| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/container/internal/raw_hash_set.h" |
| |
| #include <atomic> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/config.h" |
| #include "absl/base/dynamic_annotations.h" |
| #include "absl/base/internal/endian.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/optimization.h" |
| #include "absl/container/internal/container_memory.h" |
| #include "absl/container/internal/hashtable_control_bytes.h" |
| #include "absl/container/internal/hashtablez_sampler.h" |
| #include "absl/functional/function_ref.h" |
| #include "absl/hash/hash.h" |
| #include "absl/numeric/bits.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| |
| // Represents a control byte corresponding to a full slot with arbitrary hash. |
| constexpr ctrl_t ZeroCtrlT() { return static_cast<ctrl_t>(0); } |
| |
| // We have space for `growth_info` before a single block of control bytes. A |
| // single block of empty control bytes for tables without any slots allocated. |
| // This enables removing a branch in the hot path of find(). In order to ensure |
| // that the control bytes are aligned to 16, we have 16 bytes before the control |
| // bytes even though growth_info only needs 8. |
| alignas(16) ABSL_CONST_INIT ABSL_DLL const ctrl_t kEmptyGroup[32] = { |
| ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), |
| ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), |
| ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), |
| ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), |
| ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, |
| ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, |
| ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, |
| ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty}; |
| |
| // We need one full byte followed by a sentinel byte for iterator::operator++ to |
| // work. We have a full group after kSentinel to be safe (in case operator++ is |
| // changed to read a full group). |
| ABSL_CONST_INIT ABSL_DLL const ctrl_t kSooControl[17] = { |
| ZeroCtrlT(), ctrl_t::kSentinel, ZeroCtrlT(), ctrl_t::kEmpty, |
| ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, |
| ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, |
| ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, |
| ctrl_t::kEmpty}; |
| static_assert(NumControlBytes(SooCapacity()) <= 17, |
| "kSooControl capacity too small"); |
| |
| namespace { |
| |
| [[noreturn]] ABSL_ATTRIBUTE_NOINLINE void HashTableSizeOverflow() { |
| ABSL_RAW_LOG(FATAL, "Hash table size overflow"); |
| } |
| |
| void ValidateMaxSize(size_t size, size_t slot_size) { |
| if (IsAboveValidSize(size, slot_size)) { |
| HashTableSizeOverflow(); |
| } |
| } |
| |
| // Returns "random" seed. |
| inline size_t RandomSeed() { |
| #ifdef ABSL_HAVE_THREAD_LOCAL |
| static thread_local size_t counter = 0; |
| size_t value = ++counter; |
| #else // ABSL_HAVE_THREAD_LOCAL |
| static std::atomic<size_t> counter(0); |
| size_t value = counter.fetch_add(1, std::memory_order_relaxed); |
| #endif // ABSL_HAVE_THREAD_LOCAL |
| return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter)); |
| } |
| |
| bool ShouldRehashForBugDetection(PerTableSeed seed, size_t capacity) { |
| // Note: we can't use the abseil-random library because abseil-random |
| // depends on swisstable. We want to return true with probability |
| // `min(1, RehashProbabilityConstant() / capacity())`. In order to do this, |
| // we probe based on a random hash and see if the offset is less than |
| // RehashProbabilityConstant(). |
| return probe(seed, capacity, absl::HashOf(RandomSeed())).offset() < |
| RehashProbabilityConstant(); |
| } |
| |
| // Find a non-deterministic hash for single group table. |
| // Last two bits are used to find a position for a newly inserted element after |
| // resize. |
| // This function is mixing all bits of hash and seed to maximize entropy. |
| size_t SingleGroupTableH1(size_t hash, PerTableSeed seed) { |
| return static_cast<size_t>(absl::popcount(hash ^ seed.seed())); |
| } |
| |
| // Returns the address of the slot `i` iterations after `slot` assuming each |
| // slot has the specified size. |
| inline void* NextSlot(void* slot, size_t slot_size, size_t i = 1) { |
| return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) + |
| slot_size * i); |
| } |
| |
| // Returns the address of the slot just before `slot` assuming each slot has the |
| // specified size. |
| inline void* PrevSlot(void* slot, size_t slot_size) { |
| return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) - slot_size); |
| } |
| |
| } // namespace |
| |
| GenerationType* EmptyGeneration() { |
| if (SwisstableGenerationsEnabled()) { |
| constexpr size_t kNumEmptyGenerations = 1024; |
| static constexpr GenerationType kEmptyGenerations[kNumEmptyGenerations]{}; |
| return const_cast<GenerationType*>( |
| &kEmptyGenerations[RandomSeed() % kNumEmptyGenerations]); |
| } |
| return nullptr; |
| } |
| |
| bool CommonFieldsGenerationInfoEnabled:: |
| should_rehash_for_bug_detection_on_insert(PerTableSeed seed, |
| size_t capacity) const { |
| if (reserved_growth_ == kReservedGrowthJustRanOut) return true; |
| if (reserved_growth_ > 0) return false; |
| return ShouldRehashForBugDetection(seed, capacity); |
| } |
| |
| bool CommonFieldsGenerationInfoEnabled::should_rehash_for_bug_detection_on_move( |
| PerTableSeed seed, size_t capacity) const { |
| return ShouldRehashForBugDetection(seed, capacity); |
| } |
| |
| bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash, |
| PerTableSeed seed) { |
| // To avoid problems with weak hashes and single bit tests, we use % 13. |
| // TODO(kfm,sbenza): revisit after we do unconditional mixing |
| return !is_small(capacity) && (H1(hash, seed) ^ RandomSeed()) % 13 > 6; |
| } |
| |
| void IterateOverFullSlots(const CommonFields& c, size_t slot_size, |
| absl::FunctionRef<void(const ctrl_t*, void*)> cb) { |
| const size_t cap = c.capacity(); |
| const ctrl_t* ctrl = c.control(); |
| void* slot = c.slot_array(); |
| if (is_small(cap)) { |
| // Mirrored/cloned control bytes in small table are also located in the |
| // first group (starting from position 0). We are taking group from position |
| // `capacity` in order to avoid duplicates. |
| |
| // Small tables capacity fits into portable group, where |
| // GroupPortableImpl::MaskFull is more efficient for the |
| // capacity <= GroupPortableImpl::kWidth. |
| assert(cap <= GroupPortableImpl::kWidth && |
| "unexpectedly large small capacity"); |
| static_assert(Group::kWidth >= GroupPortableImpl::kWidth, |
| "unexpected group width"); |
| // Group starts from kSentinel slot, so indices in the mask will |
| // be increased by 1. |
| const auto mask = GroupPortableImpl(ctrl + cap).MaskFull(); |
| --ctrl; |
| slot = PrevSlot(slot, slot_size); |
| for (uint32_t i : mask) { |
| cb(ctrl + i, SlotAddress(slot, i, slot_size)); |
| } |
| return; |
| } |
| size_t remaining = c.size(); |
| ABSL_ATTRIBUTE_UNUSED const size_t original_size_for_assert = remaining; |
| while (remaining != 0) { |
| for (uint32_t i : GroupFullEmptyOrDeleted(ctrl).MaskFull()) { |
| assert(IsFull(ctrl[i]) && "hash table was modified unexpectedly"); |
| cb(ctrl + i, SlotAddress(slot, i, slot_size)); |
| --remaining; |
| } |
| ctrl += Group::kWidth; |
| slot = NextSlot(slot, slot_size, Group::kWidth); |
| assert((remaining == 0 || *(ctrl - 1) != ctrl_t::kSentinel) && |
| "hash table was modified unexpectedly"); |
| } |
| // NOTE: erasure of the current element is allowed in callback for |
| // absl::erase_if specialization. So we use `>=`. |
| assert(original_size_for_assert >= c.size() && |
| "hash table was modified unexpectedly"); |
| } |
| |
| size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size, |
| CommonFields& common) { |
| assert(common.capacity() == NextCapacity(SooCapacity())); |
| // After resize from capacity 1 to 3, we always have exactly the slot with |
| // index 1 occupied, so we need to insert either at index 0 or index 2. |
| static_assert(SooSlotIndex() == 1, ""); |
| PrepareInsertCommon(common); |
| const size_t offset = SingleGroupTableH1(hash, common.seed()) & 2; |
| common.growth_info().OverwriteEmptyAsFull(); |
| SetCtrlInSingleGroupTable(common, offset, H2(hash), slot_size); |
| common.infoz().RecordInsert(hash, /*distance_from_desired=*/0); |
| return offset; |
| } |
| |
| void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) { |
| assert(ctrl[capacity] == ctrl_t::kSentinel); |
| assert(IsValidCapacity(capacity)); |
| for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) { |
| Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); |
| } |
| // Copy the cloned ctrl bytes. |
| std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes()); |
| ctrl[capacity] = ctrl_t::kSentinel; |
| } |
| // Extern template instantiation for inline function. |
| template FindInfo find_first_non_full(const CommonFields&, size_t); |
| |
| FindInfo find_first_non_full_outofline(const CommonFields& common, |
| size_t hash) { |
| return find_first_non_full(common, hash); |
| } |
| |
| namespace { |
| |
| // Finds guaranteed to exists empty slot from the given position. |
| // NOTE: this function is almost never triggered inside of the |
| // DropDeletesWithoutResize, so we keep it simple. |
| // The table is rather sparse, so empty slot will be found very quickly. |
| size_t FindEmptySlot(size_t start, size_t end, const ctrl_t* ctrl) { |
| for (size_t i = start; i < end; ++i) { |
| if (IsEmpty(ctrl[i])) { |
| return i; |
| } |
| } |
| ABSL_UNREACHABLE(); |
| } |
| |
| // Finds guaranteed to exist full slot starting from the given position. |
| // NOTE: this function is only triggered for rehash(0), when we need to |
| // go back to SOO state, so we keep it simple. |
| size_t FindFirstFullSlot(size_t start, size_t end, const ctrl_t* ctrl) { |
| for (size_t i = start; i < end; ++i) { |
| if (IsFull(ctrl[i])) { |
| return i; |
| } |
| } |
| ABSL_UNREACHABLE(); |
| } |
| |
| size_t DropDeletesWithoutResizeAndPrepareInsert(CommonFields& common, |
| size_t new_hash, |
| const PolicyFunctions& policy) { |
| void* set = &common; |
| void* slot_array = common.slot_array(); |
| const size_t capacity = common.capacity(); |
| assert(IsValidCapacity(capacity)); |
| assert(!is_small(capacity)); |
| // Algorithm: |
| // - mark all DELETED slots as EMPTY |
| // - mark all FULL slots as DELETED |
| // - for each slot marked as DELETED |
| // hash = Hash(element) |
| // target = find_first_non_full(hash) |
| // if target is in the same group |
| // mark slot as FULL |
| // else if target is EMPTY |
| // transfer element to target |
| // mark slot as EMPTY |
| // mark target as FULL |
| // else if target is DELETED |
| // swap current element with target element |
| // mark target as FULL |
| // repeat procedure for current slot with moved from element (target) |
| ctrl_t* ctrl = common.control(); |
| ConvertDeletedToEmptyAndFullToDeleted(ctrl, capacity); |
| const void* hash_fn = policy.hash_fn(common); |
| auto hasher = policy.hash_slot; |
| auto transfer = policy.transfer; |
| const size_t slot_size = policy.slot_size; |
| |
| size_t total_probe_length = 0; |
| void* slot_ptr = SlotAddress(slot_array, 0, slot_size); |
| |
| // The index of an empty slot that can be used as temporary memory for |
| // the swap operation. |
| constexpr size_t kUnknownId = ~size_t{}; |
| size_t tmp_space_id = kUnknownId; |
| |
| for (size_t i = 0; i != capacity; |
| ++i, slot_ptr = NextSlot(slot_ptr, slot_size)) { |
| assert(slot_ptr == SlotAddress(slot_array, i, slot_size)); |
| if (IsEmpty(ctrl[i])) { |
| tmp_space_id = i; |
| continue; |
| } |
| if (!IsDeleted(ctrl[i])) continue; |
| const size_t hash = (*hasher)(hash_fn, slot_ptr); |
| const FindInfo target = find_first_non_full(common, hash); |
| const size_t new_i = target.offset; |
| total_probe_length += target.probe_length; |
| |
| // Verify if the old and new i fall within the same group wrt the hash. |
| // If they do, we don't need to move the object as it falls already in the |
| // best probe we can. |
| const size_t probe_offset = probe(common, hash).offset(); |
| const auto probe_index = [probe_offset, capacity](size_t pos) { |
| return ((pos - probe_offset) & capacity) / Group::kWidth; |
| }; |
| |
| // Element doesn't move. |
| if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) { |
| SetCtrlInLargeTable(common, i, H2(hash), slot_size); |
| continue; |
| } |
| |
| void* new_slot_ptr = SlotAddress(slot_array, new_i, slot_size); |
| if (IsEmpty(ctrl[new_i])) { |
| // Transfer element to the empty spot. |
| // SetCtrl poisons/unpoisons the slots so we have to call it at the |
| // right time. |
| SetCtrlInLargeTable(common, new_i, H2(hash), slot_size); |
| (*transfer)(set, new_slot_ptr, slot_ptr, 1); |
| SetCtrlInLargeTable(common, i, ctrl_t::kEmpty, slot_size); |
| // Initialize or change empty space id. |
| tmp_space_id = i; |
| } else { |
| assert(IsDeleted(ctrl[new_i])); |
| SetCtrlInLargeTable(common, new_i, H2(hash), slot_size); |
| // Until we are done rehashing, DELETED marks previously FULL slots. |
| |
| if (tmp_space_id == kUnknownId) { |
| tmp_space_id = FindEmptySlot(i + 1, capacity, ctrl); |
| } |
| void* tmp_space = SlotAddress(slot_array, tmp_space_id, slot_size); |
| SanitizerUnpoisonMemoryRegion(tmp_space, slot_size); |
| |
| // Swap i and new_i elements. |
| (*transfer)(set, tmp_space, new_slot_ptr, 1); |
| (*transfer)(set, new_slot_ptr, slot_ptr, 1); |
| (*transfer)(set, slot_ptr, tmp_space, 1); |
| |
| SanitizerPoisonMemoryRegion(tmp_space, slot_size); |
| |
| // repeat the processing of the ith slot |
| --i; |
| slot_ptr = PrevSlot(slot_ptr, slot_size); |
| } |
| } |
| // Prepare insert for the new element. |
| PrepareInsertCommon(common); |
| ResetGrowthLeft(common); |
| FindInfo find_info = find_first_non_full(common, new_hash); |
| SetCtrlInLargeTable(common, find_info.offset, H2(new_hash), policy.slot_size); |
| common.infoz().RecordInsert(new_hash, find_info.probe_length); |
| common.infoz().RecordRehash(total_probe_length); |
| return find_info.offset; |
| } |
| |
| static bool WasNeverFull(CommonFields& c, size_t index) { |
| if (is_single_group(c.capacity())) { |
| return true; |
| } |
| const size_t index_before = (index - Group::kWidth) & c.capacity(); |
| const auto empty_after = Group(c.control() + index).MaskEmpty(); |
| const auto empty_before = Group(c.control() + index_before).MaskEmpty(); |
| |
| // We count how many consecutive non empties we have to the right and to the |
| // left of `it`. If the sum is >= kWidth then there is at least one probe |
| // window that might have seen a full group. |
| return empty_before && empty_after && |
| static_cast<size_t>(empty_after.TrailingZeros()) + |
| empty_before.LeadingZeros() < |
| Group::kWidth; |
| } |
| |
| // Initializes control bytes for single element table. |
| // Capacity of the table must be 1. |
| ABSL_ATTRIBUTE_ALWAYS_INLINE inline void InitializeSingleElementControlBytes( |
| uint64_t h2, ctrl_t* new_ctrl) { |
| static constexpr uint64_t kEmptyXorSentinel = |
| static_cast<uint8_t>(ctrl_t::kEmpty) ^ |
| static_cast<uint8_t>(ctrl_t::kSentinel); |
| static constexpr uint64_t kEmpty64 = static_cast<uint8_t>(ctrl_t::kEmpty); |
| // The first 8 bytes, where present slot positions are replaced with 0. |
| static constexpr uint64_t kFirstCtrlBytesWithZeroes = |
| k8EmptyBytes ^ kEmpty64 ^ (kEmptyXorSentinel << 8) ^ (kEmpty64 << 16); |
| |
| // Fill the original 0th and mirrored 2nd bytes with the hash. |
| // Result will look like: |
| // HSHEEEEE |
| // Where H = h2, E = kEmpty, S = kSentinel. |
| const uint64_t first_ctrl_bytes = |
| (h2 | kFirstCtrlBytesWithZeroes) | (h2 << 16); |
| // Fill last bytes with kEmpty. |
| std::memset(new_ctrl + 1, static_cast<int8_t>(ctrl_t::kEmpty), Group::kWidth); |
| // Overwrite the first 3 bytes with HSH. Other bytes will not be changed. |
| absl::little_endian::Store64(new_ctrl, first_ctrl_bytes); |
| } |
| |
| } // namespace |
| |
| void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size) { |
| assert(IsFull(c.control()[index]) && "erasing a dangling iterator"); |
| c.decrement_size(); |
| c.infoz().RecordErase(); |
| |
| if (WasNeverFull(c, index)) { |
| SetCtrl(c, index, ctrl_t::kEmpty, slot_size); |
| c.growth_info().OverwriteFullAsEmpty(); |
| return; |
| } |
| |
| c.growth_info().OverwriteFullAsDeleted(); |
| SetCtrlInLargeTable(c, index, ctrl_t::kDeleted, slot_size); |
| } |
| |
| void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy, |
| void* alloc, bool reuse, bool soo_enabled) { |
| if (reuse) { |
| c.set_size_to_zero(); |
| assert(!soo_enabled || c.capacity() > SooCapacity()); |
| ResetCtrl(c, policy.slot_size); |
| ResetGrowthLeft(c); |
| c.infoz().RecordStorageChanged(0, c.capacity()); |
| } else { |
| // We need to record infoz before calling dealloc, which will unregister |
| // infoz. |
| c.infoz().RecordClearedReservation(); |
| c.infoz().RecordStorageChanged(0, soo_enabled ? SooCapacity() : 0); |
| c.infoz().Unregister(); |
| (*policy.dealloc)(alloc, c.capacity(), c.control(), policy.slot_size, |
| policy.slot_align, c.has_infoz()); |
| c = soo_enabled ? CommonFields{soo_tag_t{}} : CommonFields{non_soo_tag_t{}}; |
| } |
| } |
| |
| namespace { |
| |
| // Poisons empty slots. It is useful when slots are transferred via memcpy. |
| // PRECONDITIONs: common.control() is fully initialized. |
| void PoisonEmptySlots(CommonFields& c, size_t slot_size) { |
| for (size_t i = 0; i < c.capacity(); ++i) { |
| if (!IsFull(c.control()[i])) { |
| SanitizerPoisonMemoryRegion(SlotAddress(c.slot_array(), i, slot_size), |
| slot_size); |
| } |
| } |
| } |
| |
| enum class ResizeNonSooMode { |
| kGuaranteedEmpty, |
| kGuaranteedAllocated, |
| }; |
| |
| template <ResizeNonSooMode kMode> |
| void ResizeNonSooImpl(CommonFields& common, size_t new_capacity, |
| HashtablezInfoHandle infoz, |
| const PolicyFunctions& policy) { |
| assert(IsValidCapacity(new_capacity)); |
| assert(new_capacity > policy.soo_capacity); |
| |
| const size_t old_capacity = common.capacity(); |
| [[maybe_unused]] ctrl_t* old_ctrl = common.control(); |
| [[maybe_unused]] void* old_slots = common.slot_array(); |
| |
| const size_t slot_size = policy.slot_size; |
| const size_t slot_align = policy.slot_align; |
| const bool has_infoz = infoz.IsSampled(); |
| |
| common.set_capacity(new_capacity); |
| RawHashSetLayout layout(new_capacity, slot_size, slot_align, has_infoz); |
| void* alloc = policy.get_char_alloc(common); |
| char* mem = static_cast<char*>(policy.alloc(alloc, layout.alloc_size())); |
| const GenerationType old_generation = common.generation(); |
| common.set_generation_ptr( |
| reinterpret_cast<GenerationType*>(mem + layout.generation_offset())); |
| common.set_generation(NextGeneration(old_generation)); |
| |
| common.set_control</*kGenerateSeed=*/true>( |
| reinterpret_cast<ctrl_t*>(mem + layout.control_offset())); |
| common.set_slots(mem + layout.slot_offset()); |
| |
| size_t total_probe_length = 0; |
| ResetCtrl(common, slot_size); |
| assert(kMode != ResizeNonSooMode::kGuaranteedEmpty || |
| old_capacity == policy.soo_capacity); |
| assert(kMode != ResizeNonSooMode::kGuaranteedAllocated || old_capacity > 0); |
| if constexpr (kMode == ResizeNonSooMode::kGuaranteedAllocated) { |
| total_probe_length = policy.find_new_positions_and_transfer_slots( |
| common, old_ctrl, old_slots, old_capacity); |
| (*policy.dealloc)(alloc, old_capacity, old_ctrl, slot_size, slot_align, |
| has_infoz); |
| } |
| |
| ResetGrowthLeft(common); |
| if (has_infoz) { |
| common.set_has_infoz(); |
| infoz.RecordStorageChanged(common.size(), new_capacity); |
| infoz.RecordRehash(total_probe_length); |
| common.set_infoz(infoz); |
| } |
| } |
| |
| void ResizeEmptyNonAllocatedTableImpl(CommonFields& common, size_t new_capacity, |
| bool force_infoz, |
| const PolicyFunctions& policy) { |
| assert(IsValidCapacity(new_capacity)); |
| assert(new_capacity > policy.soo_capacity); |
| assert(!force_infoz || policy.soo_capacity > 0); |
| assert(common.capacity() <= policy.soo_capacity); |
| assert(common.empty()); |
| const size_t slot_size = policy.slot_size; |
| HashtablezInfoHandle infoz; |
| const bool should_sample = |
| policy.is_hashtablez_eligible && (force_infoz || ShouldSampleNextTable()); |
| if (ABSL_PREDICT_FALSE(should_sample)) { |
| infoz = ForcedTrySample(slot_size, policy.key_size, policy.value_size, |
| policy.soo_capacity); |
| } |
| ResizeNonSooImpl<ResizeNonSooMode::kGuaranteedEmpty>(common, new_capacity, |
| infoz, policy); |
| } |
| |
| // If the table was SOO, initializes new control bytes and transfers slot. |
| // After transferring the slot, sets control and slots in CommonFields. |
| // It is rare to resize an SOO table with one element to a large size. |
| // Requires: `c` contains SOO data. |
| void InsertOldSooSlotAndInitializeControlBytes(CommonFields& c, size_t hash, |
| ctrl_t* new_ctrl, |
| void* new_slots, |
| const PolicyFunctions& policy) { |
| assert(c.size() == policy.soo_capacity); |
| assert(policy.soo_capacity == SooCapacity()); |
| size_t new_capacity = c.capacity(); |
| |
| c.generate_new_seed(); |
| size_t offset = probe(c.seed(), new_capacity, hash).offset(); |
| offset = offset == new_capacity ? 0 : offset; |
| SanitizerPoisonMemoryRegion(new_slots, policy.slot_size * new_capacity); |
| void* target_slot = SlotAddress(new_slots, offset, policy.slot_size); |
| SanitizerUnpoisonMemoryRegion(target_slot, policy.slot_size); |
| policy.transfer(&c, target_slot, c.soo_data(), 1); |
| c.set_control</*kGenerateSeed=*/false>(new_ctrl); |
| c.set_slots(new_slots); |
| ResetCtrl(c, policy.slot_size); |
| SetCtrl(c, offset, H2(hash), policy.slot_size); |
| } |
| |
| enum class ResizeFullSooTableSamplingMode { |
| kNoSampling, |
| // Force sampling. If the table was still not sampled, do not resize. |
| kForceSampleNoResizeIfUnsampled, |
| }; |
| |
| void ResizeFullSooTable(CommonFields& common, size_t new_capacity, |
| ResizeFullSooTableSamplingMode sampling_mode, |
| const PolicyFunctions& policy) { |
| assert(common.capacity() == policy.soo_capacity); |
| assert(common.size() == policy.soo_capacity); |
| assert(policy.soo_capacity == SooCapacity()); |
| const size_t slot_size = policy.slot_size; |
| const size_t slot_align = policy.slot_align; |
| |
| HashtablezInfoHandle infoz; |
| if (sampling_mode == |
| ResizeFullSooTableSamplingMode::kForceSampleNoResizeIfUnsampled) { |
| if (ABSL_PREDICT_FALSE(policy.is_hashtablez_eligible)) { |
| infoz = ForcedTrySample(slot_size, policy.key_size, policy.value_size, |
| policy.soo_capacity); |
| } |
| |
| if (!infoz.IsSampled()) { |
| return; |
| } |
| } |
| |
| const bool has_infoz = infoz.IsSampled(); |
| |
| common.set_capacity(new_capacity); |
| |
| RawHashSetLayout layout(new_capacity, slot_size, slot_align, has_infoz); |
| void* alloc = policy.get_char_alloc(common); |
| char* mem = static_cast<char*>(policy.alloc(alloc, layout.alloc_size())); |
| const GenerationType old_generation = common.generation(); |
| common.set_generation_ptr( |
| reinterpret_cast<GenerationType*>(mem + layout.generation_offset())); |
| common.set_generation(NextGeneration(old_generation)); |
| |
| // We do not set control and slots in CommonFields yet to avoid overriding |
| // SOO data. |
| ctrl_t* new_ctrl = reinterpret_cast<ctrl_t*>(mem + layout.control_offset()); |
| void* new_slots = mem + layout.slot_offset(); |
| |
| const size_t soo_slot_hash = |
| policy.hash_slot(policy.hash_fn(common), common.soo_data()); |
| |
| InsertOldSooSlotAndInitializeControlBytes(common, soo_slot_hash, new_ctrl, |
| new_slots, policy); |
| ResetGrowthLeft(common); |
| if (has_infoz) { |
| common.set_has_infoz(); |
| common.set_infoz(infoz); |
| } |
| } |
| |
| void GrowIntoSingleGroupShuffleControlBytes(ctrl_t* __restrict old_ctrl, |
| size_t old_capacity, |
| ctrl_t* __restrict new_ctrl, |
| size_t new_capacity) { |
| assert(is_single_group(new_capacity)); |
| constexpr size_t kHalfWidth = Group::kWidth / 2; |
| ABSL_ASSUME(old_capacity < kHalfWidth); |
| ABSL_ASSUME(old_capacity > 0); |
| static_assert(Group::kWidth == 8 || Group::kWidth == 16, |
| "Group size is not supported."); |
| |
| // NOTE: operations are done with compile time known size = 8. |
| // Compiler optimizes that into single ASM operation. |
| |
| // Load the bytes from old_capacity. This contains |
| // - the sentinel byte |
| // - all the old control bytes |
| // - the rest is filled with kEmpty bytes |
| // Example: |
| // old_ctrl = 012S012EEEEEEEEE... |
| // copied_bytes = S012EEEE |
| uint64_t copied_bytes = absl::little_endian::Load64(old_ctrl + old_capacity); |
| |
| // We change the sentinel byte to kEmpty before storing to both the start of |
| // the new_ctrl, and past the end of the new_ctrl later for the new cloned |
| // bytes. Note that this is faster than setting the sentinel byte to kEmpty |
| // after the copy directly in new_ctrl because we are limited on store |
| // bandwidth. |
| static constexpr uint64_t kEmptyXorSentinel = |
| static_cast<uint8_t>(ctrl_t::kEmpty) ^ |
| static_cast<uint8_t>(ctrl_t::kSentinel); |
| |
| // Replace the first byte kSentinel with kEmpty. |
| // Resulting bytes will be shifted by one byte old control blocks. |
| // Example: |
| // old_ctrl = 012S012EEEEEEEEE... |
| // before = S012EEEE |
| // after = E012EEEE |
| copied_bytes ^= kEmptyXorSentinel; |
| |
| if (Group::kWidth == 8) { |
| // With group size 8, we can grow with two write operations. |
| assert(old_capacity < 8 && "old_capacity is too large for group size 8"); |
| absl::little_endian::Store64(new_ctrl, copied_bytes); |
| |
| static constexpr uint64_t kSentinal64 = |
| static_cast<uint8_t>(ctrl_t::kSentinel); |
| |
| // Prepend kSentinel byte to the beginning of copied_bytes. |
| // We have maximum 3 non-empty bytes at the beginning of copied_bytes for |
| // group size 8. |
| // Example: |
| // old_ctrl = 012S012EEEE |
| // before = E012EEEE |
| // after = SE012EEE |
| copied_bytes = (copied_bytes << 8) ^ kSentinal64; |
| absl::little_endian::Store64(new_ctrl + new_capacity, copied_bytes); |
| // Example for capacity 3: |
| // old_ctrl = 012S012EEEE |
| // After the first store: |
| // >! |
| // new_ctrl = E012EEEE??????? |
| // After the second store: |
| // >! |
| // new_ctrl = E012EEESE012EEE |
| return; |
| } |
| |
| assert(Group::kWidth == 16); |
| |
| // Fill the second half of the main control bytes with kEmpty. |
| // For small capacity that may write into mirrored control bytes. |
| // It is fine as we will overwrite all the bytes later. |
| std::memset(new_ctrl + kHalfWidth, static_cast<int8_t>(ctrl_t::kEmpty), |
| kHalfWidth); |
| // Fill the second half of the mirrored control bytes with kEmpty. |
| std::memset(new_ctrl + new_capacity + kHalfWidth, |
| static_cast<int8_t>(ctrl_t::kEmpty), kHalfWidth); |
| // Copy the first half of the non-mirrored control bytes. |
| absl::little_endian::Store64(new_ctrl, copied_bytes); |
| new_ctrl[new_capacity] = ctrl_t::kSentinel; |
| // Copy the first half of the mirrored control bytes. |
| absl::little_endian::Store64(new_ctrl + new_capacity + 1, copied_bytes); |
| |
| // Example for growth capacity 1->3: |
| // old_ctrl = 0S0EEEEEEEEEEEEEE |
| // new_ctrl at the end = E0ESE0EEEEEEEEEEEEE |
| // >! |
| // new_ctrl after 1st memset = ????????EEEEEEEE??? |
| // >! |
| // new_ctrl after 2nd memset = ????????EEEEEEEEEEE |
| // >! |
| // new_ctrl after 1st store = E0EEEEEEEEEEEEEEEEE |
| // new_ctrl after kSentinel = E0ESEEEEEEEEEEEEEEE |
| // >! |
| // new_ctrl after 2nd store = E0ESE0EEEEEEEEEEEEE |
| |
| // Example for growth capacity 3->7: |
| // old_ctrl = 012S012EEEEEEEEEEEE |
| // new_ctrl at the end = E012EEESE012EEEEEEEEEEE |
| // >! |
| // new_ctrl after 1st memset = ????????EEEEEEEE??????? |
| // >! |
| // new_ctrl after 2nd memset = ????????EEEEEEEEEEEEEEE |
| // >! |
| // new_ctrl after 1st store = E012EEEEEEEEEEEEEEEEEEE |
| // new_ctrl after kSentinel = E012EEESEEEEEEEEEEEEEEE |
| // >! |
| // new_ctrl after 2nd store = E012EEESE012EEEEEEEEEEE |
| |
| // Example for growth capacity 7->15: |
| // old_ctrl = 0123456S0123456EEEEEEEE |
| // new_ctrl at the end = E0123456EEEEEEESE0123456EEEEEEE |
| // >! |
| // new_ctrl after 1st memset = ????????EEEEEEEE??????????????? |
| // >! |
| // new_ctrl after 2nd memset = ????????EEEEEEEE???????EEEEEEEE |
| // >! |
| // new_ctrl after 1st store = E0123456EEEEEEEE???????EEEEEEEE |
| // new_ctrl after kSentinel = E0123456EEEEEEES???????EEEEEEEE |
| // >! |
| // new_ctrl after 2nd store = E0123456EEEEEEESE0123456EEEEEEE |
| } |
| |
| size_t GrowToNextCapacityAndPrepareInsert(CommonFields& common, size_t new_hash, |
| const PolicyFunctions& policy) { |
| assert(common.growth_left() == 0); |
| const size_t old_capacity = common.capacity(); |
| assert(old_capacity == 0 || old_capacity > policy.soo_capacity); |
| |
| const size_t new_capacity = NextCapacity(old_capacity); |
| assert(IsValidCapacity(new_capacity)); |
| assert(new_capacity > policy.soo_capacity); |
| |
| ctrl_t* old_ctrl = common.control(); |
| void* old_slots = common.slot_array(); |
| |
| common.set_capacity(new_capacity); |
| const size_t slot_size = policy.slot_size; |
| const size_t slot_align = policy.slot_align; |
| HashtablezInfoHandle infoz; |
| if (old_capacity > 0) { |
| infoz = common.infoz(); |
| } else { |
| const bool should_sample = |
| policy.is_hashtablez_eligible && ShouldSampleNextTable(); |
| if (ABSL_PREDICT_FALSE(should_sample)) { |
| infoz = ForcedTrySample(slot_size, policy.key_size, policy.value_size, |
| policy.soo_capacity); |
| } |
| } |
| const bool has_infoz = infoz.IsSampled(); |
| |
| RawHashSetLayout layout(new_capacity, slot_size, slot_align, has_infoz); |
| void* alloc = policy.get_char_alloc(common); |
| char* mem = static_cast<char*>(policy.alloc(alloc, layout.alloc_size())); |
| const GenerationType old_generation = common.generation(); |
| common.set_generation_ptr( |
| reinterpret_cast<GenerationType*>(mem + layout.generation_offset())); |
| common.set_generation(NextGeneration(old_generation)); |
| |
| ctrl_t* new_ctrl = reinterpret_cast<ctrl_t*>(mem + layout.control_offset()); |
| void* new_slots = mem + layout.slot_offset(); |
| common.set_control</*kGenerateSeed=*/false>(new_ctrl); |
| common.set_slots(new_slots); |
| |
| h2_t new_h2 = H2(new_hash); |
| size_t total_probe_length = 0; |
| FindInfo find_info; |
| if (old_capacity == 0) { |
| static_assert(NextCapacity(0) == 1); |
| InitializeSingleElementControlBytes(new_h2, new_ctrl); |
| common.generate_new_seed(); |
| find_info = FindInfo{0, 0}; |
| } else { |
| if (is_single_group(new_capacity)) { |
| GrowIntoSingleGroupShuffleControlBytes(old_ctrl, old_capacity, new_ctrl, |
| new_capacity); |
| // Single group tables have no deleted slots, so we can transfer all slots |
| // without checking the control bytes. |
| assert(common.size() == old_capacity); |
| policy.transfer(&common, NextSlot(new_slots, slot_size), old_slots, |
| old_capacity); |
| PoisonEmptySlots(common, slot_size); |
| // We put the new element either at the beginning or at the end of the |
| // table with approximately equal probability. |
| size_t offset = SingleGroupTableH1(new_hash, common.seed()) & 1 |
| ? 0 |
| : new_capacity - 1; |
| |
| assert(IsEmpty(new_ctrl[offset])); |
| SetCtrlInSingleGroupTable(common, offset, new_h2, policy.slot_size); |
| find_info = FindInfo{offset, 0}; |
| } else { |
| ResetCtrl(common, slot_size); |
| total_probe_length = policy.find_new_positions_and_transfer_slots( |
| common, old_ctrl, old_slots, old_capacity); |
| find_info = find_first_non_full(common, new_hash); |
| SetCtrlInLargeTable(common, find_info.offset, new_h2, policy.slot_size); |
| } |
| assert(old_capacity > policy.soo_capacity); |
| (*policy.dealloc)(alloc, old_capacity, old_ctrl, slot_size, slot_align, |
| has_infoz); |
| } |
| PrepareInsertCommon(common); |
| ResetGrowthLeft(common); |
| |
| if (has_infoz) { |
| common.set_has_infoz(); |
| infoz.RecordStorageChanged(common.size() - 1, new_capacity); |
| infoz.RecordRehash(total_probe_length); |
| infoz.RecordInsert(new_hash, find_info.probe_length); |
| common.set_infoz(infoz); |
| } |
| return find_info.offset; |
| } |
| |
| // Called whenever the table needs to vacate empty slots either by removing |
| // tombstones via rehash or growth to next capacity. |
| ABSL_ATTRIBUTE_NOINLINE |
| size_t RehashOrGrowToNextCapacityAndPrepareInsert( |
| CommonFields& common, size_t new_hash, const PolicyFunctions& policy) { |
| const size_t cap = common.capacity(); |
| ABSL_ASSUME(cap > 0); |
| if (cap > Group::kWidth && |
| // Do these calculations in 64-bit to avoid overflow. |
| common.size() * uint64_t{32} <= cap * uint64_t{25}) { |
| // Squash DELETED without growing if there is enough capacity. |
| // |
| // Rehash in place if the current size is <= 25/32 of capacity. |
| // Rationale for such a high factor: 1) DropDeletesWithoutResize() is |
| // faster than resize, and 2) it takes quite a bit of work to add |
| // tombstones. In the worst case, seems to take approximately 4 |
| // insert/erase pairs to create a single tombstone and so if we are |
| // rehashing because of tombstones, we can afford to rehash-in-place as |
| // long as we are reclaiming at least 1/8 the capacity without doing more |
| // than 2X the work. (Where "work" is defined to be size() for rehashing |
| // or rehashing in place, and 1 for an insert or erase.) But rehashing in |
| // place is faster per operation than inserting or even doubling the size |
| // of the table, so we actually afford to reclaim even less space from a |
| // resize-in-place. The decision is to rehash in place if we can reclaim |
| // at about 1/8th of the usable capacity (specifically 3/28 of the |
| // capacity) which means that the total cost of rehashing will be a small |
| // fraction of the total work. |
| // |
| // Here is output of an experiment using the BM_CacheInSteadyState |
| // benchmark running the old case (where we rehash-in-place only if we can |
| // reclaim at least 7/16*capacity) vs. this code (which rehashes in place |
| // if we can recover 3/32*capacity). |
| // |
| // Note that although in the worst-case number of rehashes jumped up from |
| // 15 to 190, but the number of operations per second is almost the same. |
| // |
| // Abridged output of running BM_CacheInSteadyState benchmark from |
| // raw_hash_set_benchmark. N is the number of insert/erase operations. |
| // |
| // | OLD (recover >= 7/16 | NEW (recover >= 3/32) |
| // size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes |
| // 448 | 145284 0.44 18 | 140118 0.44 19 |
| // 493 | 152546 0.24 11 | 151417 0.48 28 |
| // 538 | 151439 0.26 11 | 151152 0.53 38 |
| // 583 | 151765 0.28 11 | 150572 0.57 50 |
| // 628 | 150241 0.31 11 | 150853 0.61 66 |
| // 672 | 149602 0.33 12 | 150110 0.66 90 |
| // 717 | 149998 0.35 12 | 149531 0.70 129 |
| // 762 | 149836 0.37 13 | 148559 0.74 190 |
| // 807 | 149736 0.39 14 | 151107 0.39 14 |
| // 852 | 150204 0.42 15 | 151019 0.42 15 |
| return DropDeletesWithoutResizeAndPrepareInsert(common, new_hash, policy); |
| } else { |
| // Otherwise grow the container. |
| return GrowToNextCapacityAndPrepareInsert(common, new_hash, policy); |
| } |
| } |
| |
| // Slow path for PrepareInsertNonSoo that is called when the table has deleted |
| // slots or need to be resized or rehashed. |
| size_t PrepareInsertNonSooSlow(CommonFields& common, size_t hash, |
| const PolicyFunctions& policy) { |
| const GrowthInfo growth_info = common.growth_info(); |
| assert(!growth_info.HasNoDeletedAndGrowthLeft()); |
| if (ABSL_PREDICT_TRUE(growth_info.HasNoGrowthLeftAndNoDeleted())) { |
| // Table without deleted slots (>95% cases) that needs to be resized. |
| assert(growth_info.HasNoDeleted() && growth_info.GetGrowthLeft() == 0); |
| return GrowToNextCapacityAndPrepareInsert(common, hash, policy); |
| } |
| if (ABSL_PREDICT_FALSE(growth_info.HasNoGrowthLeftAssumingMayHaveDeleted())) { |
| // Table with deleted slots that needs to be rehashed or resized. |
| return RehashOrGrowToNextCapacityAndPrepareInsert(common, hash, policy); |
| } |
| // Table with deleted slots that has space for the inserting element. |
| FindInfo target = find_first_non_full(common, hash); |
| PrepareInsertCommon(common); |
| common.growth_info().OverwriteControlAsFull(common.control()[target.offset]); |
| SetCtrlInLargeTable(common, target.offset, H2(hash), policy.slot_size); |
| common.infoz().RecordInsert(hash, target.probe_length); |
| return target.offset; |
| } |
| |
| } // namespace |
| |
| void* GetRefForEmptyClass(CommonFields& common) { |
| // Empty base optimization typically make the empty base class address to be |
| // the same as the first address of the derived class object. |
| // But we generally assume that for empty classes we can return any valid |
| // pointer. |
| return &common; |
| } |
| |
| void ResizeAllocatedTableWithSeedChange(CommonFields& common, |
| size_t new_capacity, |
| const PolicyFunctions& policy) { |
| ResizeNonSooImpl<ResizeNonSooMode::kGuaranteedAllocated>( |
| common, new_capacity, common.infoz(), policy); |
| } |
| |
| |
| void ReserveEmptyNonAllocatedTableToFitNewSize(CommonFields& common, |
| size_t new_size, |
| const PolicyFunctions& policy) { |
| ValidateMaxSize(new_size, policy.slot_size); |
| ResizeEmptyNonAllocatedTableImpl( |
| common, NormalizeCapacity(GrowthToLowerboundCapacity(new_size)), |
| /*force_infoz=*/false, policy); |
| // This is after resize, to ensure that we have completed the allocation |
| // and have potentially sampled the hashtable. |
| common.infoz().RecordReservation(new_size); |
| common.reset_reserved_growth(new_size); |
| common.set_reservation_size(new_size); |
| } |
| |
| void ReserveEmptyNonAllocatedTableToFitBucketCount( |
| CommonFields& common, size_t bucket_count, const PolicyFunctions& policy) { |
| size_t new_capacity = NormalizeCapacity(bucket_count); |
| ValidateMaxSize(CapacityToGrowth(new_capacity), policy.slot_size); |
| ResizeEmptyNonAllocatedTableImpl(common, new_capacity, |
| /*force_infoz=*/false, policy); |
| } |
| |
| void GrowEmptySooTableToNextCapacityForceSampling( |
| CommonFields& common, const PolicyFunctions& policy) { |
| ResizeEmptyNonAllocatedTableImpl(common, NextCapacity(SooCapacity()), |
| /*force_infoz=*/true, policy); |
| } |
| |
| void GrowFullSooTableToNextCapacityForceSampling( |
| CommonFields& common, const PolicyFunctions& policy) { |
| assert(common.capacity() == policy.soo_capacity); |
| assert(common.size() == policy.soo_capacity); |
| assert(policy.soo_capacity == SooCapacity()); |
| ResizeFullSooTable( |
| common, NextCapacity(SooCapacity()), |
| ResizeFullSooTableSamplingMode::kForceSampleNoResizeIfUnsampled, policy); |
| } |
| |
| void Rehash(CommonFields& common, size_t n, const PolicyFunctions& policy) { |
| const size_t cap = common.capacity(); |
| |
| auto clear_backing_array = [&]() { |
| ClearBackingArray(common, policy, policy.get_char_alloc(common), |
| /*reuse=*/false, policy.soo_capacity > 0); |
| }; |
| |
| const size_t slot_size = policy.slot_size; |
| |
| if (n == 0) { |
| if (cap <= policy.soo_capacity) return; |
| if (common.empty()) { |
| clear_backing_array(); |
| return; |
| } |
| if (common.size() <= policy.soo_capacity) { |
| // When the table is already sampled, we keep it sampled. |
| if (common.infoz().IsSampled()) { |
| static constexpr size_t kInitialSampledCapacity = |
| NextCapacity(SooCapacity()); |
| if (cap > kInitialSampledCapacity) { |
| ResizeAllocatedTableWithSeedChange(common, kInitialSampledCapacity, |
| policy); |
| } |
| // This asserts that we didn't lose sampling coverage in `resize`. |
| assert(common.infoz().IsSampled()); |
| return; |
| } |
| assert(slot_size <= sizeof(HeapOrSoo)); |
| assert(policy.slot_align <= alignof(HeapOrSoo)); |
| HeapOrSoo tmp_slot(uninitialized_tag_t{}); |
| size_t begin_offset = FindFirstFullSlot(0, cap, common.control()); |
| policy.transfer(&common, &tmp_slot, |
| SlotAddress(common.slot_array(), begin_offset, slot_size), |
| 1); |
| clear_backing_array(); |
| policy.transfer(&common, common.soo_data(), &tmp_slot, 1); |
| common.set_full_soo(); |
| return; |
| } |
| } |
| |
| // bitor is a faster way of doing `max` here. We will round up to the next |
| // power-of-2-minus-1, so bitor is good enough. |
| size_t new_size = n | GrowthToLowerboundCapacity(common.size()); |
| ValidateMaxSize(n, policy.slot_size); |
| const size_t new_capacity = NormalizeCapacity(new_size); |
| // n == 0 unconditionally rehashes as per the standard. |
| if (n == 0 || new_capacity > cap) { |
| if (cap == policy.soo_capacity) { |
| if (common.empty()) { |
| ResizeEmptyNonAllocatedTableImpl(common, new_capacity, |
| /*force_infoz=*/false, policy); |
| } else { |
| ResizeFullSooTable(common, new_capacity, |
| ResizeFullSooTableSamplingMode::kNoSampling, policy); |
| } |
| } else { |
| ResizeAllocatedTableWithSeedChange(common, new_capacity, policy); |
| } |
| // This is after resize, to ensure that we have completed the allocation |
| // and have potentially sampled the hashtable. |
| common.infoz().RecordReservation(n); |
| } |
| } |
| |
| void ReserveAllocatedTable(CommonFields& common, size_t n, |
| const PolicyFunctions& policy) { |
| common.reset_reserved_growth(n); |
| common.set_reservation_size(n); |
| |
| const size_t cap = common.capacity(); |
| assert(!common.empty() || cap > policy.soo_capacity); |
| assert(cap > 0); |
| const size_t max_size_before_growth = |
| cap <= policy.soo_capacity ? policy.soo_capacity |
| : common.size() + common.growth_left(); |
| if (n <= max_size_before_growth) { |
| return; |
| } |
| ValidateMaxSize(n, policy.slot_size); |
| const size_t new_capacity = NormalizeCapacity(GrowthToLowerboundCapacity(n)); |
| if (cap == policy.soo_capacity) { |
| assert(!common.empty()); |
| ResizeFullSooTable(common, new_capacity, |
| ResizeFullSooTableSamplingMode::kNoSampling, policy); |
| } else { |
| assert(cap > policy.soo_capacity); |
| ResizeAllocatedTableWithSeedChange(common, new_capacity, policy); |
| } |
| common.infoz().RecordReservation(n); |
| } |
| |
| size_t PrepareInsertNonSoo(CommonFields& common, size_t hash, |
| const PolicyFunctions& policy, FindInfo target) { |
| const bool rehash_for_bug_detection = |
| common.should_rehash_for_bug_detection_on_insert() && |
| // Required to allow use of ResizeAllocatedTable. |
| common.capacity() > 0; |
| if (rehash_for_bug_detection) { |
| // Move to a different heap allocation in order to detect bugs. |
| const size_t cap = common.capacity(); |
| ResizeAllocatedTableWithSeedChange( |
| common, common.growth_left() > 0 ? cap : NextCapacity(cap), policy); |
| target = find_first_non_full(common, hash); |
| } |
| |
| const GrowthInfo growth_info = common.growth_info(); |
| // When there are no deleted slots in the table |
| // and growth_left is positive, we can insert at the first |
| // empty slot in the probe sequence (target). |
| if (ABSL_PREDICT_FALSE(!growth_info.HasNoDeletedAndGrowthLeft())) { |
| return PrepareInsertNonSooSlow(common, hash, policy); |
| } |
| PrepareInsertCommon(common); |
| common.growth_info().OverwriteEmptyAsFull(); |
| SetCtrl(common, target.offset, H2(hash), policy.slot_size); |
| common.infoz().RecordInsert(hash, target.probe_length); |
| return target.offset; |
| } |
| |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |