| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/internal/chi_square.h" |
| |
| #include <cmath> |
| |
| #include "absl/random/internal/distribution_test_util.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace random_internal { |
| namespace { |
| |
| #if defined(__EMSCRIPTEN__) |
| // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found. |
| inline double fma(double x, double y, double z) { |
| return (x * y) + z; |
| } |
| #endif |
| |
| // Use Horner's method to evaluate a polynomial. |
| template <typename T, unsigned N> |
| inline T EvaluatePolynomial(T x, const T (&poly)[N]) { |
| #if !defined(__EMSCRIPTEN__) |
| using std::fma; |
| #endif |
| T p = poly[N - 1]; |
| for (unsigned i = 2; i <= N; i++) { |
| p = fma(p, x, poly[N - i]); |
| } |
| return p; |
| } |
| |
| static constexpr int kLargeDOF = 150; |
| |
| // Returns the probability of a normal z-value. |
| // |
| // Adapted from the POZ function in: |
| // Ibbetson D, Algorithm 209 |
| // Collected Algorithms of the CACM 1963 p. 616 |
| // |
| double POZ(double z) { |
| static constexpr double kP1[] = { |
| 0.797884560593, -0.531923007300, 0.319152932694, |
| -0.151968751364, 0.059054035642, -0.019198292004, |
| 0.005198775019, -0.001075204047, 0.000124818987, |
| }; |
| static constexpr double kP2[] = { |
| 0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108, |
| -0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214, |
| -0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986, |
| -0.000019538132, 0.000152529290, -0.000045255659, |
| }; |
| |
| const double kZMax = 6.0; // Maximum meaningful z-value. |
| if (z == 0.0) { |
| return 0.5; |
| } |
| double x; |
| double y = 0.5 * std::fabs(z); |
| if (y >= (kZMax * 0.5)) { |
| x = 1.0; |
| } else if (y < 1.0) { |
| double w = y * y; |
| x = EvaluatePolynomial(w, kP1) * y * 2.0; |
| } else { |
| y -= 2.0; |
| x = EvaluatePolynomial(y, kP2); |
| } |
| return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5); |
| } |
| |
| // Approximates the survival function of the normal distribution. |
| // |
| // Algorithm 26.2.18, from: |
| // [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932] |
| // http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf |
| // |
| double normal_survival(double z) { |
| // Maybe replace with the alternate formulation. |
| // 0.5 * erfc((x - mean)/(sqrt(2) * sigma)) |
| static constexpr double kR[] = { |
| 1.0, 0.196854, 0.115194, 0.000344, 0.019527, |
| }; |
| double r = EvaluatePolynomial(z, kR); |
| r *= r; |
| return 0.5 / (r * r); |
| } |
| |
| } // namespace |
| |
| // Calculates the critical chi-square value given degrees-of-freedom and a |
| // p-value, usually using bisection. Also known by the name CRITCHI. |
| double ChiSquareValue(int dof, double p) { |
| static constexpr double kChiEpsilon = |
| 0.000001; // Accuracy of the approximation. |
| static constexpr double kChiMax = |
| 99999.0; // Maximum chi-squared value. |
| |
| const double p_value = 1.0 - p; |
| if (dof < 1 || p_value > 1.0) { |
| return 0.0; |
| } |
| |
| if (dof > kLargeDOF) { |
| // For large degrees of freedom, use the normal approximation by |
| // Wilson, E. B. and Hilferty, M. M. (1931) |
| // chi^2 - mean |
| // Z = -------------- |
| // stddev |
| const double z = InverseNormalSurvival(p_value); |
| const double mean = 1 - 2.0 / (9 * dof); |
| const double variance = 2.0 / (9 * dof); |
| // Cannot use this method if the variance is 0. |
| if (variance != 0) { |
| double term = z * std::sqrt(variance) + mean; |
| return dof * (term * term * term); |
| } |
| } |
| |
| if (p_value <= 0.0) return kChiMax; |
| |
| // Otherwise search for the p value by bisection |
| double min_chisq = 0.0; |
| double max_chisq = kChiMax; |
| double current = dof / std::sqrt(p_value); |
| while ((max_chisq - min_chisq) > kChiEpsilon) { |
| if (ChiSquarePValue(current, dof) < p_value) { |
| max_chisq = current; |
| } else { |
| min_chisq = current; |
| } |
| current = (max_chisq + min_chisq) * 0.5; |
| } |
| return current; |
| } |
| |
| // Calculates the p-value (probability) of a given chi-square value |
| // and degrees of freedom. |
| // |
| // Adapted from the POCHISQ function from: |
| // Hill, I. D. and Pike, M. C. Algorithm 299 |
| // Collected Algorithms of the CACM 1963 p. 243 |
| // |
| double ChiSquarePValue(double chi_square, int dof) { |
| static constexpr double kLogSqrtPi = |
| 0.5723649429247000870717135; // Log[Sqrt[Pi]] |
| static constexpr double kInverseSqrtPi = |
| 0.5641895835477562869480795; // 1/(Sqrt[Pi]) |
| |
| // For large degrees of freedom, use the normal approximation by |
| // Wilson, E. B. and Hilferty, M. M. (1931) |
| // Via Wikipedia: |
| // By the Central Limit Theorem, because the chi-square distribution is the |
| // sum of k independent random variables with finite mean and variance, it |
| // converges to a normal distribution for large k. |
| if (dof > kLargeDOF) { |
| // Re-scale everything. |
| const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3); |
| const double mean = 1 - 2.0 / (9 * dof); |
| const double variance = 2.0 / (9 * dof); |
| // If variance is 0, this method cannot be used. |
| if (variance != 0) { |
| const double z = (chi_square_scaled - mean) / std::sqrt(variance); |
| if (z > 0) { |
| return normal_survival(z); |
| } else if (z < 0) { |
| return 1.0 - normal_survival(-z); |
| } else { |
| return 0.5; |
| } |
| } |
| } |
| |
| // The chi square function is >= 0 for any degrees of freedom. |
| // In other words, probability that the chi square function >= 0 is 1. |
| if (chi_square <= 0.0) return 1.0; |
| |
| // If the degrees of freedom is zero, the chi square function is always 0 by |
| // definition. In other words, the probability that the chi square function |
| // is > 0 is zero (chi square values <= 0 have been filtered above). |
| if (dof < 1) return 0; |
| |
| auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); }; |
| static constexpr double kBigX = 20; |
| |
| double a = 0.5 * chi_square; |
| const bool even = !(dof & 1); // True if dof is an even number. |
| const double y = capped_exp(-a); |
| double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square))); |
| |
| if (dof <= 2) { |
| return s; |
| } |
| |
| chi_square = 0.5 * (dof - 1.0); |
| double z = (even ? 1.0 : 0.5); |
| if (a > kBigX) { |
| double e = (even ? 0.0 : kLogSqrtPi); |
| double c = std::log(a); |
| while (z <= chi_square) { |
| e = std::log(z) + e; |
| s += capped_exp(c * z - a - e); |
| z += 1.0; |
| } |
| return s; |
| } |
| |
| double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a))); |
| double c = 0.0; |
| while (z <= chi_square) { |
| e = e * (a / z); |
| c = c + e; |
| z += 1.0; |
| } |
| return c * y + s; |
| } |
| |
| } // namespace random_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |