| // Copyright 2017 The Abseil Authors. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //      https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #ifndef ABSL_RANDOM_BETA_DISTRIBUTION_H_ | 
 | #define ABSL_RANDOM_BETA_DISTRIBUTION_H_ | 
 |  | 
 | #include <cassert> | 
 | #include <cmath> | 
 | #include <istream> | 
 | #include <limits> | 
 | #include <ostream> | 
 | #include <type_traits> | 
 |  | 
 | #include "absl/meta/type_traits.h" | 
 | #include "absl/random/internal/fast_uniform_bits.h" | 
 | #include "absl/random/internal/fastmath.h" | 
 | #include "absl/random/internal/generate_real.h" | 
 | #include "absl/random/internal/iostream_state_saver.h" | 
 |  | 
 | namespace absl { | 
 | ABSL_NAMESPACE_BEGIN | 
 |  | 
 | // absl::beta_distribution: | 
 | // Generate a floating-point variate conforming to a Beta distribution: | 
 | //   pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), | 
 | // where the params alpha and beta are both strictly positive real values. | 
 | // | 
 | // The support is the open interval (0, 1), but the return value might be equal | 
 | // to 0 or 1, due to numerical errors when alpha and beta are very different. | 
 | // | 
 | // Usage note: One usage is that alpha and beta are counts of number of | 
 | // successes and failures. When the total number of trials are large, consider | 
 | // approximating a beta distribution with a Gaussian distribution with the same | 
 | // mean and variance. One could use the skewness, which depends only on the | 
 | // smaller of alpha and beta when the number of trials are sufficiently large, | 
 | // to quantify how far a beta distribution is from the normal distribution. | 
 | template <typename RealType = double> | 
 | class beta_distribution { | 
 |  public: | 
 |   using result_type = RealType; | 
 |  | 
 |   class param_type { | 
 |    public: | 
 |     using distribution_type = beta_distribution; | 
 |  | 
 |     explicit param_type(result_type alpha, result_type beta) | 
 |         : alpha_(alpha), beta_(beta) { | 
 |       assert(alpha >= 0); | 
 |       assert(beta >= 0); | 
 |       assert(alpha <= (std::numeric_limits<result_type>::max)()); | 
 |       assert(beta <= (std::numeric_limits<result_type>::max)()); | 
 |       if (alpha == 0 || beta == 0) { | 
 |         method_ = DEGENERATE_SMALL; | 
 |         x_ = (alpha >= beta) ? 1 : 0; | 
 |         return; | 
 |       } | 
 |       // a_ = min(beta, alpha), b_ = max(beta, alpha). | 
 |       if (beta < alpha) { | 
 |         inverted_ = true; | 
 |         a_ = beta; | 
 |         b_ = alpha; | 
 |       } else { | 
 |         inverted_ = false; | 
 |         a_ = alpha; | 
 |         b_ = beta; | 
 |       } | 
 |       if (a_ <= 1 && b_ >= ThresholdForLargeA()) { | 
 |         method_ = DEGENERATE_SMALL; | 
 |         x_ = inverted_ ? result_type(1) : result_type(0); | 
 |         return; | 
 |       } | 
 |       // For threshold values, see also: | 
 |       // Evaluation of Beta Generation Algorithms, Ying-Chao Hung, et. al. | 
 |       // February, 2009. | 
 |       if ((b_ < 1.0 && a_ + b_ <= 1.2) || a_ <= ThresholdForSmallA()) { | 
 |         // Choose Joehnk over Cheng when it's faster or when Cheng encounters | 
 |         // numerical issues. | 
 |         method_ = JOEHNK; | 
 |         a_ = result_type(1) / alpha_; | 
 |         b_ = result_type(1) / beta_; | 
 |         if (std::isinf(a_) || std::isinf(b_)) { | 
 |           method_ = DEGENERATE_SMALL; | 
 |           x_ = inverted_ ? result_type(1) : result_type(0); | 
 |         } | 
 |         return; | 
 |       } | 
 |       if (a_ >= ThresholdForLargeA()) { | 
 |         method_ = DEGENERATE_LARGE; | 
 |         // Note: on PPC for long double, evaluating | 
 |         // `std::numeric_limits::max() / ThresholdForLargeA` results in NaN. | 
 |         result_type r = a_ / b_; | 
 |         x_ = (inverted_ ? result_type(1) : r) / (1 + r); | 
 |         return; | 
 |       } | 
 |       x_ = a_ + b_; | 
 |       log_x_ = std::log(x_); | 
 |       if (a_ <= 1) { | 
 |         method_ = CHENG_BA; | 
 |         y_ = result_type(1) / a_; | 
 |         gamma_ = a_ + a_; | 
