|  | // Copyright 2017 The Abseil Authors. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | // Tests for pointer utilities. | 
|  |  | 
|  | #include "absl/memory/memory.h" | 
|  |  | 
|  | #include <sys/types.h> | 
|  |  | 
|  | #include <cstddef> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "gmock/gmock.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using ::testing::ElementsAre; | 
|  | using ::testing::Return; | 
|  |  | 
|  | // This class creates observable behavior to verify that a destructor has | 
|  | // been called, via the instance_count variable. | 
|  | class DestructorVerifier { | 
|  | public: | 
|  | DestructorVerifier() { ++instance_count_; } | 
|  | DestructorVerifier(const DestructorVerifier&) = delete; | 
|  | DestructorVerifier& operator=(const DestructorVerifier&) = delete; | 
|  | ~DestructorVerifier() { --instance_count_; } | 
|  |  | 
|  | // The number of instances of this class currently active. | 
|  | static int instance_count() { return instance_count_; } | 
|  |  | 
|  | private: | 
|  | // The number of instances of this class currently active. | 
|  | static int instance_count_; | 
|  | }; | 
|  |  | 
|  | int DestructorVerifier::instance_count_ = 0; | 
|  |  | 
|  | TEST(WrapUniqueTest, WrapUnique) { | 
|  | // Test that the unique_ptr is constructed properly by verifying that the | 
|  | // destructor for its payload gets called at the proper time. | 
|  | { | 
|  | auto dv = new DestructorVerifier; | 
|  | EXPECT_EQ(1, DestructorVerifier::instance_count()); | 
|  | std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv); | 
|  | EXPECT_EQ(1, DestructorVerifier::instance_count()); | 
|  | } | 
|  | EXPECT_EQ(0, DestructorVerifier::instance_count()); | 
|  | } | 
|  | TEST(MakeUniqueTest, Basic) { | 
|  | std::unique_ptr<std::string> p = absl::make_unique<std::string>(); | 
|  | EXPECT_EQ("", *p); | 
|  | p = absl::make_unique<std::string>("hi"); | 
|  | EXPECT_EQ("hi", *p); | 
|  | } | 
|  |  | 
|  | // InitializationVerifier fills in a pattern when allocated so we can | 
|  | // distinguish between its default and value initialized states (without | 
|  | // accessing truly uninitialized memory). | 
|  | struct InitializationVerifier { | 
|  | static constexpr int kDefaultScalar = 0x43; | 
|  | static constexpr int kDefaultArray = 0x4B; | 
|  |  | 
|  | static void* operator new(size_t n) { | 
|  | void* ret = ::operator new(n); | 
|  | memset(ret, kDefaultScalar, n); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void* operator new[](size_t n) { | 
|  | void* ret = ::operator new[](n); | 
|  | memset(ret, kDefaultArray, n); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int a; | 
|  | int b; | 
|  | }; | 
|  |  | 
|  | TEST(Initialization, MakeUnique) { | 
|  | auto p = absl::make_unique<InitializationVerifier>(); | 
|  |  | 
|  | EXPECT_EQ(0, p->a); | 
|  | EXPECT_EQ(0, p->b); | 
|  | } | 
|  |  | 
|  | TEST(Initialization, MakeUniqueArray) { | 
|  | auto p = absl::make_unique<InitializationVerifier[]>(2); | 
|  |  | 
|  | EXPECT_EQ(0, p[0].a); | 
|  | EXPECT_EQ(0, p[0].b); | 
|  | EXPECT_EQ(0, p[1].a); | 
|  | EXPECT_EQ(0, p[1].b); | 
|  | } | 
|  |  | 
|  | struct MoveOnly { | 
|  | MoveOnly() = default; | 
|  | explicit MoveOnly(int i1) : ip1{new int{i1}} {} | 
|  | MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {} | 
|  | std::unique_ptr<int> ip1; | 
|  | std::unique_ptr<int> ip2; | 
|  | }; | 
|  |  | 
|  | struct AcceptMoveOnly { | 
|  | explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {} | 
|  | MoveOnly m_; | 
|  | }; | 
|  |  | 
|  | TEST(MakeUniqueTest, MoveOnlyTypeAndValue) { | 
|  | using ExpectedType = std::unique_ptr<MoveOnly>; | 
|  | { | 
|  | auto p = absl::make_unique<MoveOnly>(); | 
|  | static_assert(std::is_same<decltype(p), ExpectedType>::value, | 
|  | "unexpected return type"); | 
|  | EXPECT_TRUE(!p->ip1); | 
|  | EXPECT_TRUE(!p->ip2); | 
|  | } | 
|  | { | 
|  | auto p = absl::make_unique<MoveOnly>(1); | 
|  | static_assert(std::is_same<decltype(p), ExpectedType>::value, | 
|  | "unexpected return type"); | 
|  | EXPECT_TRUE(p->ip1 && *p->ip1 == 1); | 
|  | EXPECT_TRUE(!p->ip2); | 
|  | } | 
|  | { | 
|  | auto p = absl::make_unique<MoveOnly>(1, 2); | 
|  | static_assert(std::is_same<decltype(p), ExpectedType>::value, | 
|  | "unexpected return type"); | 
|  | EXPECT_TRUE(p->ip1 && *p->ip1 == 1); | 
|  | EXPECT_TRUE(p->ip2 && *p->ip2 == 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(MakeUniqueTest, AcceptMoveOnly) { | 
|  | auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly()); | 
|  | p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly())); | 
|  | } | 
|  |  | 
|  | struct ArrayWatch { | 
|  | void* operator new[](size_t n) { | 
|  | allocs().push_back(n); | 
|  | return ::operator new[](n); | 
|  | } | 
|  | void operator delete[](void* p) { return ::operator delete[](p); } | 
|  | static std::vector<size_t>& allocs() { | 
|  | static auto& v = *new std::vector<size_t>; | 
|  | return v; | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST(Make_UniqueTest, Array) { | 
|  | // Ensure state is clean before we start so that these tests | 
|  | // are order-agnostic. | 
|  | ArrayWatch::allocs().clear(); | 
|  |  | 
|  | auto p = absl::make_unique<ArrayWatch[]>(5); | 
|  | static_assert(std::is_same<decltype(p), std::unique_ptr<ArrayWatch[]>>::value, | 
|  | "unexpected return type"); | 
|  | EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch))); | 
|  | } | 
|  |  | 
|  | TEST(Make_UniqueTest, NotAmbiguousWithStdMakeUnique) { | 
|  | // Ensure that absl::make_unique is not ambiguous with std::make_unique. | 
|  | // In C++14 mode, the below call to make_unique has both types as candidates. | 
|  | struct TakesStdType { | 
|  | explicit TakesStdType(const std::vector<int>& vec) {} | 
|  | }; | 
|  | using absl::make_unique; | 
|  | (void)make_unique<TakesStdType>(std::vector<int>()); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | // These tests shouldn't compile. | 
|  | TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) { | 
|  | auto m = MoveOnly(); | 
|  | auto p = absl::make_unique<AcceptMoveOnly>(m); | 
|  | } | 
|  | TEST(MakeUniqueTestNC, KnownBoundArray) { | 
|  | auto p = absl::make_unique<ArrayWatch[5]>(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | TEST(RawPtrTest, RawPointer) { | 
|  | int i = 5; | 
|  | EXPECT_EQ(&i, absl::RawPtr(&i)); | 
|  | } | 
|  |  | 
|  | TEST(RawPtrTest, SmartPointer) { | 
|  | int* o = new int(5); | 
|  | std::unique_ptr<int> p(o); | 
|  | EXPECT_EQ(o, absl::RawPtr(p)); | 
|  | } | 
|  |  | 
|  | class IntPointerNonConstDeref { | 
|  | public: | 
|  | explicit IntPointerNonConstDeref(int* p) : p_(p) {} | 
|  | friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) { | 
|  | return a.p_ != nullptr; | 
|  | } | 
|  | int& operator*() { return *p_; } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<int> p_; | 
|  | }; | 
|  |  | 
|  | TEST(RawPtrTest, SmartPointerNonConstDereference) { | 
|  | int* o = new int(5); | 
|  | IntPointerNonConstDeref p(o); | 
|  | EXPECT_EQ(o, absl::RawPtr(p)); | 
|  | } | 
|  |  | 
|  | TEST(RawPtrTest, NullValuedRawPointer) { | 
|  | int* p = nullptr; | 
|  | EXPECT_EQ(nullptr, absl::RawPtr(p)); | 
|  | } | 
|  |  | 
|  | TEST(RawPtrTest, NullValuedSmartPointer) { | 
|  | std::unique_ptr<int> p; | 
|  | EXPECT_EQ(nullptr, absl::RawPtr(p)); | 
|  | } | 
|  |  | 
|  | TEST(RawPtrTest, Nullptr) { | 
|  | auto p = absl::RawPtr(nullptr); | 
|  | EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); | 
|  | EXPECT_EQ(nullptr, p); | 
|  | } | 
|  |  | 
|  | TEST(RawPtrTest, Null) { | 
|  | auto p = absl::RawPtr(nullptr); | 
|  | EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); | 
|  | EXPECT_EQ(nullptr, p); | 
|  | } | 
|  |  | 
|  | TEST(RawPtrTest, Zero) { | 
|  | auto p = absl::RawPtr(nullptr); | 
|  | EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); | 
|  | EXPECT_EQ(nullptr, p); | 
|  | } | 
|  |  | 
|  | TEST(ShareUniquePtrTest, Share) { | 
|  | auto up = absl::make_unique<int>(); | 
|  | int* rp = up.get(); | 
|  | auto sp = absl::ShareUniquePtr(std::move(up)); | 
|  | EXPECT_EQ(sp.get(), rp); | 
|  | } | 
|  |  | 
|  | TEST(ShareUniquePtrTest, ShareNull) { | 
|  | struct NeverDie { | 
|  | using pointer = void*; | 
|  | void operator()(pointer) { | 
|  | ASSERT_TRUE(false) << "Deleter should not have been called."; | 
|  | } | 
|  | }; | 
|  |  | 
|  | std::unique_ptr<void, NeverDie> up; | 
|  | auto sp = absl::ShareUniquePtr(std::move(up)); | 
|  | } | 
|  |  | 
|  | TEST(WeakenPtrTest, Weak) { | 
|  | auto sp = std::make_shared<int>(); | 
|  | auto wp = absl::WeakenPtr(sp); | 
|  | EXPECT_EQ(sp.get(), wp.lock().get()); | 
|  | sp.reset(); | 
|  | EXPECT_TRUE(wp.expired()); | 
|  | } | 
|  |  | 
|  | // Should not compile. | 
|  | /* | 
|  | TEST(RawPtrTest, NotAPointer) { | 
|  | absl::RawPtr(1.5); | 
|  | } | 
|  | */ | 
|  |  | 
|  | template <typename T> | 
|  | struct SmartPointer { | 
|  | using difference_type = char; | 
|  | }; | 
|  |  | 
|  | struct PointerWith { | 
|  | using element_type = int32_t; | 
|  | using difference_type = int16_t; | 
|  | template <typename U> | 
|  | using rebind = SmartPointer<U>; | 
|  |  | 
|  | static PointerWith pointer_to( | 
|  | element_type& r) {  // NOLINT(runtime/references) | 
|  | return PointerWith{&r}; | 
|  | } | 
|  |  | 
|  | element_type* ptr; | 
|  | }; | 
|  |  | 
|  | template <typename... Args> | 
|  | struct PointerWithout {}; | 
|  |  | 
|  | TEST(PointerTraits, Types) { | 
|  | using TraitsWith = absl::pointer_traits<PointerWith>; | 
|  | EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value)); | 
|  | EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value)); | 
|  | EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value)); | 
|  | EXPECT_TRUE(( | 
|  | std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value)); | 
|  |  | 
|  | using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>; | 
|  | EXPECT_TRUE((std::is_same<TraitsWithout::pointer, | 
|  | PointerWithout<double, int>>::value)); | 
|  | EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value)); | 
|  | EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>, | 
|  | PointerWithout<int64_t, int>>::value)); | 
|  |  | 
|  | using TraitsRawPtr = absl::pointer_traits<char*>; | 
|  | EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value)); | 
|  | EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value)); | 
|  | EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value)); | 
|  | } | 
|  |  | 
|  | TEST(PointerTraits, Functions) { | 
|  | int i; | 
|  | EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr); | 
|  | EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i)); | 
|  | } | 
|  |  | 
|  | TEST(AllocatorTraits, Typedefs) { | 
|  | struct A { | 
|  | struct value_type {}; | 
|  | }; | 
|  | EXPECT_TRUE(( | 
|  | std::is_same<A, | 
|  | typename absl::allocator_traits<A>::allocator_type>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<A::value_type, | 
|  | typename absl::allocator_traits<A>::value_type>::value)); | 
|  |  | 
|  | struct X {}; | 
|  | struct HasPointer { | 
|  | using value_type = X; | 
|  | using pointer = SmartPointer<X>; | 
|  | }; | 
|  | EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits< | 
|  | HasPointer>::pointer>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<A::value_type*, | 
|  | typename absl::allocator_traits<A>::pointer>::value)); | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | (std::is_same< | 
|  | SmartPointer<const X>, | 
|  | typename absl::allocator_traits<HasPointer>::const_pointer>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<const A::value_type*, | 
|  | typename absl::allocator_traits<A>::const_pointer>::value)); | 
|  |  | 
|  | struct HasVoidPointer { | 
|  | using value_type = X; | 
|  | struct void_pointer {}; | 
|  | }; | 
|  |  | 
|  | EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer, | 
|  | typename absl::allocator_traits< | 
|  | HasVoidPointer>::void_pointer>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<SmartPointer<void>, typename absl::allocator_traits< | 
|  | HasPointer>::void_pointer>::value)); | 
|  |  | 
|  | struct HasConstVoidPointer { | 
|  | using value_type = X; | 
|  | struct const_void_pointer {}; | 
|  | }; | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<HasConstVoidPointer::const_void_pointer, | 
|  | typename absl::allocator_traits< | 
|  | HasConstVoidPointer>::const_void_pointer>::value)); | 
|  | EXPECT_TRUE((std::is_same<SmartPointer<const void>, | 
|  | typename absl::allocator_traits< | 
|  | HasPointer>::const_void_pointer>::value)); | 
|  |  | 
|  | struct HasDifferenceType { | 
|  | using value_type = X; | 
|  | using difference_type = int; | 
|  | }; | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<int, typename absl::allocator_traits< | 
|  | HasDifferenceType>::difference_type>::value)); | 
|  | EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits< | 
|  | HasPointer>::difference_type>::value)); | 
|  |  | 
|  | struct HasSizeType { | 
|  | using value_type = X; | 
|  | using size_type = unsigned int; | 
|  | }; | 
|  | EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits< | 
|  | HasSizeType>::size_type>::value)); | 
|  | EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits< | 
|  | HasPointer>::size_type>::value)); | 
|  |  | 
|  | struct HasPropagateOnCopy { | 
|  | using value_type = X; | 
|  | struct propagate_on_container_copy_assignment {}; | 
|  | }; | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment, | 
|  | typename absl::allocator_traits<HasPropagateOnCopy>:: | 
|  | propagate_on_container_copy_assignment>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<std::false_type, | 
|  | typename absl::allocator_traits< | 
|  | A>::propagate_on_container_copy_assignment>::value)); | 
|  |  | 
|  | struct HasPropagateOnMove { | 
|  | using value_type = X; | 
|  | struct propagate_on_container_move_assignment {}; | 
|  | }; | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment, | 
|  | typename absl::allocator_traits<HasPropagateOnMove>:: | 
|  | propagate_on_container_move_assignment>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<std::false_type, | 
|  | typename absl::allocator_traits< | 
|  | A>::propagate_on_container_move_assignment>::value)); | 
|  |  | 
|  | struct HasPropagateOnSwap { | 
|  | using value_type = X; | 
|  | struct propagate_on_container_swap {}; | 
|  | }; | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<HasPropagateOnSwap::propagate_on_container_swap, | 
|  | typename absl::allocator_traits<HasPropagateOnSwap>:: | 
|  | propagate_on_container_swap>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<std::false_type, typename absl::allocator_traits<A>:: | 
|  | propagate_on_container_swap>::value)); | 
|  |  | 
|  | struct HasIsAlwaysEqual { | 
|  | using value_type = X; | 
|  | struct is_always_equal {}; | 
|  | }; | 
|  |  | 
|  | EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal, | 
|  | typename absl::allocator_traits< | 
|  | HasIsAlwaysEqual>::is_always_equal>::value)); | 
|  | EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits< | 
|  | A>::is_always_equal>::value)); | 
|  | struct NonEmpty { | 
|  | using value_type = X; | 
|  | int i; | 
|  | }; | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<std::false_type, | 
|  | absl::allocator_traits<NonEmpty>::is_always_equal>::value)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | struct AllocWithPrivateInheritance : private std::allocator<T> { | 
|  | using value_type = T; | 
|  | }; | 
|  |  | 
|  | TEST(AllocatorTraits, RebindWithPrivateInheritance) { | 
|  | // Regression test for some versions of gcc that do not like the sfinae we | 
|  | // used in combination with private inheritance. | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<AllocWithPrivateInheritance<int>, | 
|  | absl::allocator_traits<AllocWithPrivateInheritance<char>>:: | 
|  | rebind_alloc<int>>::value)); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | struct Rebound {}; | 
|  |  | 
|  | struct AllocWithRebind { | 
|  | using value_type = int; | 
|  | template <typename T> | 
|  | struct rebind { | 
|  | using other = Rebound<T>; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template <typename T, typename U> | 
|  | struct AllocWithoutRebind { | 
|  | using value_type = int; | 
|  | }; | 
|  |  | 
|  | TEST(AllocatorTraits, Rebind) { | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<Rebound<int>, | 
|  | typename absl::allocator_traits< | 
|  | AllocWithRebind>::template rebind_alloc<int>>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<absl::allocator_traits<Rebound<int>>, | 
|  | typename absl::allocator_traits< | 
|  | AllocWithRebind>::template rebind_traits<int>>::value)); | 
|  |  | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<AllocWithoutRebind<double, char>, | 
|  | typename absl::allocator_traits<AllocWithoutRebind< | 
|  | int, char>>::template rebind_alloc<double>>::value)); | 
|  | EXPECT_TRUE( | 
|  | (std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>, | 
|  | typename absl::allocator_traits<AllocWithoutRebind< | 
|  | int, char>>::template rebind_traits<double>>::value)); | 
|  | } | 
|  |  | 
|  | struct TestValue { | 
|  | TestValue() {} | 
|  | explicit TestValue(int* trace) : trace(trace) { ++*trace; } | 
|  | ~TestValue() { | 
|  | if (trace) --*trace; | 
|  | } | 
|  | int* trace = nullptr; | 
|  | }; | 
|  |  | 
|  | struct MinimalMockAllocator { | 
|  | MinimalMockAllocator() : value(0) {} | 
|  | explicit MinimalMockAllocator(int value) : value(value) {} | 
|  | MinimalMockAllocator(const MinimalMockAllocator& other) | 
|  | : value(other.value) {} | 
|  | using value_type = TestValue; | 
|  | MOCK_METHOD(value_type*, allocate, (size_t)); | 
|  | MOCK_METHOD(void, deallocate, (value_type*, size_t)); | 
|  |  | 
|  | int value; | 
|  | }; | 
|  |  | 
|  | TEST(AllocatorTraits, FunctionsMinimal) { | 
|  | int trace = 0; | 
|  | int hint; | 
|  | TestValue x(&trace); | 
|  | MinimalMockAllocator mock; | 
|  | using Traits = absl::allocator_traits<MinimalMockAllocator>; | 
|  | EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x)); | 
|  | EXPECT_CALL(mock, deallocate(&x, 7)); | 
|  |  | 
|  | EXPECT_EQ(&x, Traits::allocate(mock, 7)); | 
|  | static_cast<void>(Traits::allocate(mock, 7, static_cast<const void*>(&hint))); | 
|  | EXPECT_EQ(&x, Traits::allocate(mock, 7, static_cast<const void*>(&hint))); | 
|  | Traits::deallocate(mock, &x, 7); | 
|  |  | 
|  | EXPECT_EQ(1, trace); | 
|  | Traits::construct(mock, &x, &trace); | 
|  | EXPECT_EQ(2, trace); | 
|  | Traits::destroy(mock, &x); | 
|  | EXPECT_EQ(1, trace); | 
|  |  | 
|  | EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue), | 
|  | Traits::max_size(mock)); | 
|  |  | 
|  | EXPECT_EQ(0, mock.value); | 
|  | EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value); | 
|  | } | 
|  |  | 
|  | struct FullMockAllocator { | 
|  | FullMockAllocator() : value(0) {} | 
|  | explicit FullMockAllocator(int value) : value(value) {} | 
|  | FullMockAllocator(const FullMockAllocator& other) : value(other.value) {} | 
|  | using value_type = TestValue; | 
|  | MOCK_METHOD(value_type*, allocate, (size_t)); | 
|  | MOCK_METHOD(value_type*, allocate, (size_t, const void*)); | 
|  | MOCK_METHOD(void, construct, (value_type*, int*)); | 
|  | MOCK_METHOD(void, destroy, (value_type*)); | 
|  | MOCK_METHOD(size_t, max_size, (), | 
|  | (const)); | 
|  | MOCK_METHOD(FullMockAllocator, select_on_container_copy_construction, (), | 
|  | (const)); | 
|  |  | 
|  | int value; | 
|  | }; | 
|  |  | 
|  | TEST(AllocatorTraits, FunctionsFull) { | 
|  | int trace = 0; | 
|  | int hint; | 
|  | TestValue x(&trace), y; | 
|  | FullMockAllocator mock; | 
|  | using Traits = absl::allocator_traits<FullMockAllocator>; | 
|  | EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x)); | 
|  | EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y)); | 
|  | EXPECT_CALL(mock, construct(&x, &trace)); | 
|  | EXPECT_CALL(mock, destroy(&x)); | 
|  | EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17)); | 
|  | EXPECT_CALL(mock, select_on_container_copy_construction()) | 
|  | .WillRepeatedly(Return(FullMockAllocator(23))); | 
|  |  | 
|  | EXPECT_EQ(&x, Traits::allocate(mock, 7)); | 
|  | EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint))); | 
|  |  | 
|  | EXPECT_EQ(1, trace); | 
|  | Traits::construct(mock, &x, &trace); | 
|  | EXPECT_EQ(1, trace); | 
|  | Traits::destroy(mock, &x); | 
|  | EXPECT_EQ(1, trace); | 
|  |  | 
|  | EXPECT_EQ(17, Traits::max_size(mock)); | 
|  |  | 
|  | EXPECT_EQ(0, mock.value); | 
|  | EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value); | 
|  | } | 
|  |  | 
|  | TEST(AllocatorNoThrowTest, DefaultAllocator) { | 
|  | #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW | 
|  | EXPECT_TRUE(absl::default_allocator_is_nothrow::value); | 
|  | #else | 
|  | EXPECT_FALSE(absl::default_allocator_is_nothrow::value); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(AllocatorNoThrowTest, StdAllocator) { | 
|  | #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW | 
|  | EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value); | 
|  | #else | 
|  | EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | TEST(AllocatorNoThrowTest, CustomAllocator) { | 
|  | struct NoThrowAllocator { | 
|  | using is_nothrow = std::true_type; | 
|  | }; | 
|  | struct CanThrowAllocator { | 
|  | using is_nothrow = std::false_type; | 
|  | }; | 
|  | struct UnspecifiedAllocator {}; | 
|  | EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value); | 
|  | EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value); | 
|  | EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value); | 
|  | } | 
|  |  | 
|  | }  // namespace |