| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // An open-addressing |
| // hashtable with quadratic probing. |
| // |
| // This is a low level hashtable on top of which different interfaces can be |
| // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc. |
| // |
| // The table interface is similar to that of std::unordered_set. Notable |
| // differences are that most member functions support heterogeneous keys when |
| // BOTH the hash and eq functions are marked as transparent. They do so by |
| // providing a typedef called `is_transparent`. |
| // |
| // When heterogeneous lookup is enabled, functions that take key_type act as if |
| // they have an overload set like: |
| // |
| // iterator find(const key_type& key); |
| // template <class K> |
| // iterator find(const K& key); |
| // |
| // size_type erase(const key_type& key); |
| // template <class K> |
| // size_type erase(const K& key); |
| // |
| // std::pair<iterator, iterator> equal_range(const key_type& key); |
| // template <class K> |
| // std::pair<iterator, iterator> equal_range(const K& key); |
| // |
| // When heterogeneous lookup is disabled, only the explicit `key_type` overloads |
| // exist. |
| // |
| // find() also supports passing the hash explicitly: |
| // |
| // iterator find(const key_type& key, size_t hash); |
| // template <class U> |
| // iterator find(const U& key, size_t hash); |
| // |
| // In addition the pointer to element and iterator stability guarantees are |
| // weaker: all iterators and pointers are invalidated after a new element is |
| // inserted. |
| // |
| // IMPLEMENTATION DETAILS |
| // |
| // The table stores elements inline in a slot array. In addition to the slot |
| // array the table maintains some control state per slot. The extra state is one |
| // byte per slot and stores empty or deleted marks, or alternatively 7 bits from |
| // the hash of an occupied slot. The table is split into logical groups of |
| // slots, like so: |
| // |
| // Group 1 Group 2 Group 3 |
| // +---------------+---------------+---------------+ |
| // | | | | | | | | | | | | | | | | | | | | | | | | | |
| // +---------------+---------------+---------------+ |
| // |
| // On lookup the hash is split into two parts: |
| // - H2: 7 bits (those stored in the control bytes) |
| // - H1: the rest of the bits |
| // The groups are probed using H1. For each group the slots are matched to H2 in |
| // parallel. Because H2 is 7 bits (128 states) and the number of slots per group |
| // is low (8 or 16) in almost all cases a match in H2 is also a lookup hit. |
| // |
| // On insert, once the right group is found (as in lookup), its slots are |
| // filled in order. |
| // |
| // On erase a slot is cleared. In case the group did not have any empty slots |
| // before the erase, the erased slot is marked as deleted. |
| // |
| // Groups without empty slots (but maybe with deleted slots) extend the probe |
| // sequence. The probing algorithm is quadratic. Given N the number of groups, |
| // the probing function for the i'th probe is: |
| // |
| // P(0) = H1 % N |
| // |
| // P(i) = (P(i - 1) + i) % N |
| // |
| // This probing function guarantees that after N probes, all the groups of the |
| // table will be probed exactly once. |
| |
| #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
| #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/internal/bits.h" |
| #include "absl/base/internal/endian.h" |
| #include "absl/base/port.h" |
| #include "absl/container/internal/common.h" |
| #include "absl/container/internal/compressed_tuple.h" |
| #include "absl/container/internal/container_memory.h" |
| #include "absl/container/internal/hash_policy_traits.h" |
| #include "absl/container/internal/hashtable_debug_hooks.h" |
| #include "absl/container/internal/hashtablez_sampler.h" |
| #include "absl/container/internal/have_sse.h" |
| #include "absl/container/internal/layout.h" |
| #include "absl/memory/memory.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/utility/utility.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| |
| template <size_t Width> |
| class probe_seq { |
| public: |
| probe_seq(size_t hash, size_t mask) { |
| assert(((mask + 1) & mask) == 0 && "not a mask"); |
| mask_ = mask; |
| offset_ = hash & mask_; |
| } |
| size_t offset() const { return offset_; } |
| size_t offset(size_t i) const { return (offset_ + i) & mask_; } |
| |
| void next() { |
| index_ += Width; |
| offset_ += index_; |
| offset_ &= mask_; |
| } |
| // 0-based probe index. The i-th probe in the probe sequence. |
| size_t index() const { return index_; } |
| |
| private: |
| size_t mask_; |
| size_t offset_; |
| size_t index_ = 0; |
| }; |
| |
| template <class ContainerKey, class Hash, class Eq> |
| struct RequireUsableKey { |
| template <class PassedKey, class... Args> |
| std::pair< |
| decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())), |
| decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(), |
| std::declval<const PassedKey&>()))>* |
| operator()(const PassedKey&, const Args&...) const; |
| }; |
| |
| template <class E, class Policy, class Hash, class Eq, class... Ts> |
| struct IsDecomposable : std::false_type {}; |
| |
| template <class Policy, class Hash, class Eq, class... Ts> |
| struct IsDecomposable< |
| absl::void_t<decltype( |
| Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(), |
| std::declval<Ts>()...))>, |
| Policy, Hash, Eq, Ts...> : std::true_type {}; |
| |
| // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. |
| template <class T> |
| constexpr bool IsNoThrowSwappable() { |
| using std::swap; |
| return noexcept(swap(std::declval<T&>(), std::declval<T&>())); |
| } |
| |
| template <typename T> |
| int TrailingZeros(T x) { |
| return sizeof(T) == 8 ? base_internal::CountTrailingZerosNonZero64( |
| static_cast<uint64_t>(x)) |
| : base_internal::CountTrailingZerosNonZero32( |
| static_cast<uint32_t>(x)); |
| } |
| |
| template <typename T> |
| int LeadingZeros(T x) { |
| return sizeof(T) == 8 |
| ? base_internal::CountLeadingZeros64(static_cast<uint64_t>(x)) |
| : base_internal::CountLeadingZeros32(static_cast<uint32_t>(x)); |
| } |
| |
| // An abstraction over a bitmask. It provides an easy way to iterate through the |
| // indexes of the set bits of a bitmask. When Shift=0 (platforms with SSE), |
| // this is a true bitmask. On non-SSE, platforms the arithematic used to |
| // emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as |
| // either 0x00 or 0x80. |
| // |
| // For example: |
| // for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2 |
| // for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3 |
| template <class T, int SignificantBits, int Shift = 0> |
| class BitMask { |
| static_assert(std::is_unsigned<T>::value, ""); |
| static_assert(Shift == 0 || Shift == 3, ""); |
| |
| public: |
| // These are useful for unit tests (gunit). |
| using value_type = int; |
| using iterator = BitMask; |
| using const_iterator = BitMask; |
| |
| explicit BitMask(T mask) : mask_(mask) {} |
| BitMask& operator++() { |
| mask_ &= (mask_ - 1); |
| return *this; |
| } |
| explicit operator bool() const { return mask_ != 0; } |
| int operator*() const { return LowestBitSet(); } |
| int LowestBitSet() const { |
| return container_internal::TrailingZeros(mask_) >> Shift; |
| } |
| int HighestBitSet() const { |
| return (sizeof(T) * CHAR_BIT - container_internal::LeadingZeros(mask_) - |
| 1) >> |
| Shift; |
| } |
| |
| BitMask begin() const { return *this; } |
| BitMask end() const { return BitMask(0); } |
| |
| int TrailingZeros() const { |
| return container_internal::TrailingZeros(mask_) >> Shift; |
| } |
| |
| int LeadingZeros() const { |
| constexpr int total_significant_bits = SignificantBits << Shift; |
| constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; |
| return container_internal::LeadingZeros(mask_ << extra_bits) >> Shift; |
| } |
| |
| private: |
| friend bool operator==(const BitMask& a, const BitMask& b) { |
| return a.mask_ == b.mask_; |
| } |
| friend bool operator!=(const BitMask& a, const BitMask& b) { |
| return a.mask_ != b.mask_; |
| } |
| |
| T mask_; |
| }; |
| |
| using ctrl_t = signed char; |
| using h2_t = uint8_t; |
| |
| // The values here are selected for maximum performance. See the static asserts |
| // below for details. |
| enum Ctrl : ctrl_t { |
| kEmpty = -128, // 0b10000000 |
| kDeleted = -2, // 0b11111110 |
| kSentinel = -1, // 0b11111111 |
| }; |
| static_assert( |
| kEmpty & kDeleted & kSentinel & 0x80, |
| "Special markers need to have the MSB to make checking for them efficient"); |
| static_assert(kEmpty < kSentinel && kDeleted < kSentinel, |
| "kEmpty and kDeleted must be smaller than kSentinel to make the " |
| "SIMD test of IsEmptyOrDeleted() efficient"); |
| static_assert(kSentinel == -1, |
| "kSentinel must be -1 to elide loading it from memory into SIMD " |
| "registers (pcmpeqd xmm, xmm)"); |
| static_assert(kEmpty == -128, |
| "kEmpty must be -128 to make the SIMD check for its " |
| "existence efficient (psignb xmm, xmm)"); |
| static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F, |
| "kEmpty and kDeleted must share an unset bit that is not shared " |
| "by kSentinel to make the scalar test for MatchEmptyOrDeleted() " |
| "efficient"); |
| static_assert(kDeleted == -2, |
| "kDeleted must be -2 to make the implementation of " |
| "ConvertSpecialToEmptyAndFullToDeleted efficient"); |
| |
| // A single block of empty control bytes for tables without any slots allocated. |
| // This enables removing a branch in the hot path of find(). |
| inline ctrl_t* EmptyGroup() { |
| alignas(16) static constexpr ctrl_t empty_group[] = { |
| kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, |
| kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty}; |
| return const_cast<ctrl_t*>(empty_group); |
| } |
| |
| // Mixes a randomly generated per-process seed with `hash` and `ctrl` to |
| // randomize insertion order within groups. |
| bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl); |
| |
| // Returns a hash seed. |
| // |
| // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure |
| // non-determinism of iteration order in most cases. |
| inline size_t HashSeed(const ctrl_t* ctrl) { |
| // The low bits of the pointer have little or no entropy because of |
| // alignment. We shift the pointer to try to use higher entropy bits. A |
| // good number seems to be 12 bits, because that aligns with page size. |
| return reinterpret_cast<uintptr_t>(ctrl) >> 12; |
| } |
| |
| inline size_t H1(size_t hash, const ctrl_t* ctrl) { |
| return (hash >> 7) ^ HashSeed(ctrl); |
| } |
| inline ctrl_t H2(size_t hash) { return hash & 0x7F; } |
| |
| inline bool IsEmpty(ctrl_t c) { return c == kEmpty; } |
| inline bool IsFull(ctrl_t c) { return c >= 0; } |
| inline bool IsDeleted(ctrl_t c) { return c == kDeleted; } |
| inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; } |
| |
| #if SWISSTABLE_HAVE_SSE2 |
| |
| // https://github.com/abseil/abseil-cpp/issues/209 |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 |
| // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char |
| // Work around this by using the portable implementation of Group |
| // when using -funsigned-char under GCC. |
| inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) { |
| #if defined(__GNUC__) && !defined(__clang__) |
| if (std::is_unsigned<char>::value) { |
| const __m128i mask = _mm_set1_epi8(0x80); |
| const __m128i diff = _mm_subs_epi8(b, a); |
| return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask); |
| } |
| #endif |
| return _mm_cmpgt_epi8(a, b); |
| } |
| |
| struct GroupSse2Impl { |
| static constexpr size_t kWidth = 16; // the number of slots per group |
| |
| explicit GroupSse2Impl(const ctrl_t* pos) { |
| ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos)); |
| } |
| |
| // Returns a bitmask representing the positions of slots that match hash. |
| BitMask<uint32_t, kWidth> Match(h2_t hash) const { |
| auto match = _mm_set1_epi8(hash); |
| return BitMask<uint32_t, kWidth>( |
| _mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))); |
| } |
| |
| // Returns a bitmask representing the positions of empty slots. |
| BitMask<uint32_t, kWidth> MatchEmpty() const { |
| #if SWISSTABLE_HAVE_SSSE3 |
| // This only works because kEmpty is -128. |
| return BitMask<uint32_t, kWidth>( |
| _mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))); |
| #else |
| return Match(static_cast<h2_t>(kEmpty)); |
| #endif |
| } |
| |
| // Returns a bitmask representing the positions of empty or deleted slots. |
| BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const { |
| auto special = _mm_set1_epi8(kSentinel); |
| return BitMask<uint32_t, kWidth>( |
| _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))); |
| } |
| |
| // Returns the number of trailing empty or deleted elements in the group. |
| uint32_t CountLeadingEmptyOrDeleted() const { |
| auto special = _mm_set1_epi8(kSentinel); |
| return TrailingZeros( |
| _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1); |
| } |
| |
| void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
| auto msbs = _mm_set1_epi8(static_cast<char>(-128)); |
| auto x126 = _mm_set1_epi8(126); |
| #if SWISSTABLE_HAVE_SSSE3 |
| auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); |
| #else |
| auto zero = _mm_setzero_si128(); |
| auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl); |
| auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126)); |
| #endif |
| _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res); |
| } |
| |
| __m128i ctrl; |
| }; |
| #endif // SWISSTABLE_HAVE_SSE2 |
| |
| struct GroupPortableImpl { |
| static constexpr size_t kWidth = 8; |
| |
| explicit GroupPortableImpl(const ctrl_t* pos) |
| : ctrl(little_endian::Load64(pos)) {} |
| |
| BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { |
| // For the technique, see: |
| // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord |
| // (Determine if a word has a byte equal to n). |
| // |
| // Caveat: there are false positives but: |
| // - they only occur if there is a real match |
| // - they never occur on kEmpty, kDeleted, kSentinel |
| // - they will be handled gracefully by subsequent checks in code |
| // |
| // Example: |
| // v = 0x1716151413121110 |
| // hash = 0x12 |
| // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000 |
| constexpr uint64_t msbs = 0x8080808080808080ULL; |
| constexpr uint64_t lsbs = 0x0101010101010101ULL; |
| auto x = ctrl ^ (lsbs * hash); |
| return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs); |
| } |
| |
| BitMask<uint64_t, kWidth, 3> MatchEmpty() const { |
| constexpr uint64_t msbs = 0x8080808080808080ULL; |
| return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs); |
| } |
| |
| BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const { |
| constexpr uint64_t msbs = 0x8080808080808080ULL; |
| return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs); |
| } |
| |
| uint32_t CountLeadingEmptyOrDeleted() const { |
| constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL; |
| return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3; |
| } |
| |
| void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
| constexpr uint64_t msbs = 0x8080808080808080ULL; |
| constexpr uint64_t lsbs = 0x0101010101010101ULL; |
| auto x = ctrl & msbs; |
| auto res = (~x + (x >> 7)) & ~lsbs; |
| little_endian::Store64(dst, res); |
| } |
| |
| uint64_t ctrl; |
| }; |
| |
| #if SWISSTABLE_HAVE_SSE2 |
| using Group = GroupSse2Impl; |
| #else |
| using Group = GroupPortableImpl; |
| #endif |
| |
| template <class Policy, class Hash, class Eq, class Alloc> |
| class raw_hash_set; |
| |
| inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } |
| |
| // PRECONDITION: |
| // IsValidCapacity(capacity) |
| // ctrl[capacity] == kSentinel |
| // ctrl[i] != kSentinel for all i < capacity |
| // Applies mapping for every byte in ctrl: |
| // DELETED -> EMPTY |
| // EMPTY -> EMPTY |
| // FULL -> DELETED |
| inline void ConvertDeletedToEmptyAndFullToDeleted( |
| ctrl_t* ctrl, size_t capacity) { |
| assert(ctrl[capacity] == kSentinel); |
| assert(IsValidCapacity(capacity)); |
| for (ctrl_t* pos = ctrl; pos != ctrl + capacity + 1; pos += Group::kWidth) { |
| Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos); |
| } |
| // Copy the cloned ctrl bytes. |
| std::memcpy(ctrl + capacity + 1, ctrl, Group::kWidth); |
| ctrl[capacity] = kSentinel; |
| } |
| |
| // Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1. |
| inline size_t NormalizeCapacity(size_t n) { |
| return n ? ~size_t{} >> LeadingZeros(n) : 1; |
| } |
| |
| // We use 7/8th as maximum load factor. |
| // For 16-wide groups, that gives an average of two empty slots per group. |
| inline size_t CapacityToGrowth(size_t capacity) { |
| assert(IsValidCapacity(capacity)); |
| // `capacity*7/8` |
| if (Group::kWidth == 8 && capacity == 7) { |
| // x-x/8 does not work when x==7. |
| return 6; |
| } |
| return capacity - capacity / 8; |
| } |
| // From desired "growth" to a lowerbound of the necessary capacity. |
| // Might not be a valid one and required NormalizeCapacity(). |
| inline size_t GrowthToLowerboundCapacity(size_t growth) { |
| // `growth*8/7` |
| if (Group::kWidth == 8 && growth == 7) { |
| // x+(x-1)/7 does not work when x==7. |
| return 8; |
| } |
| return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7); |
| } |
| |
| // Policy: a policy defines how to perform different operations on |
| // the slots of the hashtable (see hash_policy_traits.h for the full interface |
| // of policy). |
| // |
| // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The |
| // functor should accept a key and return size_t as hash. For best performance |
| // it is important that the hash function provides high entropy across all bits |
| // of the hash. |
| // |
| // Eq: a (possibly polymorphic) functor that compares two keys for equality. It |
| // should accept two (of possibly different type) keys and return a bool: true |
| // if they are equal, false if they are not. If two keys compare equal, then |
| // their hash values as defined by Hash MUST be equal. |
| // |
| // Allocator: an Allocator [https://devdocs.io/cpp/concept/allocator] with which |
| // the storage of the hashtable will be allocated and the elements will be |
| // constructed and destroyed. |
| template <class Policy, class Hash, class Eq, class Alloc> |
| class raw_hash_set { |
| using PolicyTraits = hash_policy_traits<Policy>; |
| using KeyArgImpl = |
| KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>; |
| |
| public: |
| using init_type = typename PolicyTraits::init_type; |
| using key_type = typename PolicyTraits::key_type; |
| // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user |
| // code fixes! |
| using slot_type = typename PolicyTraits::slot_type; |
| using allocator_type = Alloc; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using hasher = Hash; |
| using key_equal = Eq; |
| using policy_type = Policy; |
| using value_type = typename PolicyTraits::value_type; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using pointer = typename absl::allocator_traits< |
| allocator_type>::template rebind_traits<value_type>::pointer; |
| using const_pointer = typename absl::allocator_traits< |
| allocator_type>::template rebind_traits<value_type>::const_pointer; |
| |
| // Alias used for heterogeneous lookup functions. |
| // `key_arg<K>` evaluates to `K` when the functors are transparent and to |
| // `key_type` otherwise. It permits template argument deduction on `K` for the |
| // transparent case. |
| template <class K> |
| using key_arg = typename KeyArgImpl::template type<K, key_type>; |
| |
| private: |
| // Give an early error when key_type is not hashable/eq. |
| auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k)); |
| auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k)); |
| |
| using Layout = absl::container_internal::Layout<ctrl_t, slot_type>; |
| |
| static Layout MakeLayout(size_t capacity) { |
| assert(IsValidCapacity(capacity)); |
| return Layout(capacity + Group::kWidth + 1, capacity); |
| } |
| |
| using AllocTraits = absl::allocator_traits<allocator_type>; |
| using SlotAlloc = typename absl::allocator_traits< |
| allocator_type>::template rebind_alloc<slot_type>; |
| using SlotAllocTraits = typename absl::allocator_traits< |
| allocator_type>::template rebind_traits<slot_type>; |
| |
| static_assert(std::is_lvalue_reference<reference>::value, |
| "Policy::element() must return a reference"); |
| |
| template <typename T> |
| struct SameAsElementReference |
| : std::is_same<typename std::remove_cv< |
| typename std::remove_reference<reference>::type>::type, |
| typename std::remove_cv< |
| typename std::remove_reference<T>::type>::type> {}; |
| |
| // An enabler for insert(T&&): T must be convertible to init_type or be the |
| // same as [cv] value_type [ref]. |
| // Note: we separate SameAsElementReference into its own type to avoid using |
| // reference unless we need to. MSVC doesn't seem to like it in some |
| // cases. |
| template <class T> |
| using RequiresInsertable = typename std::enable_if< |
| absl::disjunction<std::is_convertible<T, init_type>, |
| SameAsElementReference<T>>::value, |
| int>::type; |
| |
| // RequiresNotInit is a workaround for gcc prior to 7.1. |
| // See https://godbolt.org/g/Y4xsUh. |
| template <class T> |
| using RequiresNotInit = |
| typename std::enable_if<!std::is_same<T, init_type>::value, int>::type; |
| |
| template <class... Ts> |
| using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>; |
| |
| public: |
| static_assert(std::is_same<pointer, value_type*>::value, |
| "Allocators with custom pointer types are not supported"); |
| static_assert(std::is_same<const_pointer, const value_type*>::value, |
| "Allocators with custom pointer types are not supported"); |
| |
| class iterator { |
| friend class raw_hash_set; |
| |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = typename raw_hash_set::value_type; |
| using reference = |
| absl::conditional_t<PolicyTraits::constant_iterators::value, |
| const value_type&, value_type&>; |
| using pointer = absl::remove_reference_t<reference>*; |
| using difference_type = typename raw_hash_set::difference_type; |
| |
| iterator() {} |
| |
| // PRECONDITION: not an end() iterator. |
| reference operator*() const { |
| assert_is_full(); |
| return PolicyTraits::element(slot_); |
| } |
| |
| // PRECONDITION: not an end() iterator. |
| pointer operator->() const { return &operator*(); } |
| |
| // PRECONDITION: not an end() iterator. |
| iterator& operator++() { |
| assert_is_full(); |
| ++ctrl_; |
| ++slot_; |
| skip_empty_or_deleted(); |
| return *this; |
| } |
| // PRECONDITION: not an end() iterator. |
| iterator operator++(int) { |
| auto tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| |
| friend bool operator==(const iterator& a, const iterator& b) { |
| a.assert_is_valid(); |
| b.assert_is_valid(); |
| return a.ctrl_ == b.ctrl_; |
| } |
| friend bool operator!=(const iterator& a, const iterator& b) { |
| return !(a == b); |
| } |
| |
| private: |
| iterator(ctrl_t* ctrl) : ctrl_(ctrl) {} // for end() |
| iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {} |
| |
| void assert_is_full() const { assert(IsFull(*ctrl_)); } |
| void assert_is_valid() const { |
| assert(!ctrl_ || IsFull(*ctrl_) || *ctrl_ == kSentinel); |
| } |
| |
| void skip_empty_or_deleted() { |
| while (IsEmptyOrDeleted(*ctrl_)) { |
| // ctrl is not necessarily aligned to Group::kWidth. It is also likely |
| // to read past the space for ctrl bytes and into slots. This is ok |
| // because ctrl has sizeof() == 1 and slot has sizeof() >= 1 so there |
| // is no way to read outside the combined slot array. |
| uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted(); |
| ctrl_ += shift; |
| slot_ += shift; |
| } |
| } |
| |
| ctrl_t* ctrl_ = nullptr; |
| // To avoid uninitialized member warnings, put slot_ in an anonymous union. |
| // The member is not initialized on singleton and end iterators. |
| union { |
| slot_type* slot_; |
| }; |
| }; |
| |
| class const_iterator { |
| friend class raw_hash_set; |
| |
| public: |
| using iterator_category = typename iterator::iterator_category; |
| using value_type = typename raw_hash_set::value_type; |
| using reference = typename raw_hash_set::const_reference; |
| using pointer = typename raw_hash_set::const_pointer; |
| using difference_type = typename raw_hash_set::difference_type; |
| |
| const_iterator() {} |
| // Implicit construction from iterator. |
| const_iterator(iterator i) : inner_(std::move(i)) {} |
