PB0-VDDTCXO
* @rmtoll CR HSEBYPPWR LL_RCC_HSE_DisableTcxo
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_DisableTcxo(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYPPWR);
}
/**
* @brief Get HSE VDDTCXO output on package pin PB0-VDDTCXO
* @rmtoll CR HSEBYPPWR LL_RCC_HSE_IsEnabledTcxo
* @retval None
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_IsEnabledTcxo(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSEBYPPWR) == (RCC_CR_HSEBYPPWR)) ? 1UL : 0UL);
}
/**
* @brief Enable HSE sysclk and pll prescaler division by 2
* @rmtoll CR HSEPRE LL_RCC_HSE_EnableDiv2
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableDiv2(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEPRE);
}
/**
* @brief Disable HSE sysclk and pll prescaler division by 2
* @rmtoll CR HSEPRE LL_RCC_HSE_DisableDiv2
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_DisableDiv2(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEPRE);
}
/**
* @brief Get HSE sysclk and pll prescaler division by 2
* @rmtoll CR HSEPRE LL_RCC_HSE_IsEnabledDiv2
* @retval None
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_IsEnabledDiv2(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSEPRE) == (RCC_CR_HSEPRE)) ? 1UL : 0UL);
}
/**
* @brief Enable the Clock Security System.
* @rmtoll CR CSSON LL_RCC_HSE_EnableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableCSS(void)
{
SET_BIT(RCC->CR, RCC_CR_CSSON);
}
/**
* @brief Enable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Disable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Check if HSE oscillator Ready
* @rmtoll CR HSERDY LL_RCC_HSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSERDY) == (RCC_CR_HSERDY)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_HSI HSI
* @{
*/
/**
* @brief Enable HSI even in stop mode
* @note HSI oscillator is forced ON even in Stop mode
* @rmtoll CR HSIKERON LL_RCC_HSI_EnableInStopMode
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_EnableInStopMode(void)
{
SET_BIT(RCC->CR, RCC_CR_HSIKERON);
}
/**
* @brief Disable HSI in stop mode
* @rmtoll CR HSIKERON LL_RCC_HSI_DisableInStopMode
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_DisableInStopMode(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSIKERON);
}
/**
* @brief Check if HSI in stop mode is ready
* @rmtoll CR HSIKERON LL_RCC_HSI_IsEnabledInStopMode
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_IsEnabledInStopMode(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSIKERON) == (RCC_CR_HSIKERON)) ? 1UL : 0UL);
}
/**
* @brief Enable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Disable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Check if HSI clock is ready
* @rmtoll CR HSIRDY LL_RCC_HSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY)) ? 1UL : 0UL);
}
/**
* @brief Enable HSI Automatic from stop mode
* @rmtoll CR HSIASFS LL_RCC_HSI_EnableAutoFromStop
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_EnableAutoFromStop(void)
{
SET_BIT(RCC->CR, RCC_CR_HSIASFS);
}
/**
* @brief Disable HSI Automatic from stop mode
* @rmtoll CR HSIASFS LL_RCC_HSI_DisableAutoFromStop
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_DisableAutoFromStop(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSIASFS);
}
/**
* @brief Get HSI Calibration value
* @note When HSITRIM is written, HSICAL is updated with the sum of
* HSITRIM and the factory trim value
* @rmtoll ICSCR HSICAL LL_RCC_HSI_GetCalibration
* @retval Between Min_Data = 0x00 and Max_Data = 0xFF
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibration(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSICAL) >> RCC_ICSCR_HSICAL_Pos);
}
/**
* @brief Set HSI Calibration trimming
* @note user-programmable trimming value that is added to the HSICAL
* @note Default value is 64, which, when added to the HSICAL value,
* should trim the HSI to 16 MHz +/- 1 %
* @rmtoll ICSCR HSITRIM LL_RCC_HSI_SetCalibTrimming
* @param Value Between Min_Data = 0 and Max_Data = 127
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, Value << RCC_ICSCR_HSITRIM_Pos);
}
/**
* @brief Get HSI Calibration trimming
* @rmtoll ICSCR HSITRIM LL_RCC_HSI_GetCalibTrimming
* @retval Between Min_Data = 0 and Max_Data = 127
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_LSE LSE
* @{
*/
/**
* @brief Enable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Enable(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Disable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Disable(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Check if Low Speed External (LSE) crystal has been enabled or not
* @rmtoll BDCR LSEON LL_RCC_LSE_IsEnabled
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsEnabled(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSEON) == (RCC_BDCR_LSEON)) ? 1UL : 0UL);
}
/**
* @brief Enable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableBypass(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Disable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableBypass(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Set LSE oscillator drive capability
* @note The oscillator is in Xtal mode when it is not in bypass mode.
* @rmtoll BDCR LSEDRV LL_RCC_LSE_SetDriveCapability
* @param LSEDrive This parameter can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH
* @arg @ref LL_RCC_LSEDRIVE_HIGH
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_SetDriveCapability(uint32_t LSEDrive)
{
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSEDRV, LSEDrive);
}
/**
* @brief Get LSE oscillator drive capability
* @rmtoll BDCR LSEDRV LL_RCC_LSE_GetDriveCapability
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH
* @arg @ref LL_RCC_LSEDRIVE_HIGH
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_GetDriveCapability(void)
{
return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_LSEDRV));
}
/**
* @brief Enable Clock security system on LSE.
* @rmtoll BDCR LSECSSON LL_RCC_LSE_EnableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableCSS(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON);
}
/**
* @brief Disable Clock security system on LSE.
* @note Clock security system can be disabled only after a LSE
* failure detection. In that case it MUST be disabled by software.
* @rmtoll BDCR LSECSSON LL_RCC_LSE_DisableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableCSS(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON);
}
/**
* @brief Enable LSE oscillator propagation for system clock
* @rmtoll BDCR LSESYSEN LL_RCC_LSE_EnablePropagation
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnablePropagation(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN);
}
/**
* @brief Disable LSE oscillator propagation for system clock
* @rmtoll BDCR LSESYSEN LL_RCC_LSE_DisablePropagation
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisablePropagation(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSESYSEN);
}
/**
* @brief Check if LSE oscillator propagation for system clock Ready
* @rmtoll BDCR LSEYSRDY LL_RCC_LSE_IsPropagationReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsPropagationReady(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSESYSRDY) == (RCC_BDCR_LSESYSRDY)) ? 1UL : 0UL);
}
/**
* @brief Check if LSE oscillator Ready
* @rmtoll BDCR LSERDY LL_RCC_LSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == (RCC_BDCR_LSERDY)) ? 1UL : 0UL);
}
/**
* @brief Check if CSS on LSE failure Detection
* @rmtoll BDCR LSECSSD LL_RCC_LSE_IsCSSDetected
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsCSSDetected(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSECSSD) == (RCC_BDCR_LSECSSD)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_LSI LSI
* @{
*/
/**
* @brief Set LSI division factor
* @rmtoll CSR LSIPRE LL_RCC_LSI_SetPrediv
* @param LSI_PREDIV This parameter can be one of the following values:
* @arg @ref LL_RCC_LSI_PREDIV_1
* @arg @ref LL_RCC_LSI_PREDIV_128
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_SetPrediv(uint32_t LSI_PREDIV)
{
MODIFY_REG(RCC->CSR, RCC_CSR_LSIPRE, LSI_PREDIV);
}
/**
* @brief Get LSI division factor
* @rmtoll CSR LSIPRE LL_RCC_LSI_GetPrediv
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSI_PREDIV_1
* @arg @ref LL_RCC_LSI_PREDIV_128
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_GetPrediv(void)
{
return (READ_BIT(RCC->CSR, RCC_CSR_LSIPRE));
}
/**
* @brief Enable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Enable(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Disable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Disable(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Check if LSI is Ready
* @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_MSI MSI
* @{
*/
/**
* @brief Enable MSI oscillator
* @rmtoll CR MSION LL_RCC_MSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_MSION);
}
/**
* @brief Disable MSI oscillator
* @rmtoll CR MSION LL_RCC_MSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_MSION);
}
/**
* @brief Check if MSI oscillator Ready
* @rmtoll CR MSIRDY LL_RCC_MSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_MSIRDY) == (RCC_CR_MSIRDY)) ? 1UL : 0UL);
}
/**
* @brief Enable MSI PLL-mode (Hardware auto calibration with LSE)
* @note MSIPLLEN must be enabled after LSE is enabled (LSEON enabled)
* and ready (LSERDY set by hardware)
* @note hardware protection to avoid enabling MSIPLLEN if LSE is not
* ready
* @rmtoll CR MSIPLLEN LL_RCC_MSI_EnablePLLMode
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_EnablePLLMode(void)
{
SET_BIT(RCC->CR, RCC_CR_MSIPLLEN);
}
/**
* @brief Disable MSI-PLL mode
* @note cleared by hardware when LSE is disabled (LSEON = 0) or when
* the Clock Security System on LSE detects a LSE failure
* @rmtoll CR MSIPLLEN LL_RCC_MSI_DisablePLLMode
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_DisablePLLMode(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_MSIPLLEN);
}
/**
* @brief Enable MSI clock range selection with MSIRANGE register
* @note Write 0 has no effect. After a standby or a reset
* MSIRGSEL is at 0 and the MSI range value is provided by
* MSISRANGE
* @rmtoll CR MSIRGSEL LL_RCC_MSI_EnableRangeSelection
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_EnableRangeSelection(void)
{
SET_BIT(RCC->CR, RCC_CR_MSIRGSEL);
}
/**
* @brief Check if MSI clock range is selected with MSIRANGE register
* @rmtoll CR MSIRGSEL LL_RCC_MSI_IsEnabledRangeSelect
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_IsEnabledRangeSelect(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == (RCC_CR_MSIRGSEL)) ? 1UL : 0UL);
}
/**
* @brief Configure the Internal Multi Speed oscillator (MSI) clock range in run mode.
* @rmtoll CR MSIRANGE LL_RCC_MSI_SetRange
* @param Range This parameter can be one of the following values:
* @arg @ref LL_RCC_MSIRANGE_0
* @arg @ref LL_RCC_MSIRANGE_1
* @arg @ref LL_RCC_MSIRANGE_2
* @arg @ref LL_RCC_MSIRANGE_3
* @arg @ref LL_RCC_MSIRANGE_4
* @arg @ref LL_RCC_MSIRANGE_5
* @arg @ref LL_RCC_MSIRANGE_6
* @arg @ref LL_RCC_MSIRANGE_7
* @arg @ref LL_RCC_MSIRANGE_8
* @arg @ref LL_RCC_MSIRANGE_9
* @arg @ref LL_RCC_MSIRANGE_10
* @arg @ref LL_RCC_MSIRANGE_11
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_SetRange(uint32_t Range)
{
MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, Range);
}
/**
* @brief Get the Internal Multi Speed oscillator (MSI) clock range in run mode.
* @rmtoll CR MSIRANGE LL_RCC_MSI_GetRange
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_MSIRANGE_0
* @arg @ref LL_RCC_MSIRANGE_1
* @arg @ref LL_RCC_MSIRANGE_2
* @arg @ref LL_RCC_MSIRANGE_3
* @arg @ref LL_RCC_MSIRANGE_4
* @arg @ref LL_RCC_MSIRANGE_5
* @arg @ref LL_RCC_MSIRANGE_6
* @arg @ref LL_RCC_MSIRANGE_7
* @arg @ref LL_RCC_MSIRANGE_8
* @arg @ref LL_RCC_MSIRANGE_9
* @arg @ref LL_RCC_MSIRANGE_10
* @arg @ref LL_RCC_MSIRANGE_11
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_GetRange(void)
{
return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_MSIRANGE));
}
/**
* @brief Configure MSI range used after standby
* @rmtoll CSR MSISRANGE LL_RCC_MSI_SetRangeAfterStandby
* @param Range This parameter can be one of the following values:
* @arg @ref LL_RCC_MSISRANGE_4
* @arg @ref LL_RCC_MSISRANGE_5
* @arg @ref LL_RCC_MSISRANGE_6
* @arg @ref LL_RCC_MSISRANGE_7
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_SetRangeAfterStandby(uint32_t Range)
{
MODIFY_REG(RCC->CSR, RCC_CSR_MSISRANGE, Range);
}
/**
* @brief Get MSI range used after standby
* @rmtoll CSR MSISRANGE LL_RCC_MSI_GetRangeAfterStandby
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_MSISRANGE_4
* @arg @ref LL_RCC_MSISRANGE_5
* @arg @ref LL_RCC_MSISRANGE_6
* @arg @ref LL_RCC_MSISRANGE_7
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_GetRangeAfterStandby(void)
{
return (uint32_t)(READ_BIT(RCC->CSR, RCC_CSR_MSISRANGE));
}
/**
* @brief Get MSI Calibration value
* @note When MSITRIM is written, MSICAL is updated with the sum of
* MSITRIM and the factory trim value
* @rmtoll ICSCR MSICAL LL_RCC_MSI_GetCalibration
* @retval Between Min_Data = 0 and Max_Data = 255
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_GetCalibration(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSICAL) >> RCC_ICSCR_MSICAL_Pos);
}
/**
* @brief Set MSI Calibration trimming
* @note user-programmable trimming value that is added to the MSICAL
* @rmtoll ICSCR MSITRIM LL_RCC_MSI_SetCalibTrimming
* @param Value Between Min_Data = 0 and Max_Data = 255
* @retval None
*/
__STATIC_INLINE void LL_RCC_MSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_MSITRIM, Value << RCC_ICSCR_MSITRIM_Pos);
}
/**
* @brief Get MSI Calibration trimming
* @rmtoll ICSCR MSITRIM LL_RCC_MSI_GetCalibTrimming
* @retval Between 0 and 255
*/
__STATIC_INLINE uint32_t LL_RCC_MSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->ICSCR, RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_Pos);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_LSCO LSCO
* @{
*/
/**
* @brief Enable Low speed clock
* @rmtoll BDCR LSCOEN LL_RCC_LSCO_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSCO_Enable(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSCOEN);
}
/**
* @brief Disable Low speed clock
* @rmtoll BDCR LSCOEN LL_RCC_LSCO_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSCO_Disable(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSCOEN);
}
/**
* @brief Configure Low speed clock selection
* @rmtoll BDCR LSCOSEL LL_RCC_LSCO_SetSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSI
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSCO_SetSource(uint32_t Source)
{
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL, Source);
}
/**
* @brief Get Low speed clock selection
* @rmtoll BDCR LSCOSEL LL_RCC_LSCO_GetSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSI
* @arg @ref LL_RCC_LSCO_CLKSOURCE_LSE
*/
__STATIC_INLINE uint32_t LL_RCC_LSCO_GetSource(void)
{
return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_LSCOSEL));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_RF RF
* @{
*/
/**
* @brief Enable radio reset
* @rmtoll CSR RFRST LL_RCC_RF_EnableReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_RF_EnableReset(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RFRST);
}
/**
* @brief Disable radio reset
* @rmtoll CSR RFRST LL_RCC_RF_DisableReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_RF_DisableReset(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_RFRST);
}
/**
* @brief Get radio reset
* @rmtoll CSR RFRST LL_RCC_RF_IsEnabledReset
* @retval None
*/
__STATIC_INLINE uint32_t LL_RCC_RF_IsEnabledReset(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_RFRST) == (RCC_CSR_RFRST)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Radio in reset is set or not.
* @rmtoll CSR RFRSTF LL_RCC_IsRFUnderReset
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsRFUnderReset(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_RFRSTF) == (RCC_CSR_RFRSTF)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_System System
* @{
*/
/**
* @brief Configure the system clock source
* @rmtoll CFGR SW LL_RCC_SetSysClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_MSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_PLL
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source);
}
/**
* @brief Get the system clock source
* @rmtoll CFGR SWS LL_RCC_GetSysClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_MSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_PLL
*/
__STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS));
}
/**
* @brief Set AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler);
}
#if defined(DUAL_CORE)
/**
* @brief Set CPU2 AHB prescaler
* @rmtoll EXTCFGR C2HPRE LL_C2_RCC_SetAHBPrescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval None
*/
__STATIC_INLINE void LL_C2_RCC_SetAHBPrescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->EXTCFGR, RCC_EXTCFGR_C2HPRE, Prescaler);
}
#endif /* DUAL_CORE */
/**
* @brief Set AHB3 prescaler
* @rmtoll EXTCFGR SHDHPRE LL_RCC_SetAHB3Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAHB3Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->EXTCFGR, RCC_EXTCFGR_SHDHPRE, Prescaler >> 4);
}
/**
* @brief Set APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_SetAPB1Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, Prescaler);
}
/**
* @brief Set APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_SetAPB2Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB2Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, Prescaler);
}
/**
* @brief Get AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
*/
__STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE));
}
#if defined(DUAL_CORE)
/**
* @brief Get C2 AHB prescaler
* @rmtoll EXTCFGR C2HPRE LL_C2_RCC_GetAHBPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
*/
__STATIC_INLINE uint32_t LL_C2_RCC_GetAHBPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->EXTCFGR, RCC_EXTCFGR_C2HPRE));
}
#endif /* DUAL_CORE */
/**
* @brief Get AHB3 prescaler
* @rmtoll EXTCFGR SHDHPRE LL_RCC_GetAHB3Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_3
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_5
* @arg @ref LL_RCC_SYSCLK_DIV_6
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_10
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_32
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
*/
__STATIC_INLINE uint32_t LL_RCC_GetAHB3Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->EXTCFGR, RCC_EXTCFGR_SHDHPRE) << 4);
}
/**
* @brief Get APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_GetAPB1Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1));
}
/**
* @brief Get APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_GetAPB2Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB2Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2));
}
/**
* @brief Set Clock After Wake-Up From Stop mode
* @rmtoll CFGR STOPWUCK LL_RCC_SetClkAfterWakeFromStop
* @param Clock This parameter can be one of the following values:
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_MSI
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_HSI
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetClkAfterWakeFromStop(uint32_t Clock)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_STOPWUCK, Clock);
}
/**
* @brief Get Clock After Wake-Up From Stop mode
* @rmtoll CFGR STOPWUCK LL_RCC_GetClkAfterWakeFromStop
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_MSI
* @arg @ref LL_RCC_STOP_WAKEUPCLOCK_HSI
*/
__STATIC_INLINE uint32_t LL_RCC_GetClkAfterWakeFromStop(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_STOPWUCK));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_MCO MCO
* @{
*/
/**
* @brief Configure MCOx
* @rmtoll CFGR MCOSEL LL_RCC_ConfigMCO\n
* CFGR MCOPRE LL_RCC_ConfigMCO
* @param MCOxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK
* @arg @ref LL_RCC_MCO1SOURCE_SYSCLK
* @arg @ref LL_RCC_MCO1SOURCE_MSI
* @arg @ref LL_RCC_MCO1SOURCE_HSI
* @arg @ref LL_RCC_MCO1SOURCE_HSE
* @arg @ref LL_RCC_MCO1SOURCE_PLLCLK
* @arg @ref LL_RCC_MCO1SOURCE_LSI
* @arg @ref LL_RCC_MCO1SOURCE_LSE
* @arg @ref LL_RCC_MCO1SOURCE_PLLQCLK
* @arg @ref LL_RCC_MCO1SOURCE_PLLPCLK
* @param MCOxPrescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO1_DIV_1
* @arg @ref LL_RCC_MCO1_DIV_2
* @arg @ref LL_RCC_MCO1_DIV_4
* @arg @ref LL_RCC_MCO1_DIV_8
* @arg @ref LL_RCC_MCO1_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource, uint32_t MCOxPrescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE, MCOxSource | MCOxPrescaler);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source
* @{
*/
/**
* @brief Configure USARTx clock source
* @rmtoll CCIPR USART1SEL LL_RCC_SetUSARTClockSource
* @param USARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK2
* @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_USART1_CLKSOURCE_HSI
* @arg @ref LL_RCC_USART1_CLKSOURCE_LSE
* @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_USART2_CLKSOURCE_HSI
* @arg @ref LL_RCC_USART2_CLKSOURCE_LSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetUSARTClockSource(uint32_t USARTxSource)
{
MODIFY_REG(RCC->CCIPR, (USARTxSource >> 16), (USARTxSource & 0x0000FFFFU));
}
/**
* @brief Configure I2Sx clock source
* @rmtoll CCIPR I2S2SEL LL_RCC_SetI2SClockSource
* @param I2SxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2S2_CLKSOURCE_PLL
* @arg @ref LL_RCC_I2S2_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2S2_CLKSOURCE_PIN
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetI2SClockSource(uint32_t I2SxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_I2S2SEL, I2SxSource);
}
/**
* @brief Configure LPUARTx clock source
* @rmtoll CCIPR LPUART1SEL LL_RCC_SetLPUARTClockSource
* @param LPUARTxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_LSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetLPUARTClockSource(uint32_t LPUARTxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_LPUART1SEL, LPUARTxSource);
}
/**
* @brief Configure I2Cx clock source
* @rmtoll CCIPR I2CxSEL LL_RCC_SetI2CClockSource
* @param I2CxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2C2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C2_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2C3_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C3_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C3_CLKSOURCE_HSI
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetI2CClockSource(uint32_t I2CxSource)
{
MODIFY_REG(RCC->CCIPR, ((I2CxSource >> 4) & 0x000FF000U), ((I2CxSource << 4) & 0x000FF000U));
}
/**
* @brief Configure LPTIMx clock source
* @rmtoll CCIPR LPTIMxSEL LL_RCC_SetLPTIMClockSource
* @param LPTIMxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_LSE
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_LSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetLPTIMClockSource(uint32_t LPTIMxSource)
{
MODIFY_REG(RCC->CCIPR, (LPTIMxSource & 0xFFFF0000U), (LPTIMxSource << 16));
}
/**
* @brief Configure RNG clock source
* @rmtoll CCIPR RNGSEL LL_RCC_SetRNGClockSource
* @param RNGxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE_PLL
* @arg @ref LL_RCC_RNG_CLKSOURCE_LSI
* @arg @ref LL_RCC_RNG_CLKSOURCE_LSE
* @arg @ref LL_RCC_RNG_CLKSOURCE_MSI
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetRNGClockSource(uint32_t RNGxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_RNGSEL, RNGxSource);
}
/**
* @brief Configure ADC clock source
* @rmtoll CCIPR ADCSEL LL_RCC_SetADCClockSource
* @param ADCxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE_NONE
* @arg @ref LL_RCC_ADC_CLKSOURCE_PLL
* @arg @ref LL_RCC_ADC_CLKSOURCE_SYSCLK
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetADCClockSource(uint32_t ADCxSource)
{
MODIFY_REG(RCC->CCIPR, RCC_CCIPR_ADCSEL, ADCxSource);
}
/**
* @brief Get USARTx clock source
* @rmtoll CCIPR USART1SEL LL_RCC_GetUSARTClockSource
* @param USARTx This parameter can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK2
* @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_USART1_CLKSOURCE_HSI
* @arg @ref LL_RCC_USART1_CLKSOURCE_LSE
* @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_USART2_CLKSOURCE_HSI
* @arg @ref LL_RCC_USART2_CLKSOURCE_LSE
*/
__STATIC_INLINE uint32_t LL_RCC_GetUSARTClockSource(uint32_t USARTx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, USARTx) | (USARTx << 16));
}
/**
* @brief Get I2Sx clock source
* @rmtoll CCIPR I2S2SEL LL_RCC_GetI2SClockSource
* @param I2Sx This parameter can be one of the following values:
* @arg @ref LL_RCC_I2S2_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_I2S2_CLKSOURCE_PLL
* @arg @ref LL_RCC_I2S2_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2S2_CLKSOURCE_PIN
*/
__STATIC_INLINE uint32_t LL_RCC_GetI2SClockSource(uint32_t I2Sx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, I2Sx));
}
/**
* @brief Get LPUARTx clock source
* @rmtoll CCIPR LPUART1SEL LL_RCC_GetLPUARTClockSource
* @param LPUARTx This parameter can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPUART1_CLKSOURCE_LSE
*/
__STATIC_INLINE uint32_t LL_RCC_GetLPUARTClockSource(uint32_t LPUARTx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, LPUARTx));
}
/**
* @brief Get I2Cx clock source
* @rmtoll CCIPR I2CxSEL LL_RCC_GetI2CClockSource
* @param I2Cx This parameter can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE
* @arg @ref LL_RCC_I2C3_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_I2C1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2C2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C2_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C2_CLKSOURCE_HSI
* @arg @ref LL_RCC_I2C3_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_I2C3_CLKSOURCE_SYSCLK
* @arg @ref LL_RCC_I2C3_CLKSOURCE_HSI
*/
__STATIC_INLINE uint32_t LL_RCC_GetI2CClockSource(uint32_t I2Cx)
{
return (uint32_t)((READ_BIT(RCC->CCIPR, I2Cx) >> 4) | (I2Cx << 4));
}
/**
* @brief Get LPTIMx clock source
* @rmtoll CCIPR LPTIMxSEL LL_RCC_GetLPTIMClockSource
* @param LPTIMx This parameter can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM1_CLKSOURCE_LSE
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM2_CLKSOURCE_LSE
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_PCLK1
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_LSI
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_HSI
* @arg @ref LL_RCC_LPTIM3_CLKSOURCE_LSE
*/
__STATIC_INLINE uint32_t LL_RCC_GetLPTIMClockSource(uint32_t LPTIMx)
{
return (uint32_t)((READ_BIT(RCC->CCIPR, LPTIMx) >> 16) | LPTIMx);
}
/**
* @brief Get RNGx clock source
* @rmtoll CCIPR RNGSEL LL_RCC_GetRNGClockSource
* @param RNGx This parameter can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_RNG_CLKSOURCE_PLL
* @arg @ref LL_RCC_RNG_CLKSOURCE_LSI
* @arg @ref LL_RCC_RNG_CLKSOURCE_LSE
* @arg @ref LL_RCC_RNG_CLKSOURCE_MSI
*/
__STATIC_INLINE uint32_t LL_RCC_GetRNGClockSource(uint32_t RNGx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, RNGx));
}
/**
* @brief Get ADCx clock source
* @rmtoll CCIPR ADCSEL LL_RCC_GetADCClockSource
* @param ADCx This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE_NONE
* @arg @ref LL_RCC_ADC_CLKSOURCE_HSI
* @arg @ref LL_RCC_ADC_CLKSOURCE_PLL
* @arg @ref LL_RCC_ADC_CLKSOURCE_SYSCLK
*/
__STATIC_INLINE uint32_t LL_RCC_GetADCClockSource(uint32_t ADCx)
{
return (uint32_t)(READ_BIT(RCC->CCIPR, ADCx));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_RTC RTC
* @{
*/
/**
* @brief Set RTC Clock Source
* @note Once the RTC clock source has been selected, it cannot be changed anymore unless
* the Backup domain is reset, or unless a failure is detected on LSE (LSECSSD is
* set). The BDRST bit can be used to reset them.
* @rmtoll BDCR RTCSEL LL_RCC_SetRTCClockSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV32
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetRTCClockSource(uint32_t Source)
{
MODIFY_REG(RCC->BDCR, RCC_BDCR_RTCSEL, Source);
}
/**
* @brief Get RTC Clock Source
* @rmtoll BDCR RTCSEL LL_RCC_GetRTCClockSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV32
*/
__STATIC_INLINE uint32_t LL_RCC_GetRTCClockSource(void)
{
return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL));
}
/**
* @brief Enable RTC
* @rmtoll BDCR RTCEN LL_RCC_EnableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableRTC(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN);
}
/**
* @brief Disable RTC
* @rmtoll BDCR RTCEN LL_RCC_DisableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableRTC(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN);
}
/**
* @brief Check if RTC has been enabled or not
* @rmtoll BDCR RTCEN LL_RCC_IsEnabledRTC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledRTC(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_RTCEN) == (RCC_BDCR_RTCEN)) ? 1UL : 0UL);
}
/**
* @brief Force the Backup domain reset
* @rmtoll BDCR BDRST LL_RCC_ForceBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ForceBackupDomainReset(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_BDRST);
}
/**
* @brief Release the Backup domain reset
* @rmtoll BDCR BDRST LL_RCC_ReleaseBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ReleaseBackupDomainReset(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_PLL PLL
* @{
*/
/**
* @brief Enable PLL
* @rmtoll CR PLLON LL_RCC_PLL_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Disable PLL
* @note Cannot be disabled if the PLL clock is used as the system clock
* @rmtoll CR PLLON LL_RCC_PLL_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Check if PLL Ready
* @rmtoll CR PLLRDY LL_RCC_PLL_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_PLLRDY) == (RCC_CR_PLLRDY)) ? 1UL : 0UL);
}
/**
* @brief Configure PLL used for SYSCLK Domain
* @note PLL Source and PLLM Divider can be written only when PLL is disabled
* @note PLLN/PLLR can be written only when PLL is disabled
* @rmtoll PLLCFGR PLLSRC LL_RCC_PLL_ConfigDomain_SYS\n
* PLLCFGR PLLM LL_RCC_PLL_ConfigDomain_SYS\n
* PLLCFGR PLLN LL_RCC_PLL_ConfigDomain_SYS\n
* PLLCFGR PLLR LL_RCC_PLL_ConfigDomain_SYS
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_NONE
* @arg @ref LL_RCC_PLLSOURCE_MSI
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @param PLLM This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param PLLN Between 6 and 127
* @param PLLR This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLR_DIV_2
* @arg @ref LL_RCC_PLLR_DIV_3
* @arg @ref LL_RCC_PLLR_DIV_4
* @arg @ref LL_RCC_PLLR_DIV_5
* @arg @ref LL_RCC_PLLR_DIV_6
* @arg @ref LL_RCC_PLLR_DIV_7
* @arg @ref LL_RCC_PLLR_DIV_8
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_SYS(uint32_t Source, uint32_t PLLM, uint32_t PLLN, uint32_t PLLR)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM | RCC_PLLCFGR_PLLN | RCC_PLLCFGR_PLLR,
Source | PLLM | (PLLN << RCC_PLLCFGR_PLLN_Pos) | PLLR);
}
/**
* @brief Configure PLL used for ADC domain clock
* @note PLL Source and PLLM Divider can be written only when PLL is disabled
* @note PLLN/PLLP can be written only when PLL is disabled
* @rmtoll PLLCFGR PLLSRC LL_RCC_PLL_ConfigDomain_ADC\n
* PLLCFGR PLLM LL_RCC_PLL_ConfigDomain_ADC\n
* PLLCFGR PLLN LL_RCC_PLL_ConfigDomain_ADC\n
* PLLCFGR PLLP LL_RCC_PLL_ConfigDomain_ADC
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_NONE
* @arg @ref LL_RCC_PLLSOURCE_MSI
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @param PLLM This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param PLLN Between 6 and 127
* @param PLLP This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLP_DIV_2
* @arg @ref LL_RCC_PLLP_DIV_3
* @arg @ref LL_RCC_PLLP_DIV_4
* @arg @ref LL_RCC_PLLP_DIV_5
* @arg @ref LL_RCC_PLLP_DIV_6
* @arg @ref LL_RCC_PLLP_DIV_7
* @arg @ref LL_RCC_PLLP_DIV_8
* @arg @ref LL_RCC_PLLP_DIV_9
* @arg @ref LL_RCC_PLLP_DIV_10
* @arg @ref LL_RCC_PLLP_DIV_11
* @arg @ref LL_RCC_PLLP_DIV_12
* @arg @ref LL_RCC_PLLP_DIV_13
* @arg @ref LL_RCC_PLLP_DIV_14
* @arg @ref LL_RCC_PLLP_DIV_15
* @arg @ref LL_RCC_PLLP_DIV_16
* @arg @ref LL_RCC_PLLP_DIV_17
* @arg @ref LL_RCC_PLLP_DIV_18
* @arg @ref LL_RCC_PLLP_DIV_19
* @arg @ref LL_RCC_PLLP_DIV_20
* @arg @ref LL_RCC_PLLP_DIV_21
* @arg @ref LL_RCC_PLLP_DIV_22
* @arg @ref LL_RCC_PLLP_DIV_23
* @arg @ref LL_RCC_PLLP_DIV_24
* @arg @ref LL_RCC_PLLP_DIV_25
* @arg @ref LL_RCC_PLLP_DIV_26
* @arg @ref LL_RCC_PLLP_DIV_27
* @arg @ref LL_RCC_PLLP_DIV_28
* @arg @ref LL_RCC_PLLP_DIV_29
* @arg @ref LL_RCC_PLLP_DIV_30
* @arg @ref LL_RCC_PLLP_DIV_31
* @arg @ref LL_RCC_PLLP_DIV_32
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_ADC(uint32_t Source, uint32_t PLLM, uint32_t PLLN, uint32_t PLLP)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM | RCC_PLLCFGR_PLLN | RCC_PLLCFGR_PLLP,
Source | PLLM | (PLLN << RCC_PLLCFGR_PLLN_Pos) | PLLP);
}
/**
* @brief Configure PLL used for RNG domain clock
* @note PLL Source and PLLM Divider can be written only when PLL is disabled
* @note PLLN/PLLQ can be written only when PLL is disabled
* @rmtoll PLLCFGR PLLSRC LL_RCC_PLL_ConfigDomain_RNG\n
* PLLCFGR PLLM LL_RCC_PLL_ConfigDomain_RNG\n
* PLLCFGR PLLN LL_RCC_PLL_ConfigDomain_RNG\n
* PLLCFGR PLLQ LL_RCC_PLL_ConfigDomain_RNG
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_NONE
* @arg @ref LL_RCC_PLLSOURCE_MSI
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @param PLLM This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param PLLN Between 6 and 127
* @param PLLQ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLQ_DIV_2
* @arg @ref LL_RCC_PLLQ_DIV_3
* @arg @ref LL_RCC_PLLQ_DIV_4
* @arg @ref LL_RCC_PLLQ_DIV_5
* @arg @ref LL_RCC_PLLQ_DIV_6
* @arg @ref LL_RCC_PLLQ_DIV_7
* @arg @ref LL_RCC_PLLQ_DIV_8
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_RNG(uint32_t Source, uint32_t PLLM, uint32_t PLLN, uint32_t PLLQ)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM | RCC_PLLCFGR_PLLN | RCC_PLLCFGR_PLLQ,
Source | PLLM | (PLLN << RCC_PLLCFGR_PLLN_Pos) | PLLQ);
}
/**
* @brief Configure PLL used for I2S domain clock
* @note PLL Source and PLLM Divider can be written only when PLL is disabled
* @note PLLN/PLLQ can be written only when PLL is disabled
* @rmtoll PLLCFGR PLLSRC LL_RCC_PLL_ConfigDomain_I2S\n
* PLLCFGR PLLM LL_RCC_PLL_ConfigDomain_I2S\n
* PLLCFGR PLLN LL_RCC_PLL_ConfigDomain_I2S\n
* PLLCFGR PLLQ LL_RCC_PLL_ConfigDomain_I2S
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_NONE
* @arg @ref LL_RCC_PLLSOURCE_MSI
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @param PLLM This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
* @param PLLN Between 6 and 127
* @param PLLQ This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLQ_DIV_2
* @arg @ref LL_RCC_PLLQ_DIV_3
* @arg @ref LL_RCC_PLLQ_DIV_4
* @arg @ref LL_RCC_PLLQ_DIV_5
* @arg @ref LL_RCC_PLLQ_DIV_6
* @arg @ref LL_RCC_PLLQ_DIV_7
* @arg @ref LL_RCC_PLLQ_DIV_8
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_I2S(uint32_t Source, uint32_t PLLM, uint32_t PLLN, uint32_t PLLQ)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM | RCC_PLLCFGR_PLLN | RCC_PLLCFGR_PLLQ,
Source | PLLM | (PLLN << RCC_PLLCFGR_PLLN_Pos) | PLLQ);
}
/**
* @brief Get Main PLL multiplication factor for VCO
* @rmtoll PLLCFGR PLLN LL_RCC_PLL_GetN
* @retval Between 6 and 127
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetN(void)
{
return (uint32_t)(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> RCC_PLLCFGR_PLLN_Pos);
}
/**
* @brief Get Main PLL division factor for PLLP
* @rmtoll PLLCFGR PLLP LL_RCC_PLL_GetP
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLP_DIV_2
* @arg @ref LL_RCC_PLLP_DIV_3
* @arg @ref LL_RCC_PLLP_DIV_4
* @arg @ref LL_RCC_PLLP_DIV_5
* @arg @ref LL_RCC_PLLP_DIV_6
* @arg @ref LL_RCC_PLLP_DIV_7
* @arg @ref LL_RCC_PLLP_DIV_8
* @arg @ref LL_RCC_PLLP_DIV_9
* @arg @ref LL_RCC_PLLP_DIV_10
* @arg @ref LL_RCC_PLLP_DIV_11
* @arg @ref LL_RCC_PLLP_DIV_12
* @arg @ref LL_RCC_PLLP_DIV_13
* @arg @ref LL_RCC_PLLP_DIV_14
* @arg @ref LL_RCC_PLLP_DIV_15
* @arg @ref LL_RCC_PLLP_DIV_16
* @arg @ref LL_RCC_PLLP_DIV_17
* @arg @ref LL_RCC_PLLP_DIV_18
* @arg @ref LL_RCC_PLLP_DIV_19
* @arg @ref LL_RCC_PLLP_DIV_20
* @arg @ref LL_RCC_PLLP_DIV_21
* @arg @ref LL_RCC_PLLP_DIV_22
* @arg @ref LL_RCC_PLLP_DIV_23
* @arg @ref LL_RCC_PLLP_DIV_24
* @arg @ref LL_RCC_PLLP_DIV_25
* @arg @ref LL_RCC_PLLP_DIV_26
* @arg @ref LL_RCC_PLLP_DIV_27
* @arg @ref LL_RCC_PLLP_DIV_28
* @arg @ref LL_RCC_PLLP_DIV_29
* @arg @ref LL_RCC_PLLP_DIV_30
* @arg @ref LL_RCC_PLLP_DIV_31
* @arg @ref LL_RCC_PLLP_DIV_32
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetP(void)
{
return (uint32_t)(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP));
}
/**
* @brief Get Main PLL division factor for PLLQ
* @note used for PLL48MCLK selected for USB, RNG (48 MHz clock)
* @rmtoll PLLCFGR PLLQ LL_RCC_PLL_GetQ
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLQ_DIV_2
* @arg @ref LL_RCC_PLLQ_DIV_3
* @arg @ref LL_RCC_PLLQ_DIV_4
* @arg @ref LL_RCC_PLLQ_DIV_5
* @arg @ref LL_RCC_PLLQ_DIV_6
* @arg @ref LL_RCC_PLLQ_DIV_7
* @arg @ref LL_RCC_PLLQ_DIV_8
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetQ(void)
{
return (uint32_t)(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ));
}
/**
* @brief Get Main PLL division factor for PLLR
* @note used for PLLCLK (system clock)
* @rmtoll PLLCFGR PLLR LL_RCC_PLL_GetR
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLR_DIV_2
* @arg @ref LL_RCC_PLLR_DIV_3
* @arg @ref LL_RCC_PLLR_DIV_4
* @arg @ref LL_RCC_PLLR_DIV_5
* @arg @ref LL_RCC_PLLR_DIV_6
* @arg @ref LL_RCC_PLLR_DIV_7
* @arg @ref LL_RCC_PLLR_DIV_8
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetR(void)
{
return (uint32_t)(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLR));
}
/**
* @brief Get Division factor for the main PLL and other PLL
* @rmtoll PLLCFGR PLLM LL_RCC_PLL_GetDivider
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLM_DIV_1
* @arg @ref LL_RCC_PLLM_DIV_2
* @arg @ref LL_RCC_PLLM_DIV_3
* @arg @ref LL_RCC_PLLM_DIV_4
* @arg @ref LL_RCC_PLLM_DIV_5
* @arg @ref LL_RCC_PLLM_DIV_6
* @arg @ref LL_RCC_PLLM_DIV_7
* @arg @ref LL_RCC_PLLM_DIV_8
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetDivider(void)
{
return (uint32_t)(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM));
}
/**
* @brief Enable PLL output mapped on ADC domain clock
* @rmtoll PLLCFGR PLLPEN LL_RCC_PLL_EnableDomain_ADC
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_EnableDomain_ADC(void)
{
SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN);
}
/**
* @brief Disable PLL output mapped on ADC domain clock
* @note In order to save power, when the PLLCLK of the PLL is
* not used, should be 0
* @rmtoll PLLCFGR PLLPEN LL_RCC_PLL_DisableDomain_ADC
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_DisableDomain_ADC(void)
{
CLEAR_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN);
}
/**
* @brief Check if PLL output mapped on ADC domain clock is enabled
* @rmtoll PLLCFGR RCC_PLLCFGR_PLLPEN LL_RCC_PLL_IsEnabledDomain_ADC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsEnabledDomain_ADC(void)
{
return ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN) == (RCC_PLLCFGR_PLLPEN)) ? 1UL : 0UL);
}
/**
* @brief Enable PLL output mapped on RNG domain clock
* @rmtoll PLLCFGR PLLQEN LL_RCC_PLL_EnableDomain_RNG
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_EnableDomain_RNG(void)
{
SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN);
}
/**
* @brief Disable PLL output mapped on RNG domain clock
* @note In order to save power, when the PLLCLK of the PLL is
* not used, should be 0
* @rmtoll PLLCFGR PLLQEN LL_RCC_PLL_DisableDomain_RNG
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_DisableDomain_RNG(void)
{
CLEAR_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN);
}
/**
* @brief Check if PLL output mapped on RNG domain clock is enabled
* @rmtoll PLLCFGR PLLQEN LL_RCC_PLL_IsEnabledDomain_RNG
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsEnabledDomain_RNG(void)
{
return ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN) == (RCC_PLLCFGR_PLLQEN)) ? 1UL : 0UL);
}
/**
* @brief Enable PLL output mapped on I2S domain clock
* @rmtoll PLLCFGR PLLQEN LL_RCC_PLL_EnableDomain_I2S
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_EnableDomain_I2S(void)
{
SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN);
}
/**
* @brief Disable PLL output mapped on I2S domain clock
* @note In order to save power, when the PLLCLK of the PLL is
* not used, should be 0
* @rmtoll PLLCFGR PLLQEN LL_RCC_PLL_DisableDomain_I2S
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_DisableDomain_I2S(void)
{
CLEAR_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN);
}
/**
* @brief Check if PLL output mapped on I2S domain clock is enabled
* @rmtoll PLLCFGR PLLQEN LL_RCC_PLL_IsEnabledDomain_I2S
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsEnabledDomain_I2S(void)
{
return ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN) == (RCC_PLLCFGR_PLLQEN)) ? 1UL : 0UL);
}
/**
* @brief Enable PLL output mapped on SYSCLK domain
* @rmtoll PLLCFGR PLLREN LL_RCC_PLL_EnableDomain_SYS
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_EnableDomain_SYS(void)
{
SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLREN);
}
/**
* @brief Disable PLL output mapped on SYSCLK domain
* @note Cannot be disabled if the PLL clock is used as the system clock
* @note In order to save power, when the PLLCLK of the PLL is
* not used, Main PLL should be 0
* @rmtoll PLLCFGR PLLREN LL_RCC_PLL_DisableDomain_SYS
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_DisableDomain_SYS(void)
{
CLEAR_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLREN);
}
/**
* @brief Check if PLL output mapped on SYS domain clock is enabled
* @rmtoll PLLCFGR PLLREN LL_RCC_PLL_IsEnabledDomain_SYS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsEnabledDomain_SYS(void)
{
return ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLREN) == (RCC_PLLCFGR_PLLREN)) ? 1UL : 0UL);
}
/**
* @brief Configure PLL clock source
* @rmtoll PLLCFGR PLLSRC LL_RCC_PLL_SetMainSource
* @param PLLSource This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_MSI
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_SetMainSource(uint32_t PLLSource)
{
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, PLLSource);
}
/**
* @brief Get the oscillator used as PLL clock source.
* @rmtoll PLLCFGR PLLSRC LL_RCC_PLL_GetMainSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_NONE
* @arg @ref LL_RCC_PLLSOURCE_MSI
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetMainSource(void)
{
return (uint32_t)(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_FLAG_Management FLAG Management
* @{
*/
/**
* @brief Clear LSI ready interrupt flag
* @rmtoll CICR LSIRDYC LL_RCC_ClearFlag_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSIRDYC);
}
/**
* @brief Clear LSE ready interrupt flag
* @rmtoll CICR LSERDYC LL_RCC_ClearFlag_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSERDYC);
}
/**
* @brief Clear MSI ready interrupt flag
* @rmtoll CICR MSIRDYC LL_RCC_ClearFlag_MSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_MSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_MSIRDYC);
}
/**
* @brief Clear HSI ready interrupt flag
* @rmtoll CICR HSIRDYC LL_RCC_ClearFlag_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_HSIRDYC);
}
/**
* @brief Clear HSE ready interrupt flag
* @rmtoll CICR HSERDYC LL_RCC_ClearFlag_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSERDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_HSERDYC);
}
/**
* @brief Clear PLL ready interrupt flag
* @rmtoll CICR PLLRDYC LL_RCC_ClearFlag_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_PLLRDY(void)
{
SET_BIT(RCC->CICR, RCC_CICR_PLLRDYC);
}
/**
* @brief Clear Clock security system interrupt flag
* @rmtoll CICR CSSC LL_RCC_ClearFlag_HSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSECSS(void)
{
SET_BIT(RCC->CICR, RCC_CICR_CSSC);
}
/**
* @brief Clear LSE Clock security system interrupt flag
* @rmtoll CICR LSECSSC LL_RCC_ClearFlag_LSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSECSS(void)
{
SET_BIT(RCC->CICR, RCC_CICR_LSECSSC);
}
/**
* @brief Check if LSI ready interrupt occurred or not
* @rmtoll CIFR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSIRDYF) == (RCC_CIFR_LSIRDYF)) ? 1UL : 0UL);
}
/**
* @brief Check if LSE ready interrupt occurred or not
* @rmtoll CIFR LSERDYF LL_RCC_IsActiveFlag_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSERDYF) == (RCC_CIFR_LSERDYF)) ? 1UL : 0UL);
}
/**
* @brief Check if MSI ready interrupt occurred or not
* @rmtoll CIFR MSIRDYF LL_RCC_IsActiveFlag_MSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_MSIRDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_MSIRDYF) == (RCC_CIFR_MSIRDYF)) ? 1UL : 0UL);
}
/**
* @brief Check if HSI ready interrupt occurred or not
* @rmtoll CIFR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_HSIRDYF) == (RCC_CIFR_HSIRDYF)) ? 1UL : 0UL);
}
/**
* @brief Check if HSE ready interrupt occurred or not
* @rmtoll CIFR HSERDYF LL_RCC_IsActiveFlag_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSERDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_HSERDYF) == (RCC_CIFR_HSERDYF)) ? 1UL : 0UL);
}
/**
* @brief Check if PLL ready interrupt occurred or not
* @rmtoll CIFR PLLRDYF LL_RCC_IsActiveFlag_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLLRDY(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_PLLRDYF) == (RCC_CIFR_PLLRDYF)) ? 1UL : 0UL);
}
/**
* @brief Check if Clock security system interrupt occurred or not
* @rmtoll CIFR CSSF LL_RCC_IsActiveFlag_HSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSECSS(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_CSSF) == (RCC_CIFR_CSSF)) ? 1UL : 0UL);
}
/**
* @brief Check if LSE Clock security system interrupt occurred or not
* @rmtoll CIFR LSECSSF LL_RCC_IsActiveFlag_LSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSECSS(void)
{
return ((READ_BIT(RCC->CIFR, RCC_CIFR_LSECSSF) == (RCC_CIFR_LSECSSF)) ? 1UL : 0UL);
}
/**
* @brief Check if HCLK1 prescaler flag value has been applied or not
* @rmtoll CFGR HPREF LL_RCC_IsActiveFlag_HPRE
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HPRE(void)
{
return ((READ_BIT(RCC->CFGR, RCC_CFGR_HPREF) == (RCC_CFGR_HPREF)) ? 1UL : 0UL);
}
#if defined(DUAL_CORE)
/**
* @brief Check if HCLK2 prescaler flag value has been applied or not
* @rmtoll EXTCFGR C2HPREF LL_RCC_IsActiveFlag_C2HPRE
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_C2HPRE(void)
{
return ((READ_BIT(RCC->EXTCFGR, RCC_EXTCFGR_C2HPREF) == (RCC_EXTCFGR_C2HPREF)) ? 1UL : 0UL);
}
#endif /* DUAL_CORE */
/**
* @brief Check if HCLK3 prescaler flag value has been applied or not
* @rmtoll EXTCFGR SHDHPREF LL_RCC_IsActiveFlag_SHDHPRE
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SHDHPRE(void)
{
return ((READ_BIT(RCC->EXTCFGR, RCC_EXTCFGR_SHDHPREF) == (RCC_EXTCFGR_SHDHPREF)) ? 1UL : 0UL);
}
/**
* @brief Check if PLCK1 prescaler flag value has been applied or not
* @rmtoll CFGR PPRE1F LL_RCC_IsActiveFlag_PPRE1
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PPRE1(void)
{
return ((READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1F) == (RCC_CFGR_PPRE1F)) ? 1UL : 0UL);
}
/**
* @brief Check if PLCK2 prescaler flag value has been applied or not
* @rmtoll CFGR PPRE2F LL_RCC_IsActiveFlag_PPRE2
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PPRE2(void)
{
return ((READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2F) == (RCC_CFGR_PPRE2F)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Independent Watchdog reset is set or not.
* @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Radio illegal access is set or not.
* @rmtoll CSR RFILARSTF LL_RCC_IsActiveFlag_RFILARST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_RFILARST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_RFILARSTF) == (RCC_CSR_RFILARSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Low Power reset is set or not.
* @rmtoll CSR LPWRRSTF LL_RCC_IsActiveFlag_LPWRRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LPWRRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_LPWRRSTF) == (RCC_CSR_LPWRRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Option byte reset is set or not.
* @rmtoll CSR OBLRSTF LL_RCC_IsActiveFlag_OBLRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_OBLRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_OBLRSTF) == (RCC_CSR_OBLRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Pin reset is set or not.
* @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Software reset is set or not.
* @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Window Watchdog reset is set or not.
* @rmtoll CSR WWDGRSTF LL_RCC_IsActiveFlag_WWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_WWDGRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_WWDGRSTF) == (RCC_CSR_WWDGRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag BOR reset is set or not.
* @rmtoll CSR BORRSTF LL_RCC_IsActiveFlag_BORRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_BORRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_BORRSTF) == (RCC_CSR_BORRSTF)) ? 1UL : 0UL);
}
/**
* @brief Set RMVF bit to clear the reset flags.
* @rmtoll CSR RMVF LL_RCC_ClearResetFlags
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearResetFlags(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RMVF);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_IT_Management IT Management
* @{
*/
/**
* @brief Enable LSI ready interrupt
* @rmtoll CIER LSIRDYIE LL_RCC_EnableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSIRDYIE);
}
/**
* @brief Enable LSE ready interrupt
* @rmtoll CIER LSERDYIE LL_RCC_EnableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSERDYIE);
}
/**
* @brief Enable MSI ready interrupt
* @rmtoll CIER MSIRDYIE LL_RCC_EnableIT_MSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_MSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_MSIRDYIE);
}
/**
* @brief Enable HSI ready interrupt
* @rmtoll CIER HSIRDYIE LL_RCC_EnableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_HSIRDYIE);
}
/**
* @brief Enable HSE ready interrupt
* @rmtoll CIER HSERDYIE LL_RCC_EnableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSERDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_HSERDYIE);
}
/**
* @brief Enable PLL ready interrupt
* @rmtoll CIER PLLRDYIE LL_RCC_EnableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_PLLRDY(void)
{
SET_BIT(RCC->CIER, RCC_CIER_PLLRDYIE);
}
/**
* @brief Enable LSE clock security system interrupt
* @rmtoll CIER LSECSSIE LL_RCC_EnableIT_LSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSECSS(void)
{
SET_BIT(RCC->CIER, RCC_CIER_LSECSSIE);
}
/**
* @brief Disable LSI ready interrupt
* @rmtoll CIER LSIRDYIE LL_RCC_DisableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSIRDYIE);
}
/**
* @brief Disable LSE ready interrupt
* @rmtoll CIER LSERDYIE LL_RCC_DisableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSERDYIE);
}
/**
* @brief Disable MSI ready interrupt
* @rmtoll CIER MSIRDYIE LL_RCC_DisableIT_MSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_MSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_MSIRDYIE);
}
/**
* @brief Disable HSI ready interrupt
* @rmtoll CIER HSIRDYIE LL_RCC_DisableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_HSIRDYIE);
}
/**
* @brief Disable HSE ready interrupt
* @rmtoll CIER HSERDYIE LL_RCC_DisableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSERDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_HSERDYIE);
}
/**
* @brief Disable PLL ready interrupt
* @rmtoll CIER PLLRDYIE LL_RCC_DisableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_PLLRDY(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_PLLRDYIE);
}
/**
* @brief Disable LSE clock security system interrupt
* @rmtoll CIER LSECSSIE LL_RCC_DisableIT_LSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSECSS(void)
{
CLEAR_BIT(RCC->CIER, RCC_CIER_LSECSSIE);
}
/**
* @brief Checks if LSI ready interrupt source is enabled or disabled.
* @rmtoll CIER LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_LSIRDYIE) == (RCC_CIER_LSIRDYIE)) ? 1UL : 0UL);
}
/**
* @brief Checks if LSE ready interrupt source is enabled or disabled.
* @rmtoll CIER LSERDYIE LL_RCC_IsEnabledIT_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_LSERDYIE) == (RCC_CIER_LSERDYIE)) ? 1UL : 0UL);
}
/**
* @brief Checks if MSI ready interrupt source is enabled or disabled.
* @rmtoll CIER MSIRDYIE LL_RCC_IsEnabledIT_MSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_MSIRDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_MSIRDYIE) == (RCC_CIER_MSIRDYIE)) ? 1UL : 0UL);
}
/**
* @brief Checks if HSI ready interrupt source is enabled or disabled.
* @rmtoll CIER HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_HSIRDYIE) == (RCC_CIER_HSIRDYIE)) ? 1UL : 0UL);
}
/**
* @brief Checks if HSE ready interrupt source is enabled or disabled.
* @rmtoll CIER HSERDYIE LL_RCC_IsEnabledIT_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSERDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_HSERDYIE) == (RCC_CIER_HSERDYIE)) ? 1UL : 0UL);
}
/**
* @brief Checks if PLL ready interrupt source is enabled or disabled.
* @rmtoll CIER PLLRDYIE LL_RCC_IsEnabledIT_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLLRDY(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_PLLRDYIE) == (RCC_CIER_PLLRDYIE)) ? 1UL : 0UL);
}
/**
* @brief Checks if LSECSS interrupt source is enabled or disabled.
* @rmtoll CIER LSECSSIE LL_RCC_IsEnabledIT_LSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSECSS(void)
{
return ((READ_BIT(RCC->CIER, RCC_CIER_LSECSSIE) == (RCC_CIER_LSECSSIE)) ? 1UL : 0UL);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EF_Init De-initialization function
* @{
*/
ErrorStatus LL_RCC_DeInit(void);
/**
* @}
*/
/** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions
* @{
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks);
uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource);
uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource);
uint32_t LL_RCC_GetI2SClockFreq(uint32_t I2SxSource);
uint32_t LL_RCC_GetLPUARTClockFreq(uint32_t LPUARTxSource);
uint32_t LL_RCC_GetLPTIMClockFreq(uint32_t LPTIMxSource);
uint32_t LL_RCC_GetRNGClockFreq(uint32_t RNGxSource);
uint32_t LL_RCC_GetADCClockFreq(uint32_t ADCxSource);
uint32_t LL_RCC_GetRTCClockFreq(void);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(RCC) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __STM32WLxx_LL_RCC_H */