 |         return; | 
 |       } | 
 |       method_ = CHENG_BB; | 
 |       result_type r = (a_ - 1) / (b_ - 1); | 
 |       y_ = std::sqrt((1 + r) / (b_ * r * 2 - r + 1)); | 
 |       gamma_ = a_ + result_type(1) / y_; | 
 |     } | 
 |  | 
 |     result_type alpha() const { return alpha_; } | 
 |     result_type beta() const { return beta_; } | 
 |  | 
 |     friend bool operator==(const param_type& a, const param_type& b) { | 
 |       return a.alpha_ == b.alpha_ && a.beta_ == b.beta_; | 
 |     } | 
 |  | 
 |     friend bool operator!=(const param_type& a, const param_type& b) { | 
 |       return !(a == b); | 
 |     } | 
 |  | 
 |    private: | 
 |     friend class beta_distribution; | 
 |  | 
 | #ifdef _MSC_VER | 
 |     // MSVC does not have constexpr implementations for std::log and std::exp | 
 |     // so they are computed at runtime. | 
 | #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR | 
 | #else | 
 | #define ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR constexpr | 
 | #endif | 
 |  | 
 |     // The threshold for whether std::exp(1/a) is finite. | 
 |     // Note that this value is quite large, and a smaller a_ is NOT abnormal. | 
 |     static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type | 
 |     ThresholdForSmallA() { | 
 |       return result_type(1) / | 
 |              std::log((std::numeric_limits<result_type>::max)()); | 
 |     } | 
 |  | 
 |     // The threshold for whether a * std::log(a) is finite. | 
 |     static ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR result_type | 
 |     ThresholdForLargeA() { | 
 |       return std::exp( | 
 |           std::log((std::numeric_limits<result_type>::max)()) - | 
 |           std::log(std::log((std::numeric_limits<result_type>::max)())) - | 
 |           ThresholdPadding()); | 
 |     } | 
 |  | 
 | #undef ABSL_RANDOM_INTERNAL_LOG_EXP_CONSTEXPR | 
 |  | 
 |     // Pad the threshold for large A for long double on PPC. This is done via a | 
 |     // template specialization below. | 
 |     static constexpr result_type ThresholdPadding() { return 0; } | 
 |  | 
 |     enum Method { | 
 |       JOEHNK,    // Uses algorithm Joehnk | 
 |       CHENG_BA,  // Uses algorithm BA in Cheng | 
 |       CHENG_BB,  // Uses algorithm BB in Cheng | 
 |  | 
 |       // Note: See also: | 
 |       //   Hung et al. Evaluation of beta generation algorithms. Communications | 
 |       //   in Statistics-Simulation and Computation 38.4 (2009): 750-770. | 
 |       // especially: | 
 |       //   Zechner, Heinz, and Ernst Stadlober. Generating beta variates via | 
 |       //   patchwork rejection. Computing 50.1 (1993): 1-18. | 
 |  | 
 |       DEGENERATE_SMALL,  // a_ is abnormally small. | 
 |       DEGENERATE_LARGE,  // a_ is abnormally large. | 
 |     }; | 
 |  | 
 |     result_type alpha_; | 
 |     result_type beta_; | 
 |  | 
 |     result_type a_;  // the smaller of {alpha, beta}, or 1.0/alpha_ in JOEHNK | 
 |     result_type b_;  // the larger of {alpha, beta}, or 1.0/beta_ in JOEHNK | 
 |     result_type x_;  // alpha + beta, or the result in degenerate cases | 
 |     result_type log_x_;  // log(x_) | 
 |     result_type y_;      // "beta" in Cheng | 
 |     result_type gamma_;  // "gamma" in Cheng | 
 |  | 
 |     Method method_; | 
 |  | 
 |     // Placing this last for optimal alignment. | 
 |     // Whether alpha_ != a_, i.e. true iff alpha_ > beta_. | 
 |     bool inverted_; | 
 |  | 
 |     static_assert(std::is_floating_point<RealType>::value, | 
 |                   "Class-template absl::beta_distribution<> must be " | 
 |                   "parameterized using a floating-point type."); | 
 |   }; | 
 |  | 
 |   beta_distribution() : beta_distribution(1) {} | 
 |  | 
 |   explicit beta_distribution(result_type alpha, result_type beta = 1) | 
 |       : param_(alpha, beta) {} | 
 |  | 
 |   explicit beta_distribution(const param_type& p) : param_(p) {} | 
 |  | 
 |   void reset() {} | 
 |  | 
 |   // Generating functions | 
 |   template <typename URBG> | 
 |   result_type operator()(URBG& g) {  // NOLINT(runtime/references) | 
 |     return (*this)(g, param_); | 
 |   } | 
 |  | 
 |   template <typename URBG> | 
 |   result_type operator()(URBG& g,  // NOLINT(runtime/references) | 
 |                          const param_type& p); | 
 |  | 
 |   param_type param() const { return param_; } | 
 |   void param(const param_type& p) { param_ = p; } | 
 |  | 
 |   result_type(min)() const { return 0; } | 
 |   result_type(max)() const { return 1; } | 
 |  | 
 |   result_type alpha() const { return param_.alpha(); } | 
 |   result_type beta() const { return param_.beta(); } | 
 |  | 
 |   friend bool operator==(const beta_distribution& a, | 
 |                          const beta_distribution& b) { | 
 |     return a.param_ == b.param_; | 
 |   } | 
 |   friend bool operator!=(const beta_distribution& a, | 
 |                          const beta_distribution& b) { | 
 |     return a.param_ != b.param_; | 
 |   } | 
 |  | 
 |  private: | 
 |   template <typename URBG> | 
 |   result_type AlgorithmJoehnk(URBG& g,  // NOLINT(runtime/references) | 
 |                               const param_type& p); | 
 |  | 
 |   template <typename URBG> | 
 |   result_type AlgorithmCheng(URBG& g,  // NOLINT(runtime/references) | 
 |                              const param_type& p); | 
 |  | 
 |   template <typename URBG> | 
 |   result_type DegenerateCase(URBG& g,  // NOLINT(runtime/references) | 
 |                              const param_type& p) { | 
 |     if (p.method_ == param_type::DEGENERATE_SMALL && p.alpha_ == p.beta_) { | 
 |       // Returns 0 or 1 with equal probability. | 
 |       random_internal::FastUniformBits<uint8_t> fast_u8; | 
 |       return static_cast<result_type>((fast_u8(g) & 0x10) != | 
 |                                       0);  // pick any single bit. | 
 |     } | 
 |     return p.x_; | 
 |   } | 
 |  | 
 |   param_type param_; | 
 |   random_internal::FastUniformBits<uint64_t> fast_u64_; | 
 | }; | 
 |  | 
 | #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \ | 
 |     defined(__ppc__) || defined(__PPC__) | 
 | // PPC needs a more stringent boundary for long double. | 
 | template <> | 
 | constexpr long double | 
 | beta_distribution<long double>::param_type::ThresholdPadding() { | 
 |   return 10; | 
 | } | 
 | #endif | 
 |  | 
 | template <typename RealType> | 
 | template <typename URBG> | 
 | typename beta_distribution<RealType>::result_type | 
 | beta_distribution<RealType>::AlgorithmJoehnk( | 
 |     URBG& g,  // NOLINT(runtime/references) | 
 |     const param_type& p) { | 
 |   using random_internal::GeneratePositiveTag; | 
 |   using random_internal::GenerateRealFromBits; | 
 |   using real_type = | 
 |       absl::conditional_t<std::is_same<RealType, float>::value, float, double>; | 
 |  | 
 |   // Based on Joehnk, M. D. Erzeugung von betaverteilten und gammaverteilten | 
 |   // Zufallszahlen. Metrika 8.1 (1964): 5-15. | 
 |   // This method is described in Knuth, Vol 2 (Third Edition), pp 134. | 
 |  | 
 |   result_type u, v, x, y, z; | 
 |   for (;;) { | 
 |     u = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( | 
 |         fast_u64_(g)); | 
 |     v = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( | 
 |         fast_u64_(g)); | 
 |  | 
 |     // Direct method. std::pow is slow for float, so rely on the optimizer to | 
 |     // remove the std::pow() path for that case. | 
 |     if (!std::is_same<float, result_type>::value) { | 
 |       x = std::pow(u, p.a_); | 
 |       y = std::pow(v, p.b_); | 
 |       z = x + y; | 
 |       if (z > 1) { | 
 |         // Reject if and only if `x + y > 1.0` | 
 |         continue; | 
 |       } | 
 |       if (z > 0) { | 
 |         // When both alpha and beta are small, x and y are both close to 0, so | 
 |         // divide by (x+y) directly may result in nan. | 
 |         return x / z; | 
 |       } | 
 |     } | 
 |  | 
 |     // Log transform. | 
 |     // x = log( pow(u, p.a_) ), y = log( pow(v, p.b_) ) | 
 |     // since u, v <= 1.0,  x, y < 0. | 
 |     x = std::log(u) * p.a_; | 
 |     y = std::log(v) * p.b_; | 
 |     if (!std::isfinite(x) || !std::isfinite(y)) { | 
 |       continue; | 
 |     } | 
 |     // z = log( pow(u, a) + pow(v, b) ) | 
 |     z = x > y ? (x + std::log(1 + std::exp(y - x))) | 
 |               : (y + std::log(1 + std::exp(x - y))); | 
 |     // Reject iff log(x+y) > 0. | 
 |     if (z > 0) { | 
 |       continue; | 
 |     } | 
 |     return std::exp(x - z); | 
 |   } | 
 | } | 
 |  | 
 | template <typename RealType> | 
 | template <typename URBG> | 
 | typename beta_distribution<RealType>::result_type | 
 | beta_distribution<RealType>::AlgorithmCheng( | 
 |     URBG& g,  // NOLINT(runtime/references) | 
 |     const param_type& p) { | 
 |   using random_internal::GeneratePositiveTag; | 
 |   using random_internal::GenerateRealFromBits; | 
 |   using real_type = | 
 |       absl::conditional_t<std::is_same<RealType, float>::value, float, double>; | 
 |  | 
 |   // Based on Cheng, Russell CH. Generating beta variates with nonintegral | 
 |   // shape parameters. Communications of the ACM 21.4 (1978): 317-322. | 
 |   // (https://dl.acm.org/citation.cfm?id=359482). | 
 |   static constexpr result_type kLogFour = | 
 |       result_type(1.3862943611198906188344642429163531361);  // log(4) | 
 |   static constexpr result_type kS = | 
 |       result_type(2.6094379124341003746007593332261876);  // 1+log(5) | 
 |  | 
 |   const bool use_algorithm_ba = (p.method_ == param_type::CHENG_BA); | 
 |   result_type u1, u2, v, w, z, r, s, t, bw_inv, lhs; | 
 |   for (;;) { | 
 |     u1 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( | 
 |         fast_u64_(g)); | 
 |     u2 = GenerateRealFromBits<real_type, GeneratePositiveTag, false>( | 
 |         fast_u64_(g)); | 
 |     v = p.y_ * std::log(u1 / (1 - u1)); | 
 |     w = p.a_ * std::exp(v); | 
 |     bw_inv = result_type(1) / (p.b_ + w); | 
 |     r = p.gamma_ * v - kLogFour; | 
 |     s = p.a_ + r - w; | 
 |     z = u1 * u1 * u2; | 
 |     if (!use_algorithm_ba && s + kS >= 5 * z) { | 
 |       break; | 
 |     } | 
 |     t = std::log(z); | 
 |     if (!use_algorithm_ba && s >= t) { | 
 |       break; | 
 |     } | 
 |     lhs = p.x_ * (p.log_x_ + std::log(bw_inv)) + r; | 
 |     if (lhs >= t) { | 
 |       break; | 
 |     } | 
 |   } | 
 |   return p.inverted_ ? (1 - w * bw_inv) : w * bw_inv; | 
 | } | 
 |  | 
 | template <typename RealType> | 
 | template <typename URBG> | 
 | typename beta_distribution<RealType>::result_type | 
 | beta_distribution<RealType>::operator()(URBG& g,  // NOLINT(runtime/references) | 
 |                                         const param_type& p) { | 
 |   switch (p.method_) { | 
 |     case param_type::JOEHNK: | 
 |       return AlgorithmJoehnk(g, p); | 
 |     case param_type::CHENG_BA: | 
 |       ABSL_FALLTHROUGH_INTENDED; | 
 |     case param_type::CHENG_BB: | 
 |       return AlgorithmCheng(g, p); | 
 |     default: | 
 |       return DegenerateCase(g, p); | 
 |   } | 
 | } | 
 |  | 
 | template <typename CharT, typename Traits, typename RealType> | 
 | std::basic_ostream<CharT, Traits>& operator<<( | 
 |     std::basic_ostream<CharT, Traits>& os,  // NOLINT(runtime/references) | 
 |     const beta_distribution<RealType>& x) { | 
 |   auto saver = random_internal::make_ostream_state_saver(os); | 
 |   os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); | 
 |   os << x.alpha() << os.fill() << x.beta(); | 
 |   return os; | 
 | } | 
 |  | 
 | template <typename CharT, typename Traits, typename RealType> | 
 | std::basic_istream<CharT, Traits>& operator>>( | 
 |     std::basic_istream<CharT, Traits>& is,  // NOLINT(runtime/references) | 
 |     beta_distribution<RealType>& x) {       // NOLINT(runtime/references) | 
 |   using result_type = typename beta_distribution<RealType>::result_type; | 
 |   using param_type = typename beta_distribution<RealType>::param_type; | 
 |   result_type alpha, beta; | 
 |  | 
 |   auto saver = random_internal::make_istream_state_saver(is); | 
 |   alpha = random_internal::read_floating_point<result_type>(is); | 
 |   if (is.fail()) return is; | 
 |   beta = random_internal::read_floating_point<result_type>(is); | 
 |   if (!is.fail()) { | 
 |     x.param(param_type(alpha, beta)); | 
 |   } | 
 |   return is; | 
 | } | 
 |  | 
 | ABSL_NAMESPACE_END | 
 | }  // namespace absl | 
 |  | 
 | #endif  // ABSL_RANDOM_BETA_DISTRIBUTION_H_ |