| |
| reference operator*() const { return *inner_; } |
| pointer operator->() const { return inner_.operator->(); } |
| |
| const_iterator& operator++() { |
| ++inner_; |
| return *this; |
| } |
| const_iterator operator++(int) { return inner_++; } |
| |
| friend bool operator==(const const_iterator& a, const const_iterator& b) { |
| return a.inner_ == b.inner_; |
| } |
| friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
| return !(a == b); |
| } |
| |
| private: |
| const_iterator(const ctrl_t* ctrl, const slot_type* slot) |
| : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {} |
| |
| iterator inner_; |
| }; |
| |
| using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>; |
| using insert_return_type = InsertReturnType<iterator, node_type>; |
| |
| raw_hash_set() noexcept( |
| std::is_nothrow_default_constructible<hasher>::value&& |
| std::is_nothrow_default_constructible<key_equal>::value&& |
| std::is_nothrow_default_constructible<allocator_type>::value) {} |
| |
| explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(), |
| const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : ctrl_(EmptyGroup()), settings_(0, hash, eq, alloc) { |
| if (bucket_count) { |
| capacity_ = NormalizeCapacity(bucket_count); |
| reset_growth_left(); |
| initialize_slots(); |
| } |
| } |
| |
| raw_hash_set(size_t bucket_count, const hasher& hash, |
| const allocator_type& alloc) |
| : raw_hash_set(bucket_count, hash, key_equal(), alloc) {} |
| |
| raw_hash_set(size_t bucket_count, const allocator_type& alloc) |
| : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {} |
| |
| explicit raw_hash_set(const allocator_type& alloc) |
| : raw_hash_set(0, hasher(), key_equal(), alloc) {} |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0, |
| const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : raw_hash_set(bucket_count, hash, eq, alloc) { |
| insert(first, last); |
| } |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
| const hasher& hash, const allocator_type& alloc) |
| : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {} |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
| const allocator_type& alloc) |
| : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {} |
| |
| template <class InputIter> |
| raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc) |
| : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {} |
| |
| // Instead of accepting std::initializer_list<value_type> as the first |
| // argument like std::unordered_set<value_type> does, we have two overloads |
| // that accept std::initializer_list<T> and std::initializer_list<init_type>. |
| // This is advantageous for performance. |
| // |
| // // Turns {"abc", "def"} into std::initializer_list<std::string>, then |
| // // copies the strings into the set. |
| // std::unordered_set<std::string> s = {"abc", "def"}; |
| // |
| // // Turns {"abc", "def"} into std::initializer_list<const char*>, then |
| // // copies the strings into the set. |
| // absl::flat_hash_set<std::string> s = {"abc", "def"}; |
| // |
| // The same trick is used in insert(). |
| // |
| // The enabler is necessary to prevent this constructor from triggering where |
| // the copy constructor is meant to be called. |
| // |
| // absl::flat_hash_set<int> a, b{a}; |
| // |
| // RequiresNotInit<T> is a workaround for gcc prior to 7.1. |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0, |
| const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0, |
| const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
| const allocator_type& alloc = allocator_type()) |
| : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
| |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
| const hasher& hash, const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
| const hasher& hash, const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
| |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
| const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
| const allocator_type& alloc) |
| : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
| |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
| raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc) |
| : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
| |
| raw_hash_set(std::initializer_list<init_type> init, |
| const allocator_type& alloc) |
| : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
| |
| raw_hash_set(const raw_hash_set& that) |
| : raw_hash_set(that, AllocTraits::select_on_container_copy_construction( |
| that.alloc_ref())) {} |
| |
| raw_hash_set(const raw_hash_set& that, const allocator_type& a) |
| : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) { |
| reserve(that.size()); |
| // Because the table is guaranteed to be empty, we can do something faster |
| // than a full `insert`. |
| for (const auto& v : that) { |
| const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); |
| auto target = find_first_non_full(hash); |
| set_ctrl(target.offset, H2(hash)); |
| emplace_at(target.offset, v); |
| infoz_.RecordInsert(hash, target.probe_length); |
| } |
| size_ = that.size(); |
| growth_left() -= that.size(); |
| } |
| |
| raw_hash_set(raw_hash_set&& that) noexcept( |
| std::is_nothrow_copy_constructible<hasher>::value&& |
| std::is_nothrow_copy_constructible<key_equal>::value&& |
| std::is_nothrow_copy_constructible<allocator_type>::value) |
| : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())), |
| slots_(absl::exchange(that.slots_, nullptr)), |
| size_(absl::exchange(that.size_, 0)), |
| capacity_(absl::exchange(that.capacity_, 0)), |
| infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())), |
| // Hash, equality and allocator are copied instead of moved because |
| // `that` must be left valid. If Hash is std::function<Key>, moving it |
| // would create a nullptr functor that cannot be called. |
| settings_(that.settings_) { |
| // growth_left was copied above, reset the one from `that`. |
| that.growth_left() = 0; |
| } |
| |
| raw_hash_set(raw_hash_set&& that, const allocator_type& a) |
| : ctrl_(EmptyGroup()), |
| slots_(nullptr), |
| size_(0), |
| capacity_(0), |
| settings_(0, that.hash_ref(), that.eq_ref(), a) { |
| if (a == that.alloc_ref()) { |
| std::swap(ctrl_, that.ctrl_); |
| std::swap(slots_, that.slots_); |
| std::swap(size_, that.size_); |
| std::swap(capacity_, that.capacity_); |
| std::swap(growth_left(), that.growth_left()); |
| std::swap(infoz_, that.infoz_); |
| } else { |
| reserve(that.size()); |
| // Note: this will copy elements of dense_set and unordered_set instead of |
| // moving them. This can be fixed if it ever becomes an issue. |
| for (auto& elem : that) insert(std::move(elem)); |
| } |
| } |
| |
| raw_hash_set& operator=(const raw_hash_set& that) { |
| raw_hash_set tmp(that, |
| AllocTraits::propagate_on_container_copy_assignment::value |
| ? that.alloc_ref() |
| : alloc_ref()); |
| swap(tmp); |
| return *this; |
| } |
| |
| raw_hash_set& operator=(raw_hash_set&& that) noexcept( |
| absl::allocator_traits<allocator_type>::is_always_equal::value&& |
| std::is_nothrow_move_assignable<hasher>::value&& |
| std::is_nothrow_move_assignable<key_equal>::value) { |
| // TODO(sbenza): We should only use the operations from the noexcept clause |
| // to make sure we actually adhere to that contract. |
| return move_assign( |
| std::move(that), |
| typename AllocTraits::propagate_on_container_move_assignment()); |
| } |
| |
| ~raw_hash_set() { destroy_slots(); } |
| |
| iterator begin() { |
| auto it = iterator_at(0); |
| it.skip_empty_or_deleted(); |
| return it; |
| } |
| iterator end() { return {ctrl_ + capacity_}; } |
| |
| const_iterator begin() const { |
| return const_cast<raw_hash_set*>(this)->begin(); |
| } |
| const_iterator end() const { return const_cast<raw_hash_set*>(this)->end(); } |
| const_iterator cbegin() const { return begin(); } |
| const_iterator cend() const { return end(); } |
| |
| bool empty() const { return !size(); } |
| size_t size() const { return size_; } |
| size_t capacity() const { return capacity_; } |
| size_t max_size() const { return (std::numeric_limits<size_t>::max)(); } |
| |
| ABSL_ATTRIBUTE_REINITIALIZES void clear() { |
