blob: 5012224922e4b3fb4372ce10b8f3d1a627fb8996 [file] [log] [blame]
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/algorithm/container.h"
#include <algorithm>
#include <array>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <list>
#include <memory>
#include <ostream>
#include <random>
#include <set>
#include <unordered_set>
#include <utility>
#include <valarray>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/memory/memory.h"
#include "absl/types/span.h"
namespace {
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::Gt;
using ::testing::IsNull;
using ::testing::IsSubsetOf;
using ::testing::Lt;
using ::testing::Pointee;
using ::testing::SizeIs;
using ::testing::Truly;
using ::testing::UnorderedElementsAre;
// Most of these tests just check that the code compiles, not that it
// does the right thing. That's fine since the functions just forward
// to the STL implementation.
class NonMutatingTest : public testing::Test {
protected:
std::unordered_set<int> container_ = {1, 2, 3};
std::list<int> sequence_ = {1, 2, 3};
std::vector<int> vector_ = {1, 2, 3};
int array_[3] = {1, 2, 3};
};
struct AccumulateCalls {
void operator()(int value) { calls.push_back(value); }
std::vector<int> calls;
};
bool Predicate(int value) { return value < 3; }
bool BinPredicate(int v1, int v2) { return v1 < v2; }
bool Equals(int v1, int v2) { return v1 == v2; }
bool IsOdd(int x) { return x % 2 != 0; }
TEST_F(NonMutatingTest, Distance) {
EXPECT_EQ(container_.size(),
static_cast<size_t>(absl::c_distance(container_)));
EXPECT_EQ(sequence_.size(), static_cast<size_t>(absl::c_distance(sequence_)));
EXPECT_EQ(vector_.size(), static_cast<size_t>(absl::c_distance(vector_)));
EXPECT_EQ(ABSL_ARRAYSIZE(array_),
static_cast<size_t>(absl::c_distance(array_)));
// Works with a temporary argument.
EXPECT_EQ(vector_.size(),
static_cast<size_t>(absl::c_distance(std::vector<int>(vector_))));
}
TEST_F(NonMutatingTest, Distance_OverloadedBeginEnd) {
// Works with classes which have custom ADL-selected overloads of std::begin
// and std::end.
std::initializer_list<int> a = {1, 2, 3};
std::valarray<int> b = {1, 2, 3};
EXPECT_EQ(3, absl::c_distance(a));
EXPECT_EQ(3, absl::c_distance(b));
// It is assumed that other c_* functions use the same mechanism for
// ADL-selecting begin/end overloads.
}
TEST_F(NonMutatingTest, ForEach) {
AccumulateCalls c = absl::c_for_each(container_, AccumulateCalls());
// Don't rely on the unordered_set's order.
std::sort(c.calls.begin(), c.calls.end());
EXPECT_EQ(vector_, c.calls);
// Works with temporary container, too.
AccumulateCalls c2 =
absl::c_for_each(std::unordered_set<int>(container_), AccumulateCalls());
std::sort(c2.calls.begin(), c2.calls.end());
EXPECT_EQ(vector_, c2.calls);
}
TEST_F(NonMutatingTest, FindReturnsCorrectType) {
auto it = absl::c_find(container_, 3);
EXPECT_EQ(3, *it);
absl::c_find(absl::implicit_cast<const std::list<int>&>(sequence_), 3);
}
TEST_F(NonMutatingTest, Contains) {
EXPECT_TRUE(absl::c_contains(container_, 3));
EXPECT_FALSE(absl::c_contains(container_, 4));
}
TEST_F(NonMutatingTest, FindIf) { absl::c_find_if(container_, Predicate); }
TEST_F(NonMutatingTest, FindIfNot) {
absl::c_find_if_not(container_, Predicate);
}
TEST_F(NonMutatingTest, FindEnd) {
absl::c_find_end(sequence_, vector_);
absl::c_find_end(vector_, sequence_);
}
TEST_F(NonMutatingTest, FindEndWithPredicate) {
absl::c_find_end(sequence_, vector_, BinPredicate);
absl::c_find_end(vector_, sequence_, BinPredicate);
}
TEST_F(NonMutatingTest, FindFirstOf) {
absl::c_find_first_of(container_, sequence_);
absl::c_find_first_of(sequence_, container_);
}
TEST_F(NonMutatingTest, FindFirstOfWithPredicate) {
absl::c_find_first_of(container_, sequence_, BinPredicate);
absl::c_find_first_of(sequence_, container_, BinPredicate);
}
TEST_F(NonMutatingTest, AdjacentFind) { absl::c_adjacent_find(sequence_); }
TEST_F(NonMutatingTest, AdjacentFindWithPredicate) {
absl::c_adjacent_find(sequence_, BinPredicate);
}
TEST_F(NonMutatingTest, Count) { EXPECT_EQ(1, absl::c_count(container_, 3)); }
TEST_F(NonMutatingTest, CountIf) {
EXPECT_EQ(2, absl::c_count_if(container_, Predicate));
const std::unordered_set<int>& const_container = container_;
EXPECT_EQ(2, absl::c_count_if(const_container, Predicate));
}
TEST_F(NonMutatingTest, Mismatch) {
// Testing necessary as absl::c_mismatch executes logic.
{
auto result = absl::c_mismatch(vector_, sequence_);
EXPECT_EQ(result.first, vector_.end());
EXPECT_EQ(result.second, sequence_.end());
}
{
auto result = absl::c_mismatch(sequence_, vector_);
EXPECT_EQ(result.first, sequence_.end());
EXPECT_EQ(result.second, vector_.end());
}
sequence_.back() = 5;
{
auto result = absl::c_mismatch(vector_, sequence_);
EXPECT_EQ(result.first, std::prev(vector_.end()));
EXPECT_EQ(result.second, std::prev(sequence_.end()));
}
{
auto result = absl::c_mismatch(sequence_, vector_);
EXPECT_EQ(result.first, std::prev(sequence_.end()));
EXPECT_EQ(result.second, std::prev(vector_.end()));
}
sequence_.pop_back();
{
auto result = absl::c_mismatch(vector_, sequence_);
EXPECT_EQ(result.first, std::prev(vector_.end()));
EXPECT_EQ(result.second, sequence_.end());
}
{
auto result = absl::c_mismatch(sequence_, vector_);
EXPECT_EQ(result.first, sequence_.end());
EXPECT_EQ(result.second, std::prev(vector_.end()));
}
{
struct NoNotEquals {
constexpr bool operator==(NoNotEquals) const { return true; }
constexpr bool operator!=(NoNotEquals) const = delete;
};
std::vector<NoNotEquals> first;
std::list<NoNotEquals> second;
// Check this still compiles.
absl::c_mismatch(first, second);
}
}
TEST_F(NonMutatingTest, MismatchWithPredicate) {
// Testing necessary as absl::c_mismatch executes logic.
{
auto result = absl::c_mismatch(vector_, sequence_, BinPredicate);
EXPECT_EQ(result.first, vector_.begin());
EXPECT_EQ(result.second, sequence_.begin());
}
{
auto result = absl::c_mismatch(sequence_, vector_, BinPredicate);
EXPECT_EQ(result.first, sequence_.begin());
EXPECT_EQ(result.second, vector_.begin());
}
sequence_.front() = 0;
{
auto result = absl::c_mismatch(vector_, sequence_, BinPredicate);
EXPECT_EQ(result.first, vector_.begin());
EXPECT_EQ(result.second, sequence_.begin());
}
{
auto result = absl::c_mismatch(sequence_, vector_, BinPredicate);
EXPECT_EQ(result.first, std::next(sequence_.begin()));
EXPECT_EQ(result.second, std::next(vector_.begin()));
}
sequence_.clear();
{
auto result = absl::c_mismatch(vector_, sequence_, BinPredicate);
EXPECT_EQ(result.first, vector_.begin());
EXPECT_EQ(result.second, sequence_.end());
}
{
auto result = absl::c_mismatch(sequence_, vector_, BinPredicate);
EXPECT_EQ(result.first, sequence_.end());
EXPECT_EQ(result.second, vector_.begin());
}
}
TEST_F(NonMutatingTest, Equal) {
EXPECT_TRUE(absl::c_equal(vector_, sequence_));
EXPECT_TRUE(absl::c_equal(sequence_, vector_));
EXPECT_TRUE(absl::c_equal(sequence_, array_));
EXPECT_TRUE(absl::c_equal(array_, vector_));
// Test that behavior appropriately differs from that of equal().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_equal(vector_plus, sequence_));
EXPECT_FALSE(absl::c_equal(sequence_, vector_plus));
EXPECT_FALSE(absl::c_equal(array_, vector_plus));
}
TEST_F(NonMutatingTest, EqualWithPredicate) {
EXPECT_TRUE(absl::c_equal(vector_, sequence_, Equals));
EXPECT_TRUE(absl::c_equal(sequence_, vector_, Equals));
EXPECT_TRUE(absl::c_equal(array_, sequence_, Equals));
EXPECT_TRUE(absl::c_equal(vector_, array_, Equals));
// Test that behavior appropriately differs from that of equal().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_equal(vector_plus, sequence_, Equals));
EXPECT_FALSE(absl::c_equal(sequence_, vector_plus, Equals));
EXPECT_FALSE(absl::c_equal(vector_plus, array_, Equals));
}
TEST_F(NonMutatingTest, IsPermutation) {
auto vector_permut_ = vector_;
std::next_permutation(vector_permut_.begin(), vector_permut_.end());
EXPECT_TRUE(absl::c_is_permutation(vector_permut_, sequence_));
EXPECT_TRUE(absl::c_is_permutation(sequence_, vector_permut_));
// Test that behavior appropriately differs from that of is_permutation().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_is_permutation(vector_plus, sequence_));
EXPECT_FALSE(absl::c_is_permutation(sequence_, vector_plus));
}
TEST_F(NonMutatingTest, IsPermutationWithPredicate) {
auto vector_permut_ = vector_;
std::next_permutation(vector_permut_.begin(), vector_permut_.end());
EXPECT_TRUE(absl::c_is_permutation(vector_permut_, sequence_, Equals));
EXPECT_TRUE(absl::c_is_permutation(sequence_, vector_permut_, Equals));
// Test that behavior appropriately differs from that of is_permutation().
std::vector<int> vector_plus = {1, 2, 3};
vector_plus.push_back(4);
EXPECT_FALSE(absl::c_is_permutation(vector_plus, sequence_, Equals));
EXPECT_FALSE(absl::c_is_permutation(sequence_, vector_plus, Equals));
}
TEST_F(NonMutatingTest, Search) {
absl::c_search(sequence_, vector_);
absl::c_search(vector_, sequence_);
absl::c_search(array_, sequence_);
}
TEST_F(NonMutatingTest, SearchWithPredicate) {
absl::c_search(sequence_, vector_, BinPredicate);
absl::c_search(vector_, sequence_, BinPredicate);
}
TEST_F(NonMutatingTest, ContainsSubrange) {
EXPECT_TRUE(absl::c_contains_subrange(sequence_, vector_));
EXPECT_TRUE(absl::c_contains_subrange(vector_, sequence_));
EXPECT_TRUE(absl::c_contains_subrange(array_, sequence_));
}
TEST_F(NonMutatingTest, ContainsSubrangeWithPredicate) {
EXPECT_TRUE(absl::c_contains_subrange(sequence_, vector_, Equals));
EXPECT_TRUE(absl::c_contains_subrange(vector_, sequence_, Equals));
}
TEST_F(NonMutatingTest, SearchN) { absl::c_search_n(sequence_, 3, 1); }
TEST_F(NonMutatingTest, SearchNWithPredicate) {
absl::c_search_n(sequence_, 3, 1, BinPredicate);
}
TEST_F(NonMutatingTest, LowerBound) {
std::list<int>::iterator i = absl::c_lower_bound(sequence_, 3);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(2, std::distance(sequence_.begin(), i));
EXPECT_EQ(3, *i);
}
TEST_F(NonMutatingTest, LowerBoundWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
std::vector<int>::iterator i = absl::c_lower_bound(v, 3, std::greater<int>());
EXPECT_TRUE(i == v.begin());
EXPECT_EQ(3, *i);
}
TEST_F(NonMutatingTest, UpperBound) {
std::list<int>::iterator i = absl::c_upper_bound(sequence_, 1);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(1, std::distance(sequence_.begin(), i));
EXPECT_EQ(2, *i);
}
TEST_F(NonMutatingTest, UpperBoundWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
std::vector<int>::iterator i = absl::c_upper_bound(v, 1, std::greater<int>());
EXPECT_EQ(3, i - v.begin());
EXPECT_TRUE(i == v.end());
}
TEST_F(NonMutatingTest, EqualRange) {
std::pair<std::list<int>::iterator, std::list<int>::iterator> p =
absl::c_equal_range(sequence_, 2);
EXPECT_EQ(1, std::distance(sequence_.begin(), p.first));
EXPECT_EQ(2, std::distance(sequence_.begin(), p.second));
}
TEST_F(NonMutatingTest, EqualRangeArray) {
auto p = absl::c_equal_range(array_, 2);
EXPECT_EQ(1, std::distance(std::begin(array_), p.first));
EXPECT_EQ(2, std::distance(std::begin(array_), p.second));
}
TEST_F(NonMutatingTest, EqualRangeWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
std::pair<std::vector<int>::iterator, std::vector<int>::iterator> p =
absl::c_equal_range(v, 2, std::greater<int>());
EXPECT_EQ(1, std::distance(v.begin(), p.first));
EXPECT_EQ(2, std::distance(v.begin(), p.second));
}
TEST_F(NonMutatingTest, BinarySearch) {
EXPECT_TRUE(absl::c_binary_search(vector_, 2));
EXPECT_TRUE(absl::c_binary_search(std::vector<int>(vector_), 2));
}
TEST_F(NonMutatingTest, BinarySearchWithPredicate) {
std::vector<int> v(vector_);
std::sort(v.begin(), v.end(), std::greater<int>());
EXPECT_TRUE(absl::c_binary_search(v, 2, std::greater<int>()));
EXPECT_TRUE(
absl::c_binary_search(std::vector<int>(v), 2, std::greater<int>()));
}
TEST_F(NonMutatingTest, MinElement) {
std::list<int>::iterator i = absl::c_min_element(sequence_);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 1);
}
TEST_F(NonMutatingTest, MinElementWithPredicate) {
std::list<int>::iterator i =
absl::c_min_element(sequence_, std::greater<int>());
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 3);
}
TEST_F(NonMutatingTest, MaxElement) {
std::list<int>::iterator i = absl::c_max_element(sequence_);
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 3);
}
TEST_F(NonMutatingTest, MaxElementWithPredicate) {
std::list<int>::iterator i =
absl::c_max_element(sequence_, std::greater<int>());
ASSERT_TRUE(i != sequence_.end());
EXPECT_EQ(*i, 1);
}
TEST_F(NonMutatingTest, LexicographicalCompare) {
EXPECT_FALSE(absl::c_lexicographical_compare(sequence_, sequence_));
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
EXPECT_TRUE(absl::c_lexicographical_compare(sequence_, v));
EXPECT_TRUE(absl::c_lexicographical_compare(std::list<int>(sequence_), v));
}
TEST_F(NonMutatingTest, LexicographicalCopmareWithPredicate) {
EXPECT_FALSE(absl::c_lexicographical_compare(sequence_, sequence_,
std::greater<int>()));
std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(4);
EXPECT_TRUE(
absl::c_lexicographical_compare(v, sequence_, std::greater<int>()));
EXPECT_TRUE(absl::c_lexicographical_compare(
std::vector<int>(v), std::list<int>(sequence_), std::greater<int>()));
}
TEST_F(NonMutatingTest, Includes) {
std::set<int> s(vector_.begin(), vector_.end());
s.insert(4);
EXPECT_TRUE(absl::c_includes(s, vector_));
}
TEST_F(NonMutatingTest, IncludesWithPredicate) {
std::vector<int> v = {3, 2, 1};
std::set<int, std::greater<int>> s(v.begin(), v.end());
s.insert(4);
EXPECT_TRUE(absl::c_includes(s, v, std::greater<int>()));
}
class NumericMutatingTest : public testing::Test {
protected:
std::list<int> list_ = {1, 2, 3};
std::vector<int> output_;
};
TEST_F(NumericMutatingTest, Iota) {
absl::c_iota(list_, 5);
std::list<int> expected{5, 6, 7};
EXPECT_EQ(list_, expected);
}
TEST_F(NonMutatingTest, Accumulate) {
EXPECT_EQ(absl::c_accumulate(sequence_, 4), 1 + 2 + 3 + 4);
}
TEST_F(NonMutatingTest, AccumulateWithBinaryOp) {
EXPECT_EQ(absl::c_accumulate(sequence_, 4, std::multiplies<int>()),
1 * 2 * 3 * 4);
}
TEST_F(NonMutatingTest, AccumulateLvalueInit) {
int lvalue = 4;
EXPECT_EQ(absl::c_accumulate(sequence_, lvalue), 1 + 2 + 3 + 4);
}
TEST_F(NonMutatingTest, AccumulateWithBinaryOpLvalueInit) {
int lvalue = 4;
EXPECT_EQ(absl::c_accumulate(sequence_, lvalue, std::multiplies<int>()),
1 * 2 * 3 * 4);
}
TEST_F(NonMutatingTest, InnerProduct) {
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, 1000),
1000 + 1 * 1 + 2 * 2 + 3 * 3);
}
TEST_F(NonMutatingTest, InnerProductWithBinaryOps) {
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, 10,
std::multiplies<int>(), std::plus<int>()),
10 * (1 + 1) * (2 + 2) * (3 + 3));
}
TEST_F(NonMutatingTest, InnerProductLvalueInit) {
int lvalue = 1000;
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, lvalue),
1000 + 1 * 1 + 2 * 2 + 3 * 3);
}
TEST_F(NonMutatingTest, InnerProductWithBinaryOpsLvalueInit) {
int lvalue = 10;
EXPECT_EQ(absl::c_inner_product(sequence_, vector_, lvalue,
std::multiplies<int>(), std::plus<int>()),
10 * (1 + 1) * (2 + 2) * (3 + 3));
}
TEST_F(NumericMutatingTest, AdjacentDifference) {
auto last = absl::c_adjacent_difference(list_, std::back_inserter(output_));
*last = 1000;
std::vector<int> expected{1, 2 - 1, 3 - 2, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NumericMutatingTest, AdjacentDifferenceWithBinaryOp) {
auto last = absl::c_adjacent_difference(list_, std::back_inserter(output_),
std::multiplies<int>());
*last = 1000;
std::vector<int> expected{1, 2 * 1, 3 * 2, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NumericMutatingTest, PartialSum) {
auto last = absl::c_partial_sum(list_, std::back_inserter(output_));
*last = 1000;
std::vector<int> expected{1, 1 + 2, 1 + 2 + 3, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NumericMutatingTest, PartialSumWithBinaryOp) {
auto last = absl::c_partial_sum(list_, std::back_inserter(output_),
std::multiplies<int>());
*last = 1000;
std::vector<int> expected{1, 1 * 2, 1 * 2 * 3, 1000};
EXPECT_EQ(output_, expected);
}
TEST_F(NonMutatingTest, LinearSearch) {
EXPECT_TRUE(absl::c_linear_search(container_, 3));
EXPECT_FALSE(absl::c_linear_search(container_, 4));
}
TEST_F(NonMutatingTest, AllOf) {
const std::vector<int>& v = vector_;
EXPECT_FALSE(absl::c_all_of(v, [](int x) { return x > 1; }));
EXPECT_TRUE(absl::c_all_of(v, [](int x) { return x > 0; }));
}
TEST_F(NonMutatingTest, AnyOf) {
const std::vector<int>& v = vector_;
EXPECT_TRUE(absl::c_any_of(v, [](int x) { return x > 2; }));
EXPECT_FALSE(absl::c_any_of(v, [](int x) { return x > 5; }));
}
TEST_F(NonMutatingTest, NoneOf) {
const std::vector<int>& v = vector_;
EXPECT_FALSE(absl::c_none_of(v, [](int x) { return x > 2; }));
EXPECT_TRUE(absl::c_none_of(v, [](int x) { return x > 5; }));
}
TEST_F(NonMutatingTest, MinMaxElementLess) {
std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
p = absl::c_minmax_element(vector_, std::less<int>());
EXPECT_TRUE(p.first == vector_.begin());
EXPECT_TRUE(p.second == vector_.begin() + 2);
}
TEST_F(NonMutatingTest, MinMaxElementGreater) {
std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
p = absl::c_minmax_element(vector_, std::greater<int>());
EXPECT_TRUE(p.first == vector_.begin() + 2);
EXPECT_TRUE(p.second == vector_.begin());
}
TEST_F(NonMutatingTest, MinMaxElementNoPredicate) {
std::pair<std::vector<int>::const_iterator, std::vector<int>::const_iterator>
p = absl::c_minmax_element(vector_);
EXPECT_TRUE(p.first == vector_.begin());
EXPECT_TRUE(p.second == vector_.begin() + 2);
}
class SortingTest : public testing::Test {
protected:
std::list<int> sorted_ = {1, 2, 3, 4};
std::list<int> unsorted_ = {2, 4, 1, 3};
std::list<int> reversed_ = {4, 3, 2, 1};
};
TEST_F(SortingTest, IsSorted) {
EXPECT_TRUE(absl::c_is_sorted(sorted_));
EXPECT_FALSE(absl::c_is_sorted(unsorted_));
EXPECT_FALSE(absl::c_is_sorted(reversed_));
}
TEST_F(SortingTest, IsSortedWithPredicate) {
EXPECT_FALSE(absl::c_is_sorted(sorted_, std::greater<int>()));
EXPECT_FALSE(absl::c_is_sorted(unsorted_, std::greater<int>()));
EXPECT_TRUE(absl::c_is_sorted(reversed_, std::greater<int>()));
}
TEST_F(SortingTest, IsSortedUntil) {
EXPECT_EQ(1, *absl::c_is_sorted_until(unsorted_));
EXPECT_EQ(4, *absl::c_is_sorted_until(unsorted_, std::greater<int>()));
}
TEST_F(SortingTest, NthElement) {
std::vector<int> unsorted = {2, 4, 1, 3};
absl::c_nth_element(unsorted, unsorted.begin() + 2);
EXPECT_THAT(unsorted, ElementsAre(Lt(3), Lt(3), 3, Gt(3)));
absl::c_nth_element(unsorted, unsorted.begin() + 2, std::greater<int>());
EXPECT_THAT(unsorted, ElementsAre(Gt(2), Gt(2), 2, Lt(2)));
}
TEST(MutatingTest, IsPartitioned) {
EXPECT_TRUE(
absl::c_is_partitioned(std::vector<int>{1, 3, 5, 2, 4, 6}, IsOdd));
EXPECT_FALSE(
absl::c_is_partitioned(std::vector<int>{1, 2, 3, 4, 5, 6}, IsOdd));
EXPECT_FALSE(
absl::c_is_partitioned(std::vector<int>{2, 4, 6, 1, 3, 5}, IsOdd));
}
TEST(MutatingTest, Partition) {
std::vector<int> actual = {1, 2, 3, 4, 5};
absl::c_partition(actual, IsOdd);
EXPECT_THAT(actual, Truly([](const std::vector<int>& c) {
return absl::c_is_partitioned(c, IsOdd);
}));
}
TEST(MutatingTest, StablePartition) {
std::vector<int> actual = {1, 2, 3, 4, 5};
absl::c_stable_partition(actual, IsOdd);
EXPECT_THAT(actual, ElementsAre(1, 3, 5, 2, 4));
}
TEST(MutatingTest, PartitionCopy) {
const std::vector<int> initial = {1, 2, 3, 4, 5};
std::vector<int> odds, evens;
auto ends = absl::c_partition_copy(initial, back_inserter(odds),
back_inserter(evens), IsOdd);
*ends.first = 7;
*ends.second = 6;
EXPECT_THAT(odds, ElementsAre(1, 3, 5, 7));
EXPECT_THAT(evens, ElementsAre(2, 4, 6));
}
TEST(MutatingTest, PartitionPoint) {
const std::vector<int> initial = {1, 3, 5, 2, 4};
auto middle = absl::c_partition_point(initial, IsOdd);
EXPECT_EQ(2, *middle);
}
TEST(MutatingTest, CopyMiddle) {
const std::vector<int> initial = {4, -1, -2, -3, 5};
const std::list<int> input = {1, 2, 3};
const std::vector<int> expected = {4, 1, 2, 3, 5};
std::list<int> test_list(initial.begin(), initial.end());
absl::c_copy(input, ++test_list.begin());
EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
std::vector<int> test_vector = initial;
absl::c_copy(input, test_vector.begin() + 1);
EXPECT_EQ(expected, test_vector);
}
TEST(MutatingTest, CopyFrontInserter) {
const std::list<int> initial = {4, 5};
const std::list<int> input = {1, 2, 3};
const std::list<int> expected = {3, 2, 1, 4, 5};
std::list<int> test_list = initial;
absl::c_copy(input, std::front_inserter(test_list));
EXPECT_EQ(expected, test_list);
}
TEST(MutatingTest, CopyBackInserter) {
const std::vector<int> initial = {4, 5};
const std::list<int> input = {1, 2, 3};
const std::vector<int> expected = {4, 5, 1, 2, 3};
std::list<int> test_list(initial.begin(), initial.end());
absl::c_copy(input, std::back_inserter(test_list));
EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
std::vector<int> test_vector = initial;
absl::c_copy(input, std::back_inserter(test_vector));
EXPECT_EQ(expected, test_vector);
}
TEST(MutatingTest, CopyN) {
const std::vector<int> initial = {1, 2, 3, 4, 5};
const std::vector<int> expected = {1, 2};
std::vector<int> actual;
absl::c_copy_n(initial, 2, back_inserter(actual));
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, CopyIf) {
const std::list<int> input = {1, 2, 3};
std::vector<int> output;
absl::c_copy_if(input, std::back_inserter(output),
[](int i) { return i != 2; });
EXPECT_THAT(output, ElementsAre(1, 3));
}
TEST(MutatingTest, CopyBackward) {
std::vector<int> actual = {1, 2, 3, 4, 5};
std::vector<int> expected = {1, 2, 1, 2, 3};
absl::c_copy_backward(absl::MakeSpan(actual.data(), 3), actual.end());
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, Move) {
std::vector<std::unique_ptr<int>> src;
src.emplace_back(absl::make_unique<int>(1));
src.emplace_back(absl::make_unique<int>(2));
src.emplace_back(absl::make_unique<int>(3));
src.emplace_back(absl::make_unique<int>(4));
src.emplace_back(absl::make_unique<int>(5));
std::vector<std::unique_ptr<int>> dest = {};
absl::c_move(src, std::back_inserter(dest));
EXPECT_THAT(src, Each(IsNull()));
EXPECT_THAT(dest, ElementsAre(Pointee(1), Pointee(2), Pointee(3), Pointee(4),
Pointee(5)));
}
TEST(MutatingTest, MoveBackward) {
std::vector<std::unique_ptr<int>> actual;
actual.emplace_back(absl::make_unique<int>(1));
actual.emplace_back(absl::make_unique<int>(2));
actual.emplace_back(absl::make_unique<int>(3));
actual.emplace_back(absl::make_unique<int>(4));
actual.emplace_back(absl::make_unique<int>(5));
auto subrange = absl::MakeSpan(actual.data(), 3);
absl::c_move_backward(subrange, actual.end());
EXPECT_THAT(actual, ElementsAre(IsNull(), IsNull(), Pointee(1), Pointee(2),
Pointee(3)));
}
TEST(MutatingTest, MoveWithRvalue) {
auto MakeRValueSrc = [] {
std::vector<std::unique_ptr<int>> src;
src.emplace_back(absl::make_unique<int>(1));
src.emplace_back(absl::make_unique<int>(2));
src.emplace_back(absl::make_unique<int>(3));
return src;
};
std::vector<std::unique_ptr<int>> dest = MakeRValueSrc();
absl::c_move(MakeRValueSrc(), std::back_inserter(dest));
EXPECT_THAT(dest, ElementsAre(Pointee(1), Pointee(2), Pointee(3), Pointee(1),
Pointee(2), Pointee(3)));
}
TEST(MutatingTest, SwapRanges) {
std::vector<int> odds = {2, 4, 6};
std::vector<int> evens = {1, 3, 5};
absl::c_swap_ranges(odds, evens);
EXPECT_THAT(odds, ElementsAre(1, 3, 5));
EXPECT_THAT(evens, ElementsAre(2, 4, 6));
odds.pop_back();
absl::c_swap_ranges(odds, evens);
EXPECT_THAT(odds, ElementsAre(2, 4));
EXPECT_THAT(evens, ElementsAre(1, 3, 6));
absl::c_swap_ranges(evens, odds);
EXPECT_THAT(odds, ElementsAre(1, 3));
EXPECT_THAT(evens, ElementsAre(2, 4, 6));
}
TEST_F(NonMutatingTest, Transform) {
std::vector<int> x{0, 2, 4}, y, z;
auto end = absl::c_transform(x, back_inserter(y), std::negate<int>());
EXPECT_EQ(std::vector<int>({0, -2, -4}), y);
*end = 7;
EXPECT_EQ(std::vector<int>({0, -2, -4, 7}), y);
y = {1, 3, 0};
end = absl::c_transform(x, y, back_inserter(z), std::plus<int>());
EXPECT_EQ(std::vector<int>({1, 5, 4}), z);
*end = 7;
EXPECT_EQ(std::vector<int>({1, 5, 4, 7}), z);
z.clear();
y.pop_back();
end = absl::c_transform(x, y, std::back_inserter(z), std::plus<int>());
EXPECT_EQ(std::vector<int>({1, 5}), z);
*end = 7;
EXPECT_EQ(std::vector<int>({1, 5, 7}), z);
z.clear();
std::swap(x, y);
end = absl::c_transform(x, y, std::back_inserter(z), std::plus<int>());
EXPECT_EQ(std::vector<int>({1, 5}), z);
*end = 7;
EXPECT_EQ(std::vector<int>({1, 5, 7}), z);
}
TEST(MutatingTest, Replace) {
const std::vector<int> initial = {1, 2, 3, 1, 4, 5};
const std::vector<int> expected = {4, 2, 3, 4, 4, 5};
std::vector<int> test_vector = initial;
absl::c_replace(test_vector, 1, 4);
EXPECT_EQ(expected, test_vector);
std::list<int> test_list(initial.begin(), initial.end());
absl::c_replace(test_list, 1, 4);
EXPECT_EQ(std::list<int>(expected.begin(), expected.end()), test_list);
}
TEST(MutatingTest, ReplaceIf) {
std::vector<int> actual = {1, 2, 3, 4, 5};
const std::vector<int> expected = {0, 2, 0, 4, 0};
absl::c_replace_if(actual, IsOdd, 0);
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, ReplaceCopy) {
const std::vector<int> initial = {1, 2, 3, 1, 4, 5};
const std::vector<int> expected = {4, 2, 3, 4, 4, 5};
std::vector<int> actual;
absl::c_replace_copy(initial, back_inserter(actual), 1, 4);
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, Sort) {
std::vector<int> test_vector = {2, 3, 1, 4};
absl::c_sort(test_vector);
EXPECT_THAT(test_vector, ElementsAre(1, 2, 3, 4));
}
TEST(MutatingTest, SortWithPredicate) {
std::vector<int> test_vector = {2, 3, 1, 4};
absl::c_sort(test_vector, std::greater<int>());
EXPECT_THAT(test_vector, ElementsAre(4, 3, 2, 1));
}
// For absl::c_stable_sort tests. Needs an operator< that does not cover all
// fields so that the test can check the sort preserves order of equal elements.
struct Element {
int key;
int value;
friend bool operator<(const Element& e1, const Element& e2) {
return e1.key < e2.key;
}
// Make gmock print useful diagnostics.
friend std::ostream& operator<<(std::ostream& o, const Element& e) {
return o << "{" << e.key << ", " << e.value << "}";
}
};
MATCHER_P2(IsElement, key, value, "") {
return arg.key == key && arg.value == value;
}
TEST(MutatingTest, StableSort) {
std::vector<Element> test_vector = {{1, 1}, {2, 1}, {2, 0}, {1, 0}, {2, 2}};
absl::c_stable_sort(test_vector);
EXPECT_THAT(test_vector,
ElementsAre(IsElement(1, 1), IsElement(1, 0), IsElement(2, 1),
IsElement(2, 0), IsElement(2, 2)));
}
TEST(MutatingTest, StableSortWithPredicate) {
std::vector<Element> test_vector = {{1, 1}, {2, 1}, {2, 0}, {1, 0}, {2, 2}};
absl::c_stable_sort(test_vector, [](const Element& e1, const Element& e2) {
return e2 < e1;
});
EXPECT_THAT(test_vector,
ElementsAre(IsElement(2, 1), IsElement(2, 0), IsElement(2, 2),
IsElement(1, 1), IsElement(1, 0)));
}
TEST(MutatingTest, ReplaceCopyIf) {
const std::vector<int> initial = {1, 2, 3, 4, 5};
const std::vector<int> expected = {0, 2, 0, 4, 0};
std::vector<int> actual;
absl::c_replace_copy_if(initial, back_inserter(actual), IsOdd, 0);
EXPECT_EQ(expected, actual);
}
TEST(MutatingTest, Fill) {
std::vector<int> actual(5);
absl::c_fill(actual, 1);
EXPECT_THAT(actual, ElementsAre(1, 1, 1, 1, 1));
}
TEST(MutatingTest, FillN) {
std::vector<int> actual(5, 0);
absl::c_fill_n(actual, 2, 1);
EXPECT_THAT(actual, ElementsAre(1, 1, 0, 0, 0));
}
TEST(MutatingTest, Generate) {
std::vector<int> actual(5);
int x = 0;
absl::c_generate(actual, [&x]() { return ++x; });
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, GenerateN) {
std::vector<int> actual(5, 0);
int x = 0;
absl::c_generate_n(actual, 3, [&x]() { return ++x; });
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 0, 0));
}
TEST(MutatingTest, RemoveCopy) {
std::vector<int> actual;
absl::c_remove_copy(std::vector<int>{1, 2, 3}, back_inserter(actual), 2);
EXPECT_THAT(actual, ElementsAre(1, 3));
}
TEST(MutatingTest, RemoveCopyIf) {
std::vector<int> actual;
absl::c_remove_copy_if(std::vector<int>{1, 2, 3}, back_inserter(actual),
IsOdd);
EXPECT_THAT(actual, ElementsAre(2));
}
TEST(MutatingTest, UniqueCopy) {
std::vector<int> actual;
absl::c_unique_copy(std::vector<int>{1, 2, 2, 2, 3, 3, 2},
back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 2));
}
TEST(MutatingTest, UniqueCopyWithPredicate) {
std::vector<int> actual;
absl::c_unique_copy(std::vector<int>{1, 2, 3, -1, -2, -3, 1},
back_inserter(actual),
[](int x, int y) { return (x < 0) == (y < 0); });
EXPECT_THAT(actual, ElementsAre(1, -1, 1));
}
TEST(MutatingTest, Reverse) {
std::vector<int> test_vector = {1, 2, 3, 4};
absl::c_reverse(test_vector);
EXPECT_THAT(test_vector, ElementsAre(4, 3, 2, 1));
std::list<int> test_list = {1, 2, 3, 4};
absl::c_reverse(test_list);
EXPECT_THAT(test_list, ElementsAre(4, 3, 2, 1));
}
TEST(MutatingTest, ReverseCopy) {
std::vector<int> actual;
absl::c_reverse_copy(std::vector<int>{1, 2, 3, 4}, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(4, 3, 2, 1));
}
TEST(MutatingTest, Rotate) {
std::vector<int> actual = {1, 2, 3, 4};
auto it = absl::c_rotate(actual, actual.begin() + 2);
EXPECT_THAT(actual, testing::ElementsAreArray({3, 4, 1, 2}));
EXPECT_EQ(*it, 1);
}
TEST(MutatingTest, RotateCopy) {
std::vector<int> initial = {1, 2, 3, 4};
std::vector<int> actual;
auto end =
absl::c_rotate_copy(initial, initial.begin() + 2, back_inserter(actual));
*end = 5;
EXPECT_THAT(actual, ElementsAre(3, 4, 1, 2, 5));
}
template <typename T>
T RandomlySeededPrng() {
std::random_device rdev;
std::seed_seq::result_type data[T::state_size];
std::generate_n(data, T::state_size, std::ref(rdev));
std::seed_seq prng_seed(data, data + T::state_size);
return T(prng_seed);
}
TEST(MutatingTest, Shuffle) {
std::vector<int> actual = {1, 2, 3, 4, 5};
absl::c_shuffle(actual, RandomlySeededPrng<std::mt19937_64>());
EXPECT_THAT(actual, UnorderedElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, Sample) {
std::vector<int> actual;
absl::c_sample(std::vector<int>{1, 2, 3, 4, 5}, std::back_inserter(actual), 3,
RandomlySeededPrng<std::mt19937_64>());
EXPECT_THAT(actual, IsSubsetOf({1, 2, 3, 4, 5}));
EXPECT_THAT(actual, SizeIs(3));
}
TEST(MutatingTest, PartialSort) {
std::vector<int> sequence{5, 3, 42, 0};
absl::c_partial_sort(sequence, sequence.begin() + 2);
EXPECT_THAT(absl::MakeSpan(sequence.data(), 2), ElementsAre(0, 3));
absl::c_partial_sort(sequence, sequence.begin() + 2, std::greater<int>());
EXPECT_THAT(absl::MakeSpan(sequence.data(), 2), ElementsAre(42, 5));
}
TEST(MutatingTest, PartialSortCopy) {
const std::vector<int> initial = {5, 3, 42, 0};
std::vector<int> actual(2);
absl::c_partial_sort_copy(initial, actual);
EXPECT_THAT(actual, ElementsAre(0, 3));
absl::c_partial_sort_copy(initial, actual, std::greater<int>());
EXPECT_THAT(actual, ElementsAre(42, 5));
}
TEST(MutatingTest, Merge) {
std::vector<int> actual;
absl::c_merge(std::vector<int>{1, 3, 5}, std::vector<int>{2, 4},
back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, MergeWithComparator) {
std::vector<int> actual;
absl::c_merge(std::vector<int>{5, 3, 1}, std::vector<int>{4, 2},
back_inserter(actual), std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 4, 3, 2, 1));
}
TEST(MutatingTest, InplaceMerge) {
std::vector<int> actual = {1, 3, 5, 2, 4};
absl::c_inplace_merge(actual, actual.begin() + 3);
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 4, 5));
}
TEST(MutatingTest, InplaceMergeWithComparator) {
std::vector<int> actual = {5, 3, 1, 4, 2};
absl::c_inplace_merge(actual, actual.begin() + 3, std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 4, 3, 2, 1));
}
class SetOperationsTest : public testing::Test {
protected:
std::vector<int> a_ = {1, 2, 3};
std::vector<int> b_ = {1, 3, 5};
std::vector<int> a_reversed_ = {3, 2, 1};
std::vector<int> b_reversed_ = {5, 3, 1};
};
TEST_F(SetOperationsTest, SetUnion) {
std::vector<int> actual;
absl::c_set_union(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 2, 3, 5));
}
TEST_F(SetOperationsTest, SetUnionWithComparator) {
std::vector<int> actual;
absl::c_set_union(a_reversed_, b_reversed_, back_inserter(actual),
std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 3, 2, 1));
}
TEST_F(SetOperationsTest, SetIntersection) {
std::vector<int> actual;
absl::c_set_intersection(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(1, 3));
}
TEST_F(SetOperationsTest, SetIntersectionWithComparator) {
std::vector<int> actual;
absl::c_set_intersection(a_reversed_, b_reversed_, back_inserter(actual),
std::greater<int>());
EXPECT_THAT(actual, ElementsAre(3, 1));
}
TEST_F(SetOperationsTest, SetDifference) {
std::vector<int> actual;
absl::c_set_difference(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(2));
}
TEST_F(SetOperationsTest, SetDifferenceWithComparator) {
std::vector<int> actual;
absl::c_set_difference(a_reversed_, b_reversed_, back_inserter(actual),
std::greater<int>());
EXPECT_THAT(actual, ElementsAre(2));
}
TEST_F(SetOperationsTest, SetSymmetricDifference) {
std::vector<int> actual;
absl::c_set_symmetric_difference(a_, b_, back_inserter(actual));
EXPECT_THAT(actual, ElementsAre(2, 5));
}
TEST_F(SetOperationsTest, SetSymmetricDifferenceWithComparator) {
std::vector<int> actual;
absl::c_set_symmetric_difference(a_reversed_, b_reversed_,
back_inserter(actual), std::greater<int>());
EXPECT_THAT(actual, ElementsAre(5, 2));
}
TEST(HeapOperationsTest, WithoutComparator) {
std::vector<int> heap = {1, 2, 3};
EXPECT_FALSE(absl::c_is_heap(heap));
absl::c_make_heap(heap);
EXPECT_TRUE(absl::c_is_heap(heap));
heap.push_back(4);
EXPECT_EQ(3, absl::c_is_heap_until(heap) - heap.begin());
absl::c_push_heap(heap);
EXPECT_EQ(4, heap[0]);
absl::c_pop_heap(heap);
EXPECT_EQ(4, heap[3]);
absl::c_make_heap(heap);
absl::c_sort_heap(heap);
EXPECT_THAT(heap, ElementsAre(1, 2, 3, 4));
EXPECT_FALSE(absl::c_is_heap(heap));
}
TEST(HeapOperationsTest, WithComparator) {
using greater = std::greater<int>;
std::vector<int> heap = {3, 2, 1};
EXPECT_FALSE(absl::c_is_heap(heap, greater()));
absl::c_make_heap(heap, greater());
EXPECT_TRUE(absl::c_is_heap(heap, greater()));
heap.push_back(0);
EXPECT_EQ(3, absl::c_is_heap_until(heap, greater()) - heap.begin());
absl::c_push_heap(heap, greater());
EXPECT_EQ(0, heap[0]);
absl::c_pop_heap(heap, greater());
EXPECT_EQ(0, heap[3]);
absl::c_make_heap(heap, greater());
absl::c_sort_heap(heap, greater());
EXPECT_THAT(heap, ElementsAre(3, 2, 1, 0));
EXPECT_FALSE(absl::c_is_heap(heap, greater()));
}
TEST(MutatingTest, PermutationOperations) {
std::vector<int> initial = {1, 2, 3, 4};
std::vector<int> permuted = initial;
absl::c_next_permutation(permuted);
EXPECT_TRUE(absl::c_is_permutation(initial, permuted));
EXPECT_TRUE(absl::c_is_permutation(initial, permuted, std::equal_to<int>()));
std::vector<int> permuted2 = initial;
absl::c_prev_permutation(permuted2, std::greater<int>());
EXPECT_EQ(permuted, permuted2);
absl::c_prev_permutation(permuted);
EXPECT_EQ(initial, permuted);
}
#if defined(ABSL_INTERNAL_CPLUSPLUS_LANG) && \
ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L
TEST(ConstexprTest, Distance) {
// Works at compile time with constexpr containers.
static_assert(absl::c_distance(std::array<int, 3>()) == 3);
}
TEST(ConstexprTest, MinElement) {
constexpr std::array<int, 3> kArray = {1, 2, 3};
static_assert(*absl::c_min_element(kArray) == 1);
}
TEST(ConstexprTest, MinElementWithPredicate) {
constexpr std::array<int, 3> kArray = {1, 2, 3};
static_assert(*absl::c_min_element(kArray, std::greater<int>()) == 3);
}
TEST(ConstexprTest, MaxElement) {
constexpr std::array<int, 3> kArray = {1, 2, 3};
static_assert(*absl::c_max_element(kArray) == 3);
}
TEST(ConstexprTest, MaxElementWithPredicate) {
constexpr std::array<int, 3> kArray = {1, 2, 3};
static_assert(*absl::c_max_element(kArray, std::greater<int>()) == 1);
}
TEST(ConstexprTest, MinMaxElement) {
static constexpr std::array<int, 3> kArray = {1, 2, 3};
constexpr auto kMinMaxPair = absl::c_minmax_element(kArray);
static_assert(*kMinMaxPair.first == 1);
static_assert(*kMinMaxPair.second == 3);
}
TEST(ConstexprTest, MinMaxElementWithPredicate) {
static constexpr std::array<int, 3> kArray = {1, 2, 3};
constexpr auto kMinMaxPair =
absl::c_minmax_element(kArray, std::greater<int>());
static_assert(*kMinMaxPair.first == 3);
static_assert(*kMinMaxPair.second == 1);
}
#endif // defined(ABSL_INTERNAL_CPLUSPLUS_LANG) &&
// ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L
} // namespace