blob: c1aa0f3cbcbea79d982948c2473b8e629ea9b451 [file] [log] [blame]
/**
******************************************************************************
* @file stm32wlxx_hal_rcc_ex.c
* @author MCD Application Team
* @brief Extended RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities RCC extended peripheral:
* + Extended Peripheral Control functions
* + Extended Clock management functions
* + Extended Clock Recovery System Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32wlxx_hal.h"
/** @addtogroup STM32WLxx_HAL_Driver
* @{
*/
/** @defgroup RCCEx RCCEx
* @brief RCC Extended HAL module driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
* @{
*/
#define __LSCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
#define LSCO1_GPIO_PORT GPIOA
#define LSCO1_PIN GPIO_PIN_2
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RCCEx_Private_Functions RCCEx Private Functions
* @{
*/
static uint32_t RCC_PLL_GetFreqDomain_P(void);
static uint32_t RCC_PLL_GetFreqDomain_Q(void);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
* @{
*/
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
[..]
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
select the RTC clock source; in this case the Backup domain will be reset in
order to modify the RTC Clock source, as consequence RTC registers (including
the backup registers) and RCC_BDCR register are set to their reset values.
@endverbatim
* @{
*/
/**
* @brief Initialize the RCC extended peripherals clocks according to the specified
* parameters in the @ref RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit pointer to a @ref RCC_PeriphCLKInitTypeDef structure that
* contains a field PeriphClockSelection which can be a combination of the following values:
* @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C2 I2C2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM3 LPTIM3 peripheral clock
* @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock
* @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
*
* @note Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select
* the RTC clock source: in this case the access to Backup domain is enabled.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tmpregister = 0;
uint32_t tickstart;
HAL_StatusTypeDef ret = HAL_OK; /* Intermediate status */
HAL_StatusTypeDef status = HAL_OK; /* Final status */
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
/*-------------------------- RTC clock source configuration ----------------------*/
if ((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
{
/* Check for RTC Parameters used to output RTCCLK */
assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
/* Enable write access to Backup domain */
HAL_PWR_EnableBkUpAccess();
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while (!(READ_BIT(PWR->CR1, PWR_CR1_DBP) == (PWR_CR1_DBP)))
{
if ((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
{
ret = HAL_TIMEOUT;
break;
}
}
if (ret == HAL_OK)
{
/* Reset the Backup domain only if the RTC Clock source selection is modified */
if (LL_RCC_GetRTCClockSource() != PeriphClkInit->RTCClockSelection)
{
/* Store the content of BDCR register before the reset of Backup Domain */
tmpregister = READ_BIT(RCC->BDCR, ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = tmpregister;
}
/* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */
if (HAL_IS_BIT_SET(tmpregister, RCC_BDCR_LSERDY))
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while (LL_RCC_LSE_IsReady() != 1U)
{
if ((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
{
ret = HAL_TIMEOUT;
break;
}
}
}
if (ret == HAL_OK)
{
/* Apply new RTC clock source selection */
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
}
else
{
/* set overall return value */
status = ret;
}
}
else
{
/* set overall return value */
status = ret;
}
}
/*-------------------- USART1 clock source configuration -------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
{
/* Check the parameters */
assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
/* Configure the USART1 clock source */
__HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
}
/*-------------------- USART2 clock source configuration -------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
{
/* Check the parameters */
assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
/* Configure the USART2 clock source */
__HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
}
/*-------------------- LPUART1 clock source configuration ------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1)
{
/* Check the parameters */
assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection));
/* Configure the LPUAR1 clock source */
__HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection);
}
/*-------------------- LPTIM1 clock source configuration -------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1))
{
/* Check the parameters */
assert_param(IS_RCC_LPTIM1CLKSOURCE(PeriphClkInit->Lptim1ClockSelection));
/* Configure the LPTIM1 clock source */
__HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection);
}
/*-------------------- LPTIM2 clock source configuration -------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM2) == (RCC_PERIPHCLK_LPTIM2))
{
/* Check the parameters */
assert_param(IS_RCC_LPTIM2CLKSOURCE(PeriphClkInit->Lptim2ClockSelection));
/* Configure the LPTIM2 clock source */
__HAL_RCC_LPTIM2_CONFIG(PeriphClkInit->Lptim2ClockSelection);
}
/*-------------------- LPTIM3 clock source configuration -------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM3) == (RCC_PERIPHCLK_LPTIM3))
{
/* Check the parameters */
assert_param(IS_RCC_LPTIM3CLKSOURCE(PeriphClkInit->Lptim3ClockSelection));
/* Configure the LPTIM3 clock source */
__HAL_RCC_LPTIM3_CONFIG(PeriphClkInit->Lptim3ClockSelection);
}
/*-------------------- I2C1 clock source configuration ---------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
{
/* Check the parameters */
assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
/* Configure the I2C1 clock source */
__HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
}
/*-------------------- I2C2 clock source configuration ---------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2)
{
/* Check the parameters */
assert_param(IS_RCC_I2C2CLKSOURCE(PeriphClkInit->I2c2ClockSelection));
/* Configure the I2C2 clock source */
__HAL_RCC_I2C2_CONFIG(PeriphClkInit->I2c2ClockSelection);
}
/*-------------------- I2C3 clock source configuration ---------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3)
{
/* Check the parameters */
assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection));
/* Configure the I2C3 clock source */
__HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection);
}
/*-------------------- I2S2 clock source configuration ---------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S2) == (RCC_PERIPHCLK_I2S2))
{
/* Check the parameters */
assert_param(IS_RCC_I2S2CLKSOURCE(PeriphClkInit->I2s2ClockSelection));
/* Configure the I2S2 clock source */
__HAL_RCC_I2S2_CONFIG(PeriphClkInit->I2s2ClockSelection);
if (PeriphClkInit->I2s2ClockSelection == RCC_I2S2CLKSOURCE_PLL)
{
/* Enable RCC_PLL_I2S2CLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_I2S2CLK);
}
}
/*-------------------- RNG clock source configuration ----------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RNG) == (RCC_PERIPHCLK_RNG))
{
assert_param(IS_RCC_RNGCLKSOURCE(PeriphClkInit->RngClockSelection));
__HAL_RCC_RNG_CONFIG(PeriphClkInit->RngClockSelection);
if (PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLL)
{
/* Enable RCC_PLL_RNGCLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_RNGCLK);
}
}
/*-------------------- ADC clock source configuration ----------------------*/
if (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC)
{
/* Check the parameters */
assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection));
/* Configure the ADC interface clock source */
__HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);
if (PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLL)
{
/* Enable RCC_PLL_RNGCLK output */
__HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_ADCCLK);
}
}
return status;
}
/**
* @brief Get the RCC_ClkInitStruct according to the internal RCC configuration registers.
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
* returns the configuration information for the Extended Peripherals
* clocks(LPTIM1, LPTIM2, LPTIM3, I2C1, I2C2, I2C3, I2S2, LPUART1,
* USART1, USART2, RTC, ADC, RNG).
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
/* Set all possible values for the extended clock type parameter------------*/
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_I2S2 | \
RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_I2C2 | RCC_PERIPHCLK_I2C3 | \
RCC_PERIPHCLK_LPTIM1 | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_LPTIM3 | \
RCC_PERIPHCLK_RNG | RCC_PERIPHCLK_ADC | RCC_PERIPHCLK_RTC | \
RCC_PERIPHCLK_LPUART1;
/* Get the USART1 clock source ---------------------------------------------*/
PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
/* Get the USART2 clock source ---------------------------------------------*/
PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
/* Get the I2S2 clock source -----------------------------------------------*/
PeriphClkInit->I2s2ClockSelection = __HAL_RCC_GET_I2S2_SOURCE();
/* Get the LPUART1 clock source --------------------------------------------*/
PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE();
/* Get the I2C1 clock source -----------------------------------------------*/
PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
/* Get the I2C2 clock source -----------------------------------------------*/
PeriphClkInit->I2c2ClockSelection = __HAL_RCC_GET_I2C2_SOURCE();
/* Get the I2C3 clock source -----------------------------------------------*/
PeriphClkInit->I2c3ClockSelection = __HAL_RCC_GET_I2C3_SOURCE();
/* Get the LPTIM1 clock source ---------------------------------------------*/
PeriphClkInit->Lptim1ClockSelection = __HAL_RCC_GET_LPTIM1_SOURCE();
/* Get the LPTIM2 clock source ---------------------------------------------*/
PeriphClkInit->Lptim2ClockSelection = __HAL_RCC_GET_LPTIM2_SOURCE();
/* Get the LPTIM3 clock source ---------------------------------------------*/
PeriphClkInit->Lptim3ClockSelection = __HAL_RCC_GET_LPTIM3_SOURCE();
/* Get the RTC clock source ------------------------------------------------*/
PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
/* Get the RNG clock source ------------------------------------------------*/
PeriphClkInit->RngClockSelection = __HAL_RCC_GET_RNG_SOURCE();
/* Get the ADC clock source ------------------------------------------------*/
PeriphClkInit->AdcClockSelection = __HAL_RCC_GET_ADC_SOURCE();
}
/**
* @brief Return the peripheral clock frequency for peripherals with clock source
* @note Return 0 if peripheral clock identifier not managed by this API
* @param PeriphClk Peripheral clock identifier
* This parameter can be one of the following values:
* @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPUART1 LPUART1 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C2 I2C2 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2C3 I2C3 peripheral clock
* @arg @ref RCC_PERIPHCLK_I2S2 I2S2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM1 LPTIM1 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM2 LPTIM2 peripheral clock
* @arg @ref RCC_PERIPHCLK_LPTIM3 LPTIM3 peripheral clock
* @arg @ref RCC_PERIPHCLK_RNG RNG peripheral clock
* @arg @ref RCC_PERIPHCLK_ADC ADC peripheral clock
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
*
* @retval Frequency in Hz
*/
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
{
uint32_t frequency = 0U;
uint32_t srcclk;
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
switch (PeriphClk)
{
case RCC_PERIPHCLK_RTC:
/* Get the current RTC source */
srcclk = LL_RCC_GetRTCClockSource();
switch (srcclk)
{
case LL_RCC_RTC_CLKSOURCE_LSE: /* LSE clock used as RTC clock source */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_RTC_CLKSOURCE_LSI: /* LSI clock used as RTC clock source */
if (LL_RCC_LSI_IsReady() == 1U)
{
if (LL_RCC_LSI_GetPrediv() == LL_RCC_LSI_PREDIV_128)
{
frequency = LSI_VALUE / 128U;
}
else
{
frequency = LSI_VALUE;
}
}
break;
case LL_RCC_RTC_CLKSOURCE_HSE_DIV32: /* HSE/32 clock used as RTC clock source */
frequency = HSE_VALUE / 32U;
break;
case LL_RCC_RTC_CLKSOURCE_NONE: /* No clock used as RTC clock source */
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
case RCC_PERIPHCLK_RNG:
/* Get the current RTC source */
srcclk = LL_RCC_GetRNGClockSource(LL_RCC_RNG_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_RNG_CLKSOURCE_PLL: /* PLL clock used as RNG clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
frequency = RCC_PLL_GetFreqDomain_Q();
}
break;
case LL_RCC_RNG_CLKSOURCE_LSI: /* LSI clock used as RNG clock source */
if (LL_RCC_LSI_IsReady() == 1U)
{
if (LL_RCC_LSI_GetPrediv() == LL_RCC_LSI_PREDIV_128)
{
frequency = LSI_VALUE / 128U;
}
else
{
frequency = LSI_VALUE;
}
}
break;
case LL_RCC_RNG_CLKSOURCE_LSE: /* LSE clock used as RNG clock source */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_RNG_CLKSOURCE_MSI: /* MSI clock used as RNG clock source */
default:
if (LL_RCC_MSI_IsReady() == 1U)
{
frequency = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
}
break;
}
break;
case RCC_PERIPHCLK_USART1:
/* Get the current USART1 source */
srcclk = LL_RCC_GetUSARTClockSource(LL_RCC_USART1_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_USART1_CLKSOURCE_SYSCLK: /* USART1 Clock is System Clock */
frequency = HAL_RCC_GetSysClockFreq();
break;
case LL_RCC_USART1_CLKSOURCE_HSI: /* USART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_LSE: /* USART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_USART1_CLKSOURCE_PCLK2: /* USART1 Clock is PCLK2 */
default:
frequency = __LL_RCC_CALC_PCLK2_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB2Prescaler());
break;
}
break;
case RCC_PERIPHCLK_USART2:
/* Get the current USART2 source */
srcclk = LL_RCC_GetUSARTClockSource(LL_RCC_USART2_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_USART2_CLKSOURCE_SYSCLK: /* USART2 Clock is System Clock */
frequency = HAL_RCC_GetSysClockFreq();
break;
case LL_RCC_USART2_CLKSOURCE_HSI: /* USART2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_USART2_CLKSOURCE_LSE: /* USART2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_USART2_CLKSOURCE_PCLK1: /* USART2 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
case RCC_PERIPHCLK_LPUART1:
/* Get the current LPUART1 source */
srcclk = LL_RCC_GetLPUARTClockSource(LL_RCC_LPUART1_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_LPUART1_CLKSOURCE_SYSCLK: /* LPUART1 Clock is System Clock */
frequency = HAL_RCC_GetSysClockFreq();
break;
case LL_RCC_LPUART1_CLKSOURCE_HSI: /* LPUART1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_LSE: /* LPUART1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_LPUART1_CLKSOURCE_PCLK1: /* LPUART1 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
case RCC_PERIPHCLK_ADC:
/* Get the current ADC source */
srcclk = LL_RCC_GetADCClockSource(LL_RCC_ADC_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_ADC_CLKSOURCE_HSI: /* HSI Osc. used as ADC clock source */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_ADC_CLKSOURCE_SYSCLK: /* SYSCLK clock used as ADC clock source */
frequency = HAL_RCC_GetSysClockFreq();
break;
case LL_RCC_ADC_CLKSOURCE_PLL: /* PLL clock used as ADC clock source */
if (LL_RCC_PLL_IsReady() == 1U)
{
frequency = RCC_PLL_GetFreqDomain_P();
}
break;
case LL_RCC_ADC_CLKSOURCE_NONE: /* No clock used as ADC clock source */
default:
/* No clock source, frequency default init at 0 */
break;
}
break;
case RCC_PERIPHCLK_I2C1:
/* Get the current I2C1 source */
srcclk = LL_RCC_GetI2CClockSource(LL_RCC_I2C1_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_I2C1_CLKSOURCE_SYSCLK: /* I2C1 Clock is System Clock */
frequency = HAL_RCC_GetSysClockFreq();
break;
case LL_RCC_I2C1_CLKSOURCE_HSI: /* I2C1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C1_CLKSOURCE_PCLK1: /* I2C1 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
case RCC_PERIPHCLK_I2C2:
/* Get the current I2C2 source */
srcclk = LL_RCC_GetI2CClockSource(LL_RCC_I2C2_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_I2C2_CLKSOURCE_SYSCLK: /* I2C2 Clock is System Clock */
frequency = HAL_RCC_GetSysClockFreq();
break;
case LL_RCC_I2C2_CLKSOURCE_HSI: /* I2C2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C2_CLKSOURCE_PCLK1: /* I2C2 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
case RCC_PERIPHCLK_I2C3:
/* Get the current I2C3 source */
srcclk = LL_RCC_GetI2CClockSource(LL_RCC_I2C3_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_I2C3_CLKSOURCE_SYSCLK: /* I2C3 Clock is System Clock */
frequency = HAL_RCC_GetSysClockFreq();
break;
case LL_RCC_I2C3_CLKSOURCE_HSI: /* I2C3 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_I2C3_CLKSOURCE_PCLK1: /* I2C3 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
case RCC_PERIPHCLK_I2S2:
/* Get the current I2S2 source */
srcclk = LL_RCC_GetI2SClockSource(LL_RCC_I2S2_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_I2S2_CLKSOURCE_PIN: /* I2S2 Clock is External clock */
frequency = EXTERNAL_CLOCK_VALUE;
break;
case LL_RCC_I2S2_CLKSOURCE_HSI: /* I2S2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_I2S2_CLKSOURCE_PLL: /* I2S2 Clock is PLL */
default:
frequency = RCC_PLL_GetFreqDomain_Q();
break;
}
break;
case RCC_PERIPHCLK_LPTIM1:
/* Get the current LPTIM1 source */
srcclk = LL_RCC_GetLPTIMClockSource(LL_RCC_LPTIM1_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_LPTIM1_CLKSOURCE_LSI: /* LPTIM1 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
if (LL_RCC_LSI_GetPrediv() == LL_RCC_LSI_PREDIV_128)
{
frequency = LSI_VALUE / 128U;
}
else
{
frequency = LSI_VALUE;
}
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_HSI: /* LPTIM1 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_LSE: /* LPTIM1 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM1_CLKSOURCE_PCLK1: /* LPTIM1 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
case RCC_PERIPHCLK_LPTIM2:
/* Get the current LPTIM2 source */
srcclk = LL_RCC_GetLPTIMClockSource(LL_RCC_LPTIM2_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_LPTIM2_CLKSOURCE_LSI: /* LPTIM2 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
if (LL_RCC_LSI_GetPrediv() == LL_RCC_LSI_PREDIV_128)
{
frequency = LSI_VALUE / 128U;
}
else
{
frequency = LSI_VALUE;
}
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_HSI: /* LPTIM2 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_LSE: /* LPTIM2 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM2_CLKSOURCE_PCLK1: /* LPTIM2 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
case RCC_PERIPHCLK_LPTIM3:
/* Get the current LPTIM3 source */
srcclk = LL_RCC_GetLPTIMClockSource(LL_RCC_LPTIM3_CLKSOURCE);
switch (srcclk)
{
case LL_RCC_LPTIM3_CLKSOURCE_LSI: /* LPTIM3 Clock is LSI Osc. */
if (LL_RCC_LSI_IsReady() == 1U)
{
if (LL_RCC_LSI_GetPrediv() == LL_RCC_LSI_PREDIV_128)
{
frequency = LSI_VALUE / 128U;
}
else
{
frequency = LSI_VALUE;
}
}
break;
case LL_RCC_LPTIM3_CLKSOURCE_HSI: /* LPTIM3 Clock is HSI Osc. */
if (LL_RCC_HSI_IsReady() == 1U)
{
frequency = HSI_VALUE;
}
break;
case LL_RCC_LPTIM3_CLKSOURCE_LSE: /* LPTIM3 Clock is LSE Osc. */
if (LL_RCC_LSE_IsReady() == 1U)
{
frequency = LSE_VALUE;
}
break;
case LL_RCC_LPTIM3_CLKSOURCE_PCLK1: /* LPTIM3 Clock is PCLK1 */
default:
frequency = __LL_RCC_CALC_PCLK1_FREQ(__LL_RCC_CALC_HCLK1_FREQ(HAL_RCC_GetSysClockFreq(), \
LL_RCC_GetAHBPrescaler()), \
LL_RCC_GetAPB1Prescaler());
break;
}
break;
default:
/* Unknown periphclk, frequency default init at 0 */
break;
}
return (frequency);
}
/**
* @}
*/
/** @defgroup RCCEx_Exported_Functions_Group2 Extended Clock management functions
* @brief Extended Clock management functions
*
@verbatim
===============================================================================
##### Extended clock management functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the
activation or deactivation of MSI PLL-mode, LSE CSS,
Low speed clock output and clock after wake-up from STOP mode.
@endverbatim
* @{
*/
/******************************************************************************/
/**
* @brief Configure the oscillator clock source for wakeup from Stop and CSS backup clock.
* @param WakeUpClk Wakeup clock
* This parameter can be one of the following values:
* @arg @ref RCC_STOP_WAKEUPCLOCK_MSI MSI oscillator selection
* @arg @ref RCC_STOP_WAKEUPCLOCK_HSI HSI oscillator selection
* @note This function shall not be called after the Clock Security System on HSE has been
* enabled.
* @retval None
*/
void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk)
{
assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk));
__HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk);
}
/**
* @brief Enable the LSE Clock Security System.
* @note Prior to enable the LSE Clock Security System, LSE oscillator has to be enabled
* with HAL_RCC_OscConfig() and the LSE oscillator clock has to be selected as RTC
* clock with HAL_RCCEx_PeriphCLKConfig().
* @retval None
*/
void HAL_RCCEx_EnableLSECSS(void)
{
LL_RCC_LSE_EnableCSS();
}
/**
* @brief Disable the LSE Clock Security System.
* @note LSE Clock Security System can only be disabled after a LSE failure detection.
* @retval None
*/
void HAL_RCCEx_DisableLSECSS(void)
{
LL_RCC_LSE_DisableCSS();
/* Disable LSE CSS IT if any */
__HAL_RCC_DISABLE_IT(RCC_IT_LSECSS);
}
/**
* @brief Enable the LSE Clock Security System Interrupt & corresponding EXTI line.
* @note Prior to enable the LSE Clock Security System, LSE oscillator has to be enabled
* with HAL_RCC_OscConfig() and the LSE oscillator clock has to be selected as RTC
* clock with HAL_RCCEx_PeriphCLKConfig().
* @note LSE Clock Security System Interrupt is mapped on RTC EXTI line 19
* @retval None
*/
void HAL_RCCEx_EnableLSECSS_IT(void)
{
/* Enable LSE CSS */
LL_RCC_LSE_EnableCSS();
/* Enable LSE CSS IT */
__HAL_RCC_ENABLE_IT(RCC_IT_LSECSS);
/* Enable IT on EXTI Line 19 */
__HAL_RCC_LSECSS_EXTI_ENABLE_IT();
}
/**
* @brief Handle the RCC LSE Clock Security System interrupt request.
* @note Clearing the interrupt flag is under aplication's responsibility.
* This should be part of clock recovery strategy when waking up the
* system.
* @retval None
*/
void HAL_RCCEx_LSECSS_IRQHandler(void)
{
/* Check RCC LSE CSSF flag */
if (__HAL_RCC_GET_IT(RCC_IT_LSECSS))
{
/* RCC LSE Clock Security System interrupt user callback */
HAL_RCCEx_LSECSS_Callback();
}
}
/**
* @brief RCCEx LSE Clock Security System interrupt callback.
* @retval none
*/
__weak void HAL_RCCEx_LSECSS_Callback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the @ref HAL_RCCEx_LSECSS_Callback should be implemented in the user file
*/
}
/**
* @brief Select the Low Speed clock source to output on LSCO pin (PA2).
* @param LSCOSource specifies the Low Speed clock source to output.
* This parameter can be one of the following values:
* @arg @ref RCC_LSCOSOURCE_LSI LSI clock selected as LSCO source
* @arg @ref RCC_LSCOSOURCE_LSE LSE clock selected as LSCO source
* @retval None
*/
void HAL_RCCEx_EnableLSCO(uint32_t LSCOSource)
{
/* Check the parameters */
assert_param(IS_RCC_LSCOSOURCE(LSCOSource));
/* Update LSCO selection according to parameter and enable LSCO */
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL | RCC_BDCR_LSCOEN, LSCOSource | RCC_BDCR_LSCOEN);
}
/**
* @brief Disable the Low Speed clock output.
* @retval None
*/
void HAL_RCCEx_DisableLSCO(void)
{
/* Clear LSCOEN in BDCR register */
LL_RCC_LSCO_Disable();
}
/**
* @brief Enable the PLL-mode of the MSI.
* @note Prior to enable the PLL-mode of the MSI for automatic hardware
* calibration LSE oscillator has to be enabled with @ref HAL_RCC_OscConfig().
* @retval None
*/
void HAL_RCCEx_EnableMSIPLLMode(void)
{
LL_RCC_MSI_EnablePLLMode() ;
}
/**
* @brief Disable the PLL-mode of the MSI.
* @note PLL-mode of the MSI is automatically reset when LSE oscillator is disabled.
* @retval None
*/
void HAL_RCCEx_DisableMSIPLLMode(void)
{
LL_RCC_MSI_DisablePLLMode() ;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup RCCEx_Private_Functions
* @{
*/
/**
* @brief Return PLL clock (PLLPCLK) frequency used for ADC domain
* @retval PLLPCLK clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_P(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value / PLLM) * PLLN
* ADC Domain clock = PLL_VCO / PLLP
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
return __LL_RCC_CALC_PLLCLK_ADC_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetP());
}
/**
* @brief Return PLL clock (PLLQCLK) frequency used for 48 MHz domain
* @retval PLLQCLK clock frequency (in Hz)
*/
static uint32_t RCC_PLL_GetFreqDomain_Q(void)
{
uint32_t pllinputfreq;
uint32_t pllsource;
/* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI Value/ PLLM) * PLLN
* 48M Domain clock = PLL_VCO / PLLQ
*/
pllsource = LL_RCC_PLL_GetMainSource();
switch (pllsource)
{
case LL_RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
pllinputfreq = HSI_VALUE;
break;
case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
if (LL_RCC_HSE_IsEnabledDiv2() == 1U)
{
pllinputfreq = HSE_VALUE / 2U;
}
else
{
pllinputfreq = HSE_VALUE;
}
break;
default:
pllinputfreq = __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSI_GetRange() :
LL_RCC_MSI_GetRangeAfterStandby()));
break;
}
return __LL_RCC_CALC_PLLCLK_RNG_FREQ(pllinputfreq, LL_RCC_PLL_GetDivider(),
LL_RCC_PLL_GetN(), LL_RCC_PLL_GetQ());
}
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/