| // Iterating over this container is O(bucket_count()). When bucket_count() |
| // is much greater than size(), iteration becomes prohibitively expensive. |
| // For clear() it is more important to reuse the allocated array when the |
| // container is small because allocation takes comparatively long time |
| // compared to destruction of the elements of the container. So we pick the |
| // largest bucket_count() threshold for which iteration is still fast and |
| // past that we simply deallocate the array. |
| if (capacity_ > 127) { |
| destroy_slots(); |
| } else if (capacity_) { |
| for (size_t i = 0; i != capacity_; ++i) { |
| if (IsFull(ctrl_[i])) { |
| PolicyTraits::destroy(&alloc_ref(), slots_ + i); |
| } |
| } |
| size_ = 0; |
| reset_ctrl(); |
| reset_growth_left(); |
| } |
| assert(empty()); |
| infoz_.RecordStorageChanged(0, capacity_); |
| } |
| |
| // This overload kicks in when the argument is an rvalue of insertable and |
| // decomposable type other than init_type. |
| // |
| // flat_hash_map<std::string, int> m; |
| // m.insert(std::make_pair("abc", 42)); |
| // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc |
| // bug. |
| template <class T, RequiresInsertable<T> = 0, |
| class T2 = T, |
| typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, |
| T* = nullptr> |
| std::pair<iterator, bool> insert(T&& value) { |
| return emplace(std::forward<T>(value)); |
| } |
| |
| // This overload kicks in when the argument is a bitfield or an lvalue of |
| // insertable and decomposable type. |
| // |
| // union { int n : 1; }; |
| // flat_hash_set<int> s; |
| // s.insert(n); |
| // |
| // flat_hash_set<std::string> s; |
| // const char* p = "hello"; |
| // s.insert(p); |
| // |
| // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace |
| // RequiresInsertable<T> with RequiresInsertable<const T&>. |
| // We are hitting this bug: https://godbolt.org/g/1Vht4f. |
| template < |
| class T, RequiresInsertable<T> = 0, |
| typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> |
| std::pair<iterator, bool> insert(const T& value) { |
| return emplace(value); |
| } |
| |
| // This overload kicks in when the argument is an rvalue of init_type. Its |
| // purpose is to handle brace-init-list arguments. |
| // |
| // flat_hash_map<std::string, int> s; |
| // s.insert({"abc", 42}); |
| std::pair<iterator, bool> insert(init_type&& value) { |
| return emplace(std::move(value)); |
| } |
| |
| // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc |
| // bug. |
| template <class T, RequiresInsertable<T> = 0, class T2 = T, |
| typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, |
| T* = nullptr> |
| iterator insert(const_iterator, T&& value) { |
| return insert(std::forward<T>(value)).first; |
| } |
| |
| // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace |
| // RequiresInsertable<T> with RequiresInsertable<const T&>. |
| // We are hitting this bug: https://godbolt.org/g/1Vht4f. |
| template < |
| class T, RequiresInsertable<T> = 0, |
| typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> |
| iterator insert(const_iterator, const T& value) { |
| return insert(value).first; |
| } |
| |
| iterator insert(const_iterator, init_type&& value) { |
| return insert(std::move(value)).first; |
| } |
| |
| template <class InputIt> |
| void insert(InputIt first, InputIt last) { |
| for (; first != last; ++first) insert(*first); |
| } |
| |
| template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0> |
| void insert(std::initializer_list<T> ilist) { |
| insert(ilist.begin(), ilist.end()); |
| } |
| |
| void insert(std::initializer_list<init_type> ilist) { |
| insert(ilist.begin(), ilist.end()); |
| } |
| |
| insert_return_type insert(node_type&& node) { |
| if (!node) return {end(), false, node_type()}; |
| const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node)); |
| auto res = PolicyTraits::apply( |
| InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))}, |
| elem); |
| if (res.second) { |
| CommonAccess::Reset(&node); |
| return {res.first, true, node_type()}; |
| } else { |
| return {res.first, false, std::move(node)}; |
| } |
| } |
| |
| iterator insert(const_iterator, node_type&& node) { |
| return insert(std::move(node)).first; |
| } |
| |
| // This overload kicks in if we can deduce the key from args. This enables us |
| // to avoid constructing value_type if an entry with the same key already |
| // exists. |
| // |
| // For example: |
| // |
| // flat_hash_map<std::string, std::string> m = {{"abc", "def"}}; |
| // // Creates no std::string copies and makes no heap allocations. |
| // m.emplace("abc", "xyz"); |
| template <class... Args, typename std::enable_if< |
| IsDecomposable<Args...>::value, int>::type = 0> |
| std::pair<iterator, bool> emplace(Args&&... args) { |
| return PolicyTraits::apply(EmplaceDecomposable{*this}, |
| std::forward<Args>(args)...); |
| } |
| |
| // This overload kicks in if we cannot deduce the key from args. It constructs |
| // value_type unconditionally and then either moves it into the table or |
| // destroys. |
| template <class... Args, typename std::enable_if< |
| !IsDecomposable<Args...>::value, int>::type = 0> |
| std::pair<iterator, bool> emplace(Args&&... args) { |
| alignas(slot_type) unsigned char raw[sizeof(slot_type)]; |
| slot_type* slot = reinterpret_cast<slot_type*>(&raw); |
| |
| PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...); |
| const auto& elem = PolicyTraits::element(slot); |
| return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem); |
| } |
| |
| template <class... Args> |
| iterator emplace_hint(const_iterator, Args&&... args) { |
| return emplace(std::forward<Args>(args)...).first; |
| } |
| |
| // Extension API: support for lazy emplace. |
| // |
| // Looks up key in the table. If found, returns the iterator to the element. |
| // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`. |
| // |
| // `f` must abide by several restrictions: |
| // - it MUST call `raw_hash_set::constructor` with arguments as if a |
| // `raw_hash_set::value_type` is constructed, |
| // - it MUST NOT access the container before the call to |
| // `raw_hash_set::constructor`, and |
| // - it MUST NOT erase the lazily emplaced element. |
| // Doing any of these is undefined behavior. |
| // |
| // For example: |
| // |
| // std::unordered_set<ArenaString> s; |
| // // Makes ArenaStr even if "abc" is in the map. |
| // s.insert(ArenaString(&arena, "abc")); |
| // |
| // flat_hash_set<ArenaStr> s; |
| // // Makes ArenaStr only if "abc" is not in the map. |
| // s.lazy_emplace("abc", [&](const constructor& ctor) { |
| // ctor(&arena, "abc"); |
| // }); |
| // |
| // WARNING: This API is currently experimental. If there is a way to implement |
| // the same thing with the rest of the API, prefer that. |
| class constructor { |
| friend class raw_hash_set; |
| |
| public: |
| template <class... Args> |
| void operator()(Args&&... args) const { |
| assert(*slot_); |
| PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...); |
| *slot_ = nullptr; |
| } |
| |
| private: |
| constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {} |
| |
| allocator_type* alloc_; |
| slot_type** slot_; |
| }; |
| |
| template <class K = key_type, class F> |
| iterator lazy_emplace(const key_arg<K>& key, F&& f) { |
| auto res = find_or_prepare_insert(key); |
| if (res.second) { |
| slot_type* slot = slots_ + res.first; |
| std::forward<F>(f)(constructor(&alloc_ref(), &slot)); |
| assert(!slot); |
| } |
| return iterator_at(res.first); |
| } |
| |
| // Extension API: support for heterogeneous keys. |
| // |
| // std::unordered_set<std::string> s; |
| // // Turns "abc" into std::string. |
| // s.erase("abc"); |
| // |
| // flat_hash_set<std::string> s; |
| // // Uses "abc" directly without copying it into std::string. |
| // s.erase("abc"); |
| template <class K = key_type> |
| size_type erase(const key_arg<K>& key) { |
| auto it = find(key); |
| if (it == end()) return 0; |
| erase(it); |
| return 1; |
| } |
| |
| // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`, |
| // this method returns void to reduce algorithmic complexity to O(1). The |
| // iterator is invalidated, so any increment should be done before calling |
| // erase. In order to erase while iterating across a map, use the following |
| // idiom (which also works for standard containers): |
| // |
| // for (auto it = m.begin(), end = m.end(); it != end;) { |
| // // `erase()` will invalidate `it`, so advance `it` first. |
| // auto copy_it = it++; |
| // if (<pred>) { |
| // m.erase(copy_it); |
| // } |
| // } |
| void erase(const_iterator cit) { erase(cit.inner_); } |
| |
| // This overload is necessary because otherwise erase<K>(const K&) would be |
| // a better match if non-const iterator is passed as an argument. |
| void erase(iterator it) { |
| it.assert_is_full(); |
| PolicyTraits::destroy(&alloc_ref(), it.slot_); |
| erase_meta_only(it); |
| } |
| |
| iterator erase(const_iterator first, const_iterator last) { |
| while (first != last) { |
| erase(first++); |
| } |
| return last.inner_; |
| } |
| |
| // Moves elements from `src` into `this`. |
| // If the element already exists in `this`, it is left unmodified in `src`. |
| template <typename H, typename E> |
| void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT |
| assert(this != &src); |
| for (auto it = src.begin(), e = src.end(); it != e;) { |
| auto next = std::next(it); |
| if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)}, |
| PolicyTraits::element(it.slot_)) |
| .second) { |
| src.erase_meta_only(it); |
| } |
| it = next; |
| } |
| } |
| |
| template <typename H, typename E> |
| void merge(raw_hash_set<Policy, H, E, Alloc>&& src) { |
| merge(src); |
| } |
| |
| node_type extract(const_iterator position) { |
| position.inner_.assert_is_full(); |
| auto node = |
| CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_); |
| erase_meta_only(position); |
| return node; |
| } |
| |
| template < |
| class K = key_type, |
| typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0> |
| node_type extract(const key_arg<K>& key) { |
| auto it = find(key); |
| return it == end() ? node_type() : extract(const_iterator{it}); |
| } |
| |
| void swap(raw_hash_set& that) noexcept( |
| IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() && |
| (!AllocTraits::propagate_on_container_swap::value || |
| IsNoThrowSwappable<allocator_type>())) { |
| using std::swap; |
| swap(ctrl_, that.ctrl_); |
| swap(slots_, that.slots_); |
| swap(size_, that.size_); |
| swap(capacity_, that.capacity_); |
| swap(growth_left(), that.growth_left()); |
| swap(hash_ref(), that.hash_ref()); |
| swap(eq_ref(), that.eq_ref()); |
| swap(infoz_, that.infoz_); |
| if (AllocTraits::propagate_on_container_swap::value) { |
| swap(alloc_ref(), that.alloc_ref()); |
| } else { |
| // If the allocators do not compare equal it is officially undefined |
| // behavior. We choose to do nothing. |
| } |
| } |
| |
| void rehash(size_t n) { |
| if (n == 0 && capacity_ == 0) return; |
| if (n == 0 && size_ == 0) { |
| destroy_slots(); |
| infoz_.RecordStorageChanged(0, 0); |
| return; |
| } |
| // bitor is a faster way of doing `max` here. We will round up to the next |
| // power-of-2-minus-1, so bitor is good enough. |
| auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size())); |
| // n == 0 unconditionally rehashes as per the standard. |
| if (n == 0 || m > capacity_) { |
| resize(m); |
| } |
| } |
| |
| void reserve(size_t n) { rehash(GrowthToLowerboundCapacity(n)); } |
| |
| // Extension API: support for heterogeneous keys. |
| // |
| // std::unordered_set<std::string> s; |
| // // Turns "abc" into std::string. |
| // s.count("abc"); |
| // |
| // ch_set<std::string> s; |
| // // Uses "abc" directly without copying it into std::string. |
| // s.count("abc"); |
| template <class K = key_type> |
| size_t count(const key_arg<K>& key) const { |
| return find(key) == end() ? 0 : 1; |
| } |
| |
| // Issues CPU prefetch instructions for the memory needed to find or insert |
| // a key. Like all lookup functions, this support heterogeneous keys. |
| // |
| // NOTE: This is a very low level operation and should not be used without |
| // specific benchmarks indicating its importance. |
| template <class K = key_type> |
| void prefetch(const key_arg<K>& key) const { |
| (void)key; |
| #if defined(__GNUC__) |
| auto seq = probe(hash_ref()(key)); |
| __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset())); |
| __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset())); |
| #endif // __GNUC__ |
| } |
| |
| // The API of find() has two extensions. |
| // |
| // 1. The hash can be passed by the user. It must be equal to the hash of the |
| // key. |
| // |
| // 2. The type of the key argument doesn't have to be key_type. This is so |
| // called heterogeneous key support. |
| template <class K = key_type> |
| iterator find(const key_arg<K>& key, size_t hash) { |
| auto seq = probe(hash); |
| while (true) { |
| Group g{ctrl_ + seq.offset()}; |
| for (int i : g.Match(H2(hash))) { |
| if (ABSL_PREDICT_TRUE(PolicyTraits::apply( |
| EqualElement<K>{key, eq_ref()}, |
| PolicyTraits::element(slots_ + seq.offset(i))))) |
| return iterator_at(seq.offset(i)); |
| } |
| if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end(); |
| seq.next(); |
| } |
| } |
| template <class K = key_type> |
| iterator find(const key_arg<K>& key) { |
| return find(key, hash_ref()(key)); |
| } |
| |
| template <class K = key_type> |
| const_iterator find(const key_arg<K>& key, size_t hash) const { |
| return const_cast<raw_hash_set*>(this)->find(key, hash); |
| } |
| template <class K = key_type> |
| const_iterator find(const key_arg<K>& key) const { |
| return find(key, hash_ref()(key)); |
| } |
| |
| template <class K = key_type> |
| bool contains(const key_arg<K>& key) const { |
| return find(key) != end(); |
| } |
| |
| template <class K = key_type> |
| std::pair<iterator, iterator> equal_range(const key_arg<K>& key) { |
| auto it = find(key); |
| if (it != end()) return {it, std::next(it)}; |
| return {it, it}; |
| } |
| template <class K = key_type> |
| std::pair<const_iterator, const_iterator> equal_range( |
| const key_arg<K>& key) const { |
| auto it = find(key); |
| if (it != end()) return {it, std::next(it)}; |
| return {it, it}; |
| } |
| |
| size_t bucket_count() const { return capacity_; } |
| float load_factor() const { |
| return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0; |
| } |
| float max_load_factor() const { return 1.0f; } |
| void max_load_factor(float) { |
| // Does nothing. |
| } |
| |
| hasher hash_function() const { return hash_ref(); } |
| key_equal key_eq() const { return eq_ref(); } |
| allocator_type get_allocator() const { return alloc_ref(); } |
| |
| friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) { |
| if (a.size() != b.size()) return false; |
| const raw_hash_set* outer = &a; |
| const raw_hash_set* inner = &b; |
| if (outer->capacity() > inner->capacity()) std::swap(outer, inner); |
| for (const value_type& elem : *outer) |
| if (!inner->has_element(elem)) return false; |
| return true; |
| } |
| |
| friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) { |
| return !(a == b); |
| } |
| |
| friend void swap(raw_hash_set& a, |
| raw_hash_set& b) noexcept(noexcept(a.swap(b))) { |
| a.swap(b); |
| } |
| |
| private: |
| template <class Container, typename Enabler> |
| friend struct absl::container_internal::hashtable_debug_internal:: |
| HashtableDebugAccess; |
| |
| struct FindElement { |
| template <class K, class... Args> |
| const_iterator operator()(const K& key, Args&&...) const { |
| return s.find(key); |
| } |
| const raw_hash_set& s; |
| }; |
| |
| struct HashElement { |
| template <class K, class... Args> |
| size_t operator()(const K& key, Args&&...) const { |
| return h(key); |
| } |
| const hasher& h; |
| }; |
| |
| template <class K1> |
| struct EqualElement { |
| template <class K2, class... Args> |
| bool operator()(const K2& lhs, Args&&...) const { |
| return eq(lhs, rhs); |
| } |
| const K1& rhs; |
| const key_equal& eq; |
| }; |
| |
| struct EmplaceDecomposable { |
| template <class K, class... Args> |
| std::pair<iterator, bool> operator()(const K& key, Args&&... args) const { |
| auto res = s.find_or_prepare_insert(key); |
| if (res.second) { |
| s.emplace_at(res.first, std::forward<Args>(args)...); |
| } |
| return {s.iterator_at(res.first), res.second}; |
| } |
| raw_hash_set& s; |
| }; |
| |
| template <bool do_destroy> |
| struct InsertSlot { |
| template <class K, class... Args> |
| std::pair<iterator, bool> operator()(const K& key, Args&&...) && { |
| auto res = s.find_or_prepare_insert(key); |
| if (res.second) { |
| PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot); |
| } else if (do_destroy) { |
| PolicyTraits::destroy(&s.alloc_ref(), &slot); |
| } |
| return {s.iterator_at(res.first), res.second}; |
| } |
| raw_hash_set& s; |
| // Constructed slot. Either moved into place or destroyed. |
| slot_type&& slot; |
| }; |
| |
| // "erases" the object from the container, except that it doesn't actually |
| // destroy the object. It only updates all the metadata of the class. |
| // This can be used in conjunction with Policy::transfer to move the object to |
| // another place. |
| void erase_meta_only(const_iterator it) { |
| assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator"); |
| --size_; |
| const size_t index = it.inner_.ctrl_ - ctrl_; |
| const size_t index_before = (index - Group::kWidth) & capacity_; |
| const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty(); |
| const auto empty_before = Group(ctrl_ + index_before).MatchEmpty(); |
| |
| // We count how many consecutive non empties we have to the right and to the |
| // left of `it`. If the sum is >= kWidth then there is at least one probe |
| // window that might have seen a full group. |
| bool was_never_full = |
| empty_before && empty_after && |
| static_cast<size_t>(empty_after.TrailingZeros() + |
| empty_before.LeadingZeros()) < Group::kWidth; |
| |
| set_ctrl(index, was_never_full ? kEmpty : kDeleted); |
| growth_left() += was_never_full; |
| infoz_.RecordErase(); |
| } |
| |
| void initialize_slots() { |
| assert(capacity_); |
| // Folks with custom allocators often make unwarranted assumptions about the |
| // behavior of their classes vis-a-vis trivial destructability and what |
| // calls they will or wont make. Avoid sampling for people with custom |
| // allocators to get us out of this mess. This is not a hard guarantee but |
| // a workaround while we plan the exact guarantee we want to provide. |
| // |
| // People are often sloppy with the exact type of their allocator (sometimes |
| // it has an extra const or is missing the pair, but rebinds made it work |
| // anyway). To avoid the ambiguity, we work off SlotAlloc which we have |
| // bound more carefully. |
| if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value && |
| slots_ == nullptr) { |
| infoz_ = Sample(); |
| } |
| |
| auto layout = MakeLayout(capacity_); |
| char* mem = static_cast<char*>( |
| Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize())); |
| ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem)); |
| slots_ = layout.template Pointer<1>(mem); |
| reset_ctrl(); |
| reset_growth_left(); |
| infoz_.RecordStorageChanged(size_, capacity_); |
| } |
| |
| void destroy_slots() { |
| if (!capacity_) return; |
| for (size_t i = 0; i != capacity_; ++i) { |
| if (IsFull(ctrl_[i])) { |
| PolicyTraits::destroy(&alloc_ref(), slots_ + i); |
| } |
| } |
| auto layout = MakeLayout(capacity_); |
| // Unpoison before returning the memory to the allocator. |
| SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_); |
| Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize()); |
| ctrl_ = EmptyGroup(); |
| slots_ = nullptr; |
| size_ = 0; |
| capacity_ = 0; |
| growth_left() = 0; |
| } |
| |
| void resize(size_t new_capacity) { |
| assert(IsValidCapacity(new_capacity)); |
| auto* old_ctrl = ctrl_; |
| auto* old_slots = slots_; |
| const size_t old_capacity = capacity_; |
| capacity_ = new_capacity; |
| initialize_slots(); |
| |
| size_t total_probe_length = 0; |
| for (size_t i = 0; i != old_capacity; ++i) { |
| if (IsFull(old_ctrl[i])) { |
| size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, |
| PolicyTraits::element(old_slots + i)); |
| auto target = find_first_non_full(hash); |
| size_t new_i = target.offset; |
| total_probe_length += target.probe_length; |
| set_ctrl(new_i, H2(hash)); |
| PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i); |
| } |
| } |
| if (old_capacity) { |
| SanitizerUnpoisonMemoryRegion(old_slots, |
| sizeof(slot_type) * old_capacity); |
| auto layout = MakeLayout(old_capacity); |
| Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl, |
| layout.AllocSize()); |
| } |
| infoz_.RecordRehash(total_probe_length); |
| } |
| |
| void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE { |
| assert(IsValidCapacity(capacity_)); |
| assert(!is_small()); |
| // Algorithm: |
| // - mark all DELETED slots as EMPTY |
| // - mark all FULL slots as DELETED |
| // - for each slot marked as DELETED |
| // hash = Hash(element) |
| // target = find_first_non_full(hash) |
| // if target is in the same group |
| // mark slot as FULL |
| // else if target is EMPTY |
| // transfer element to target |
| // mark slot as EMPTY |
| // mark target as FULL |
| // else if target is DELETED |
| // swap current element with target element |
| // mark target as FULL |
| // repeat procedure for current slot with moved from element (target) |
| ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_); |
| alignas(slot_type) unsigned char raw[sizeof(slot_type)]; |
| size_t total_probe_length = 0; |
| slot_type* slot = reinterpret_cast<slot_type*>(&raw); |
| for (size_t i = 0; i != capacity_; ++i) { |
| if (!IsDeleted(ctrl_[i])) continue; |
| size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, |
| PolicyTraits::element(slots_ + i)); |
| auto target = find_first_non_full(hash); |
| size_t new_i = target.offset; |
| total_probe_length += target.probe_length; |
| |
| // Verify if the old and new i fall within the same group wrt the hash. |
| // If they do, we don't need to move the object as it falls already in the |
| // best probe we can. |
| const auto probe_index = [&](size_t pos) { |
| return ((pos - probe(hash).offset()) & capacity_) / Group::kWidth; |
| }; |
| |
| // Element doesn't move. |
| if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) { |
| set_ctrl(i, H2(hash)); |
| continue; |
| } |
| if (IsEmpty(ctrl_[new_i])) { |
| // Transfer element to the empty spot. |
| // set_ctrl poisons/unpoisons the slots so we have to call it at the |
| // right time. |
| set_ctrl(new_i, H2(hash)); |
| PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i); |
| set_ctrl(i, kEmpty); |
| } else { |
| assert(IsDeleted(ctrl_[new_i])); |
| set_ctrl(new_i, H2(hash)); |
| // Until we are done rehashing, DELETED marks previously FULL slots. |
| // Swap i and new_i elements. |
| PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i); |
| PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i); |
| PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot); |
| --i; // repeat |
| } |
| } |
| reset_growth_left(); |
| infoz_.RecordRehash(total_probe_length); |
| } |
| |
| void rehash_and_grow_if_necessary() { |
| if (capacity_ == 0) { |
| resize(1); |
| } else if (size() <= CapacityToGrowth(capacity()) / 2) { |
| // Squash DELETED without growing if there is enough capacity. |
| drop_deletes_without_resize(); |
| } else { |
| // Otherwise grow the container. |
| resize(capacity_ * 2 + 1); |
| } |
| } |
| |
| bool has_element(const value_type& elem) const { |
| size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem); |
| auto seq = probe(hash); |
| while (true) { |
| Group g{ctrl_ + seq.offset()}; |
| for (int i : g.Match(H2(hash))) { |
| if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) == |
| elem)) |
| return true; |
| } |
| if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false; |
| seq.next(); |
| assert(seq.index() < capacity_ && "full table!"); |
| } |
| return false; |
| } |
| |
| // Probes the raw_hash_set with the probe sequence for hash and returns the |
| // pointer to the first empty or deleted slot. |
| // NOTE: this function must work with tables having both kEmpty and kDelete |
| // in one group. Such tables appears during drop_deletes_without_resize. |
| // |
| // This function is very useful when insertions happen and: |
| // - the input is already a set |
| // - there are enough slots |
| // - the element with the hash is not in the table |
| struct FindInfo { |
| size_t offset; |
| size_t probe_length; |
| }; |
| FindInfo find_first_non_full(size_t hash) { |
| auto seq = probe(hash); |
| while (true) { |
| Group g{ctrl_ + seq.offset()}; |
| auto mask = g.MatchEmptyOrDeleted(); |
| if (mask) { |
| #if !defined(NDEBUG) |
| // We want to add entropy even when ASLR is not enabled. |
| // In debug build we will randomly insert in either the front or back of |
| // the group. |
| // TODO(kfm,sbenza): revisit after we do unconditional mixing |
| if (!is_small() && ShouldInsertBackwards(hash, ctrl_)) { |
| return {seq.offset(mask.HighestBitSet()), seq.index()}; |
| } |
| #endif |
| return {seq.offset(mask.LowestBitSet()), seq.index()}; |
| } |
| assert(seq.index() < capacity_ && "full table!"); |
| seq.next(); |
| } |
| } |
| |
| // TODO(alkis): Optimize this assuming *this and that don't overlap. |
| raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) { |
| raw_hash_set tmp(std::move(that)); |
| swap(tmp); |
| return *this; |
| } |
| raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) { |
| raw_hash_set tmp(std::move(that), alloc_ref()); |
| swap(tmp); |
| return *this; |
| } |
| |
| protected: |
| template <class K> |
| std::pair<size_t, bool> find_or_prepare_insert(const K& key) { |
| auto hash = hash_ref()(key); |
| auto seq = probe(hash); |
| while (true) { |
| Group g{ctrl_ + seq.offset()}; |
| for (int i : g.Match(H2(hash))) { |
| if (ABSL_PREDICT_TRUE(PolicyTraits::apply( |
| EqualElement<K>{key, eq_ref()}, |
| PolicyTraits::element(slots_ + seq.offset(i))))) |
| return {seq.offset(i), false}; |
| } |
| if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break; |
| seq.next(); |
| } |
| return {prepare_insert(hash), true}; |
| } |
| |
| size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { |
| auto target = find_first_non_full(hash); |
| if (ABSL_PREDICT_FALSE(growth_left() == 0 && |
| !IsDeleted(ctrl_[target.offset]))) { |
| rehash_and_grow_if_necessary(); |
| target = find_first_non_full(hash); |
| } |
| ++size_; |
| growth_left() -= IsEmpty(ctrl_[target.offset]); |
| set_ctrl(target.offset, H2(hash)); |
| infoz_.RecordInsert(hash, target.probe_length); |
| return target.offset; |
| } |
| |
| // Constructs the value in the space pointed by the iterator. This only works |
| // after an unsuccessful find_or_prepare_insert() and before any other |
| // modifications happen in the raw_hash_set. |
| // |
| // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where |
| // k is the key decomposed from `forward<Args>(args)...`, and the bool |
| // returned by find_or_prepare_insert(k) was true. |
| // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...). |
| template <class... Args> |
| void emplace_at(size_t i, Args&&... args) { |
| PolicyTraits::construct(&alloc_ref(), slots_ + i, |
| std::forward<Args>(args)...); |
| |
| assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) == |
| iterator_at(i) && |
| "constructed value does not match the lookup key"); |
| } |
| |
| iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; } |
| const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; } |
| |
| private: |
| friend struct RawHashSetTestOnlyAccess; |
| |
| probe_seq<Group::kWidth> probe(size_t hash) const { |
| return probe_seq<Group::kWidth>(H1(hash, ctrl_), capacity_); |
| } |
| |
| // Reset all ctrl bytes back to kEmpty, except the sentinel. |
| void reset_ctrl() { |
| std::memset(ctrl_, kEmpty, capacity_ + Group::kWidth); |
| ctrl_[capacity_] = kSentinel; |
| SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_); |
| } |
| |
| void reset_growth_left() { |
| growth_left() = CapacityToGrowth(capacity()) - size_; |
| } |
| |
| // Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at |
| // the end too. |
| void set_ctrl(size_t i, ctrl_t h) { |
| assert(i < capacity_); |
| |
| if (IsFull(h)) { |
| SanitizerUnpoisonObject(slots_ + i); |
| } else { |
| SanitizerPoisonObject(slots_ + i); |
| } |
| |
| ctrl_[i] = h; |
| ctrl_[((i - Group::kWidth) & capacity_) + 1 + |
| ((Group::kWidth - 1) & capacity_)] = h; |
| } |
| |
| size_t& growth_left() { return settings_.template get<0>(); } |
| |
| // The representation of the object has two modes: |
| // - small: For capacities < kWidth-1 |
| // - large: For the rest. |
| // |
| // Differences: |
| // - In small mode we are able to use the whole capacity. The extra control |
| // bytes give us at least one "empty" control byte to stop the iteration. |
| // This is important to make 1 a valid capacity. |
| // |
| // - In small mode only the first `capacity()` control bytes after the |
| // sentinel are valid. The rest contain dummy kEmpty values that do not |
| // represent a real slot. This is important to take into account on |
| // find_first_non_full(), where we never try ShouldInsertBackwards() for |
| // small tables. |
| bool is_small() const { return capacity_ < Group::kWidth - 1; } |
| |
| hasher& hash_ref() { return settings_.template get<1>(); } |
| const hasher& hash_ref() const { return settings_.template get<1>(); } |
| key_equal& eq_ref() { return settings_.template get<2>(); } |
| const key_equal& eq_ref() const { return settings_.template get<2>(); } |
| allocator_type& alloc_ref() { return settings_.template get<3>(); } |
| const allocator_type& alloc_ref() const { |
| return settings_.template get<3>(); |
| } |
| |
| // TODO(alkis): Investigate removing some of these fields: |
| // - ctrl/slots can be derived from each other |
| // - size can be moved into the slot array |
| ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1) * ctrl_t] |
| slot_type* slots_ = nullptr; // [capacity * slot_type] |
| size_t size_ = 0; // number of full slots |
| size_t capacity_ = 0; // total number of slots |
| HashtablezInfoHandle infoz_; |
| absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher, |
| key_equal, allocator_type> |
| settings_{0, hasher{}, key_equal{}, allocator_type{}}; |
| }; |
| |
| // Erases all elements that satisfy the predicate `pred` from the container `c`. |
| template <typename P, typename H, typename E, typename A, typename Predicate> |
| void EraseIf(Predicate pred, raw_hash_set<P, H, E, A>* c) { |
| for (auto it = c->begin(), last = c->end(); it != last;) { |
| auto copy_it = it++; |
| if (pred(*copy_it)) { |
| c->erase(copy_it); |
| } |
| } |
| } |
| |
| namespace hashtable_debug_internal { |
| template <typename Set> |
| struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> { |
| using Traits = typename Set::PolicyTraits; |
| using Slot = typename Traits::slot_type; |
| |
| static size_t GetNumProbes(const Set& set, |
| const typename Set::key_type& key) { |
| size_t num_probes = 0; |
| size_t hash = set.hash_ref()(key); |
| auto seq = set.probe(hash); |
| while (true) { |
| container_internal::Group g{set.ctrl_ + seq.offset()}; |
| for (int i : g.Match(container_internal::H2(hash))) { |
| if (Traits::apply( |
| typename Set::template EqualElement<typename Set::key_type>{ |
| key, set.eq_ref()}, |
| Traits::element(set.slots_ + seq.offset(i)))) |
| return num_probes; |
| ++num_probes; |
| } |
| if (g.MatchEmpty()) return num_probes; |
| seq.next(); |
| ++num_probes; |
| } |
| } |
| |
| static size_t AllocatedByteSize(const Set& c) { |
| size_t capacity = c.capacity_; |
| if (capacity == 0) return 0; |
| auto layout = Set::MakeLayout(capacity); |
| size_t m = layout.AllocSize(); |
| |
| size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); |
| if (per_slot != ~size_t{}) { |
| m += per_slot * c.size(); |
| } else { |
| for (size_t i = 0; i != capacity; ++i) { |
| if (container_internal::IsFull(c.ctrl_[i])) { |
| m += Traits::space_used(c.slots_ + i); |
| } |
| } |
| } |
| return m; |
| } |
| |
| static size_t LowerBoundAllocatedByteSize(size_t size) { |
| size_t capacity = GrowthToLowerboundCapacity(size); |
| if (capacity == 0) return 0; |
| auto layout = Set::MakeLayout(NormalizeCapacity(capacity)); |
| size_t m = layout.AllocSize(); |
| size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); |
| if (per_slot != ~size_t{}) { |
| m += per_slot * size; |
| } |
| return m; |
| } |
| }; |
| |
| } // namespace hashtable_debug_internal |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |