| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/internal/fastmath.h" |
| |
| #include "gtest/gtest.h" |
| |
| #if defined(__native_client__) || defined(__EMSCRIPTEN__) |
| // NACL has a less accurate implementation of std::log2 than most of |
| // the other platforms. For some values which should have integral results, |
| // sometimes NACL returns slightly larger values. |
| // |
| // The MUSL libc used by emscripten also has a similar bug. |
| #define ABSL_RANDOM_INACCURATE_LOG2 |
| #endif |
| |
| namespace { |
| |
| TEST(FastMathTest, IntLog2FloorTest) { |
| using absl::random_internal::IntLog2Floor; |
| constexpr uint64_t kZero = 0; |
| EXPECT_EQ(0, IntLog2Floor(0)); // boundary. return 0. |
| EXPECT_EQ(0, IntLog2Floor(1)); |
| EXPECT_EQ(1, IntLog2Floor(2)); |
| EXPECT_EQ(63, IntLog2Floor(~kZero)); |
| |
| // A boundary case: Converting 0xffffffffffffffff requires > 53 |
| // bits of precision, so the conversion to double rounds up, |
| // and the result of std::log2(x) > IntLog2Floor(x). |
| EXPECT_LT(IntLog2Floor(~kZero), static_cast<int>(std::log2(~kZero))); |
| |
| for (int i = 0; i < 64; i++) { |
| const uint64_t i_pow_2 = static_cast<uint64_t>(1) << i; |
| EXPECT_EQ(i, IntLog2Floor(i_pow_2)); |
| EXPECT_EQ(i, static_cast<int>(std::log2(i_pow_2))); |
| |
| uint64_t y = i_pow_2; |
| for (int j = i - 1; j > 0; --j) { |
| y = y | (i_pow_2 >> j); |
| EXPECT_EQ(i, IntLog2Floor(y)); |
| } |
| } |
| } |
| |
| TEST(FastMathTest, IntLog2CeilTest) { |
| using absl::random_internal::IntLog2Ceil; |
| constexpr uint64_t kZero = 0; |
| EXPECT_EQ(0, IntLog2Ceil(0)); // boundary. return 0. |
| EXPECT_EQ(0, IntLog2Ceil(1)); |
| EXPECT_EQ(1, IntLog2Ceil(2)); |
| EXPECT_EQ(64, IntLog2Ceil(~kZero)); |
| |
| // A boundary case: Converting 0xffffffffffffffff requires > 53 |
| // bits of precision, so the conversion to double rounds up, |
| // and the result of std::log2(x) > IntLog2Floor(x). |
| EXPECT_LE(IntLog2Ceil(~kZero), static_cast<int>(std::log2(~kZero))); |
| |
| for (int i = 0; i < 64; i++) { |
| const uint64_t i_pow_2 = static_cast<uint64_t>(1) << i; |
| EXPECT_EQ(i, IntLog2Ceil(i_pow_2)); |
| #ifndef ABSL_RANDOM_INACCURATE_LOG2 |
| EXPECT_EQ(i, static_cast<int>(std::ceil(std::log2(i_pow_2)))); |
| #endif |
| |
| uint64_t y = i_pow_2; |
| for (int j = i - 1; j > 0; --j) { |
| y = y | (i_pow_2 >> j); |
| EXPECT_EQ(i + 1, IntLog2Ceil(y)); |
| } |
| } |
| } |
| |
| TEST(FastMathTest, StirlingLogFactorial) { |
| using absl::random_internal::StirlingLogFactorial; |
| |
| EXPECT_NEAR(StirlingLogFactorial(1.0), 0, 1e-3); |
| EXPECT_NEAR(StirlingLogFactorial(1.50), 0.284683, 1e-3); |
| EXPECT_NEAR(StirlingLogFactorial(2.0), 0.69314718056, 1e-4); |
| |
| for (int i = 2; i < 50; i++) { |
| double d = static_cast<double>(i); |
| EXPECT_NEAR(StirlingLogFactorial(d), std::lgamma(d + 1), 3e-5); |
| } |
| } |
| |
| } // namespace |