| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/container/btree_test.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <cstdint> |
| #include <functional> |
| #include <iostream> |
| #include <iterator> |
| #include <limits> |
| #include <map> |
| #include <memory> |
| #include <numeric> |
| #include <stdexcept> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/algorithm/container.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/macros.h" |
| #include "absl/container/btree_map.h" |
| #include "absl/container/btree_set.h" |
| #include "absl/container/internal/test_allocator.h" |
| #include "absl/container/internal/test_instance_tracker.h" |
| #include "absl/flags/flag.h" |
| #include "absl/hash/hash_testing.h" |
| #include "absl/memory/memory.h" |
| #include "absl/random/random.h" |
| #include "absl/strings/str_cat.h" |
| #include "absl/strings/str_split.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/compare.h" |
| #include "absl/types/optional.h" |
| |
| ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests"); |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| namespace { |
| |
| using ::absl::test_internal::CopyableMovableInstance; |
| using ::absl::test_internal::InstanceTracker; |
| using ::absl::test_internal::MovableOnlyInstance; |
| using ::testing::ElementsAre; |
| using ::testing::ElementsAreArray; |
| using ::testing::IsEmpty; |
| using ::testing::IsNull; |
| using ::testing::Pair; |
| using ::testing::SizeIs; |
| |
| template <typename T, typename U> |
| void CheckPairEquals(const T &x, const U &y) { |
| ABSL_INTERNAL_CHECK(x == y, "Values are unequal."); |
| } |
| |
| template <typename T, typename U, typename V, typename W> |
| void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) { |
| CheckPairEquals(x.first, y.first); |
| CheckPairEquals(x.second, y.second); |
| } |
| } // namespace |
| |
| // The base class for a sorted associative container checker. TreeType is the |
| // container type to check and CheckerType is the container type to check |
| // against. TreeType is expected to be btree_{set,map,multiset,multimap} and |
| // CheckerType is expected to be {set,map,multiset,multimap}. |
| template <typename TreeType, typename CheckerType> |
| class base_checker { |
| public: |
| using key_type = typename TreeType::key_type; |
| using value_type = typename TreeType::value_type; |
| using key_compare = typename TreeType::key_compare; |
| using pointer = typename TreeType::pointer; |
| using const_pointer = typename TreeType::const_pointer; |
| using reference = typename TreeType::reference; |
| using const_reference = typename TreeType::const_reference; |
| using size_type = typename TreeType::size_type; |
| using difference_type = typename TreeType::difference_type; |
| using iterator = typename TreeType::iterator; |
| using const_iterator = typename TreeType::const_iterator; |
| using reverse_iterator = typename TreeType::reverse_iterator; |
| using const_reverse_iterator = typename TreeType::const_reverse_iterator; |
| |
| public: |
| base_checker() : const_tree_(tree_) {} |
| base_checker(const base_checker &other) |
| : tree_(other.tree_), const_tree_(tree_), checker_(other.checker_) {} |
| template <typename InputIterator> |
| base_checker(InputIterator b, InputIterator e) |
| : tree_(b, e), const_tree_(tree_), checker_(b, e) {} |
| |
| iterator begin() { return tree_.begin(); } |
| const_iterator begin() const { return tree_.begin(); } |
| iterator end() { return tree_.end(); } |
| const_iterator end() const { return tree_.end(); } |
| reverse_iterator rbegin() { return tree_.rbegin(); } |
| const_reverse_iterator rbegin() const { return tree_.rbegin(); } |
| reverse_iterator rend() { return tree_.rend(); } |
| const_reverse_iterator rend() const { return tree_.rend(); } |
| |
| template <typename IterType, typename CheckerIterType> |
| IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const { |
| if (tree_iter == tree_.end()) { |
| ABSL_INTERNAL_CHECK(checker_iter == checker_.end(), |
| "Checker iterator not at end."); |
| } else { |
| CheckPairEquals(*tree_iter, *checker_iter); |
| } |
| return tree_iter; |
| } |
| template <typename IterType, typename CheckerIterType> |
| IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const { |
| if (tree_iter == tree_.rend()) { |
| ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(), |
| "Checker iterator not at rend."); |
| } else { |
| CheckPairEquals(*tree_iter, *checker_iter); |
| } |
| return tree_iter; |
| } |
| void value_check(const value_type &v) { |
| typename KeyOfValue<typename TreeType::key_type, |
| typename TreeType::value_type>::type key_of_value; |
| const key_type &key = key_of_value(v); |
| CheckPairEquals(*find(key), v); |
| lower_bound(key); |
| upper_bound(key); |
| equal_range(key); |
| contains(key); |
| count(key); |
| } |
| void erase_check(const key_type &key) { |
| EXPECT_FALSE(tree_.contains(key)); |
| EXPECT_EQ(tree_.find(key), const_tree_.end()); |
| EXPECT_FALSE(const_tree_.contains(key)); |
| EXPECT_EQ(const_tree_.find(key), tree_.end()); |
| EXPECT_EQ(tree_.equal_range(key).first, |
| const_tree_.equal_range(key).second); |
| } |
| |
| iterator lower_bound(const key_type &key) { |
| return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); |
| } |
| const_iterator lower_bound(const key_type &key) const { |
| return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); |
| } |
| iterator upper_bound(const key_type &key) { |
| return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); |
| } |
| const_iterator upper_bound(const key_type &key) const { |
| return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); |
| } |
| std::pair<iterator, iterator> equal_range(const key_type &key) { |
| std::pair<typename CheckerType::iterator, typename CheckerType::iterator> |
| checker_res = checker_.equal_range(key); |
| std::pair<iterator, iterator> tree_res = tree_.equal_range(key); |
| iter_check(tree_res.first, checker_res.first); |
| iter_check(tree_res.second, checker_res.second); |
| return tree_res; |
| } |
| std::pair<const_iterator, const_iterator> equal_range( |
| const key_type &key) const { |
| std::pair<typename CheckerType::const_iterator, |
| typename CheckerType::const_iterator> |
| checker_res = checker_.equal_range(key); |
| std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key); |
| iter_check(tree_res.first, checker_res.first); |
| iter_check(tree_res.second, checker_res.second); |
| return tree_res; |
| } |
| iterator find(const key_type &key) { |
| return iter_check(tree_.find(key), checker_.find(key)); |
| } |
| const_iterator find(const key_type &key) const { |
| return iter_check(tree_.find(key), checker_.find(key)); |
| } |
| bool contains(const key_type &key) const { return find(key) != end(); } |
| size_type count(const key_type &key) const { |
| size_type res = checker_.count(key); |
| EXPECT_EQ(res, tree_.count(key)); |
| return res; |
| } |
| |
| base_checker &operator=(const base_checker &other) { |
| tree_ = other.tree_; |
| checker_ = other.checker_; |
| return *this; |
| } |
| |
| int erase(const key_type &key) { |
| int size = tree_.size(); |
| int res = checker_.erase(key); |
| EXPECT_EQ(res, tree_.count(key)); |
| EXPECT_EQ(res, tree_.erase(key)); |
| EXPECT_EQ(tree_.count(key), 0); |
| EXPECT_EQ(tree_.size(), size - res); |
| erase_check(key); |
| return res; |
| } |
| iterator erase(iterator iter) { |
| key_type key = iter.key(); |
| int size = tree_.size(); |
| int count = tree_.count(key); |
| auto checker_iter = checker_.lower_bound(key); |
| for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) { |
| ++checker_iter; |
| } |
| auto checker_next = checker_iter; |
| ++checker_next; |
| checker_.erase(checker_iter); |
| iter = tree_.erase(iter); |
| EXPECT_EQ(tree_.size(), checker_.size()); |
| EXPECT_EQ(tree_.size(), size - 1); |
| EXPECT_EQ(tree_.count(key), count - 1); |
| if (count == 1) { |
| erase_check(key); |
| } |
| return iter_check(iter, checker_next); |
| } |
| |
| void erase(iterator begin, iterator end) { |
| int size = tree_.size(); |
| int count = std::distance(begin, end); |
| auto checker_begin = checker_.lower_bound(begin.key()); |
| for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) { |
| ++checker_begin; |
| } |
| auto checker_end = |
| end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key()); |
| if (end != tree_.end()) { |
| for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) { |
| ++checker_end; |
| } |
| } |
| const auto checker_ret = checker_.erase(checker_begin, checker_end); |
| const auto tree_ret = tree_.erase(begin, end); |
| EXPECT_EQ(std::distance(checker_.begin(), checker_ret), |
| std::distance(tree_.begin(), tree_ret)); |
| EXPECT_EQ(tree_.size(), checker_.size()); |
| EXPECT_EQ(tree_.size(), size - count); |
| } |
| |
| void clear() { |
| tree_.clear(); |
| checker_.clear(); |
| } |
| void swap(base_checker &other) { |
| tree_.swap(other.tree_); |
| checker_.swap(other.checker_); |
| } |
| |
| void verify() const { |
| tree_.verify(); |
| EXPECT_EQ(tree_.size(), checker_.size()); |
| |
| // Move through the forward iterators using increment. |
| auto checker_iter = checker_.begin(); |
| const_iterator tree_iter(tree_.begin()); |
| for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) { |
| CheckPairEquals(*tree_iter, *checker_iter); |
| } |
| |
| // Move through the forward iterators using decrement. |
| for (int n = tree_.size() - 1; n >= 0; --n) { |
| iter_check(tree_iter, checker_iter); |
| --tree_iter; |
| --checker_iter; |
| } |
| EXPECT_EQ(tree_iter, tree_.begin()); |
| EXPECT_EQ(checker_iter, checker_.begin()); |
| |
| // Move through the reverse iterators using increment. |
| auto checker_riter = checker_.rbegin(); |
| const_reverse_iterator tree_riter(tree_.rbegin()); |
| for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) { |
| CheckPairEquals(*tree_riter, *checker_riter); |
| } |
| |
| // Move through the reverse iterators using decrement. |
| for (int n = tree_.size() - 1; n >= 0; --n) { |
| riter_check(tree_riter, checker_riter); |
| --tree_riter; |
| --checker_riter; |
| } |
| EXPECT_EQ(tree_riter, tree_.rbegin()); |
| EXPECT_EQ(checker_riter, checker_.rbegin()); |
| } |
| |
| const TreeType &tree() const { return tree_; } |
| |
| size_type size() const { |
| EXPECT_EQ(tree_.size(), checker_.size()); |
| return tree_.size(); |
| } |
| size_type max_size() const { return tree_.max_size(); } |
| bool empty() const { |
| EXPECT_EQ(tree_.empty(), checker_.empty()); |
| return tree_.empty(); |
| } |
| |
| protected: |
| TreeType tree_; |
| const TreeType &const_tree_; |
| CheckerType checker_; |
| }; |
| |
| namespace { |
| // A checker for unique sorted associative containers. TreeType is expected to |
| // be btree_{set,map} and CheckerType is expected to be {set,map}. |
| template <typename TreeType, typename CheckerType> |
| class unique_checker : public base_checker<TreeType, CheckerType> { |
| using super_type = base_checker<TreeType, CheckerType>; |
| |
| public: |
| using iterator = typename super_type::iterator; |
| using value_type = typename super_type::value_type; |
| |
| public: |
| unique_checker() : super_type() {} |
| unique_checker(const unique_checker &other) : super_type(other) {} |
| template <class InputIterator> |
| unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {} |
| unique_checker &operator=(const unique_checker &) = default; |
| |
| // Insertion routines. |
| std::pair<iterator, bool> insert(const value_type &v) { |
| int size = this->tree_.size(); |
| std::pair<typename CheckerType::iterator, bool> checker_res = |
| this->checker_.insert(v); |
| std::pair<iterator, bool> tree_res = this->tree_.insert(v); |
| CheckPairEquals(*tree_res.first, *checker_res.first); |
| EXPECT_EQ(tree_res.second, checker_res.second); |
| EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
| EXPECT_EQ(this->tree_.size(), size + tree_res.second); |
| return tree_res; |
| } |
| iterator insert(iterator position, const value_type &v) { |
| int size = this->tree_.size(); |
| std::pair<typename CheckerType::iterator, bool> checker_res = |
| this->checker_.insert(v); |
| iterator tree_res = this->tree_.insert(position, v); |
| CheckPairEquals(*tree_res, *checker_res.first); |
| EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
| EXPECT_EQ(this->tree_.size(), size + checker_res.second); |
| return tree_res; |
| } |
| template <typename InputIterator> |
| void insert(InputIterator b, InputIterator e) { |
| for (; b != e; ++b) { |
| insert(*b); |
| } |
| } |
| }; |
| |
| // A checker for multiple sorted associative containers. TreeType is expected |
| // to be btree_{multiset,multimap} and CheckerType is expected to be |
| // {multiset,multimap}. |
| template <typename TreeType, typename CheckerType> |
| class multi_checker : public base_checker<TreeType, CheckerType> { |
| using super_type = base_checker<TreeType, CheckerType>; |
| |
| public: |
| using iterator = typename super_type::iterator; |
| using value_type = typename super_type::value_type; |
| |
| public: |
| multi_checker() : super_type() {} |
| multi_checker(const multi_checker &other) : super_type(other) {} |
| template <class InputIterator> |
| multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {} |
| multi_checker &operator=(const multi_checker &) = default; |
| |
| // Insertion routines. |
| iterator insert(const value_type &v) { |
| int size = this->tree_.size(); |
| auto checker_res = this->checker_.insert(v); |
| iterator tree_res = this->tree_.insert(v); |
| CheckPairEquals(*tree_res, *checker_res); |
| EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
| EXPECT_EQ(this->tree_.size(), size + 1); |
| return tree_res; |
| } |
| iterator insert(iterator position, const value_type &v) { |
| int size = this->tree_.size(); |
| auto checker_res = this->checker_.insert(v); |
| iterator tree_res = this->tree_.insert(position, v); |
| CheckPairEquals(*tree_res, *checker_res); |
| EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
| EXPECT_EQ(this->tree_.size(), size + 1); |
| return tree_res; |
| } |
| template <typename InputIterator> |
| void insert(InputIterator b, InputIterator e) { |
| for (; b != e; ++b) { |
| insert(*b); |
| } |
| } |
| }; |
| |
| template <typename T, typename V> |
| void DoTest(const char *name, T *b, const std::vector<V> &values) { |
| typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
| |
| T &mutable_b = *b; |
| const T &const_b = *b; |
| |
| // Test insert. |
| for (int i = 0; i < values.size(); ++i) { |
| mutable_b.insert(values[i]); |
| mutable_b.value_check(values[i]); |
| } |
| ASSERT_EQ(mutable_b.size(), values.size()); |
| |
| const_b.verify(); |
| |
| // Test copy constructor. |
| T b_copy(const_b); |
| EXPECT_EQ(b_copy.size(), const_b.size()); |
| for (int i = 0; i < values.size(); ++i) { |
| CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]); |
| } |
| |
| // Test range constructor. |
| T b_range(const_b.begin(), const_b.end()); |
| EXPECT_EQ(b_range.size(), const_b.size()); |
| for (int i = 0; i < values.size(); ++i) { |
| CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
| } |
| |
| // Test range insertion for values that already exist. |
| b_range.insert(b_copy.begin(), b_copy.end()); |
| b_range.verify(); |
| |
| // Test range insertion for new values. |
| b_range.clear(); |
| b_range.insert(b_copy.begin(), b_copy.end()); |
| EXPECT_EQ(b_range.size(), b_copy.size()); |
| for (int i = 0; i < values.size(); ++i) { |
| CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
| } |
| |
| // Test assignment to self. Nothing should change. |
| b_range.operator=(b_range); |
| EXPECT_EQ(b_range.size(), b_copy.size()); |
| |
| // Test assignment of new values. |
| b_range.clear(); |
| b_range = b_copy; |
| EXPECT_EQ(b_range.size(), b_copy.size()); |
| |
| // Test swap. |
| b_range.clear(); |
| b_range.swap(b_copy); |
| EXPECT_EQ(b_copy.size(), 0); |
| EXPECT_EQ(b_range.size(), const_b.size()); |
| for (int i = 0; i < values.size(); ++i) { |
| CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
| } |
| b_range.swap(b_copy); |
| |
| // Test non-member function swap. |
| swap(b_range, b_copy); |
| EXPECT_EQ(b_copy.size(), 0); |
| EXPECT_EQ(b_range.size(), const_b.size()); |
| for (int i = 0; i < values.size(); ++i) { |
| CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
| } |
| swap(b_range, b_copy); |
| |
| // Test erase via values. |
| for (int i = 0; i < values.size(); ++i) { |
| mutable_b.erase(key_of_value(values[i])); |
| // Erasing a non-existent key should have no effect. |
| ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0); |
| } |
| |
| const_b.verify(); |
| EXPECT_EQ(const_b.size(), 0); |
| |
| // Test erase via iterators. |
| mutable_b = b_copy; |
| for (int i = 0; i < values.size(); ++i) { |
| mutable_b.erase(mutable_b.find(key_of_value(values[i]))); |
| } |
| |
| const_b.verify(); |
| EXPECT_EQ(const_b.size(), 0); |
| |
| // Test insert with hint. |
| for (int i = 0; i < values.size(); i++) { |
| mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]); |
| } |
| |
| const_b.verify(); |
| |
| // Test range erase. |
| mutable_b.erase(mutable_b.begin(), mutable_b.end()); |
| EXPECT_EQ(mutable_b.size(), 0); |
| const_b.verify(); |
| |
| // First half. |
| mutable_b = b_copy; |
| typename T::iterator mutable_iter_end = mutable_b.begin(); |
| for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end; |
| mutable_b.erase(mutable_b.begin(), mutable_iter_end); |
| EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2); |
| const_b.verify(); |
| |
| // Second half. |
| mutable_b = b_copy; |
| typename T::iterator mutable_iter_begin = mutable_b.begin(); |
| for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin; |
| mutable_b.erase(mutable_iter_begin, mutable_b.end()); |
| EXPECT_EQ(mutable_b.size(), values.size() / 2); |
| const_b.verify(); |
| |
| // Second quarter. |
| mutable_b = b_copy; |
| mutable_iter_begin = mutable_b.begin(); |
| for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin; |
| mutable_iter_end = mutable_iter_begin; |
| for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end; |
| mutable_b.erase(mutable_iter_begin, mutable_iter_end); |
| EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4); |
| const_b.verify(); |
| |
| mutable_b.clear(); |
| } |
| |
| template <typename T> |
| void ConstTest() { |
| using value_type = typename T::value_type; |
| typename KeyOfValue<typename T::key_type, value_type>::type key_of_value; |
| |
| T mutable_b; |
| const T &const_b = mutable_b; |
| |
| // Insert a single value into the container and test looking it up. |
| value_type value = Generator<value_type>(2)(2); |
| mutable_b.insert(value); |
| EXPECT_TRUE(mutable_b.contains(key_of_value(value))); |
| EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end()); |
| EXPECT_TRUE(const_b.contains(key_of_value(value))); |
| EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end()); |
| EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value); |
| EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end()); |
| EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value); |
| |
| // We can only create a non-const iterator from a non-const container. |
| typename T::iterator mutable_iter(mutable_b.begin()); |
| EXPECT_EQ(mutable_iter, const_b.begin()); |
| EXPECT_NE(mutable_iter, const_b.end()); |
| EXPECT_EQ(const_b.begin(), mutable_iter); |
| EXPECT_NE(const_b.end(), mutable_iter); |
| typename T::reverse_iterator mutable_riter(mutable_b.rbegin()); |
| EXPECT_EQ(mutable_riter, const_b.rbegin()); |
| EXPECT_NE(mutable_riter, const_b.rend()); |
| EXPECT_EQ(const_b.rbegin(), mutable_riter); |
| EXPECT_NE(const_b.rend(), mutable_riter); |
| |
| // We can create a const iterator from a non-const iterator. |
| typename T::const_iterator const_iter(mutable_iter); |
| EXPECT_EQ(const_iter, mutable_b.begin()); |
| EXPECT_NE(const_iter, mutable_b.end()); |
| EXPECT_EQ(mutable_b.begin(), const_iter); |
| EXPECT_NE(mutable_b.end(), const_iter); |
| typename T::const_reverse_iterator const_riter(mutable_riter); |
| EXPECT_EQ(const_riter, mutable_b.rbegin()); |
| EXPECT_NE(const_riter, mutable_b.rend()); |
| EXPECT_EQ(mutable_b.rbegin(), const_riter); |
| EXPECT_NE(mutable_b.rend(), const_riter); |
| |
| // Make sure various methods can be invoked on a const container. |
| const_b.verify(); |
| ASSERT_TRUE(!const_b.empty()); |
| EXPECT_EQ(const_b.size(), 1); |
| EXPECT_GT(const_b.max_size(), 0); |
| EXPECT_TRUE(const_b.contains(key_of_value(value))); |
| EXPECT_EQ(const_b.count(key_of_value(value)), 1); |
| } |
| |
| template <typename T, typename C> |
| void BtreeTest() { |
| ConstTest<T>(); |
| |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| const std::vector<V> random_values = GenerateValuesWithSeed<V>( |
| absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), |
| GTEST_FLAG_GET(random_seed)); |
| |
| unique_checker<T, C> container; |
| |
| // Test key insertion/deletion in sorted order. |
| std::vector<V> sorted_values(random_values); |
| std::sort(sorted_values.begin(), sorted_values.end()); |
| DoTest("sorted: ", &container, sorted_values); |
| |
| // Test key insertion/deletion in reverse sorted order. |
| std::reverse(sorted_values.begin(), sorted_values.end()); |
| DoTest("rsorted: ", &container, sorted_values); |
| |
| // Test key insertion/deletion in random order. |
| DoTest("random: ", &container, random_values); |
| } |
| |
| template <typename T, typename C> |
| void BtreeMultiTest() { |
| ConstTest<T>(); |
| |
| using V = typename remove_pair_const<typename T::value_type>::type; |
| const std::vector<V> random_values = GenerateValuesWithSeed<V>( |
| absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), |
| GTEST_FLAG_GET(random_seed)); |
| |
| multi_checker<T, C> container; |
| |
| // Test keys in sorted order. |
| std::vector<V> sorted_values(random_values); |
| std::sort(sorted_values.begin(), sorted_values.end()); |
| DoTest("sorted: ", &container, sorted_values); |
| |
| // Test keys in reverse sorted order. |
| std::reverse(sorted_values.begin(), sorted_values.end()); |
| DoTest("rsorted: ", &container, sorted_values); |
| |
| // Test keys in random order. |
| DoTest("random: ", &container, random_values); |
| |
| // Test keys in random order w/ duplicates. |
| std::vector<V> duplicate_values(random_values); |
| duplicate_values.insert(duplicate_values.end(), random_values.begin(), |
| random_values.end()); |
| DoTest("duplicates:", &container, duplicate_values); |
| |
| // Test all identical keys. |
| std::vector<V> identical_values(100); |
| std::fill(identical_values.begin(), identical_values.end(), |
| Generator<V>(2)(2)); |
| DoTest("identical: ", &container, identical_values); |
| } |
| |
| template <typename T> |
| void BtreeMapTest() { |
| using value_type = typename T::value_type; |
| using mapped_type = typename T::mapped_type; |
| |
| mapped_type m = Generator<mapped_type>(0)(0); |
| (void)m; |
| |
| T b; |
| |
| // Verify we can insert using operator[]. |
| for (int i = 0; i < 1000; i++) { |
| value_type v = Generator<value_type>(1000)(i); |
| b[v.first] = v.second; |
| } |
| EXPECT_EQ(b.size(), 1000); |
| |
| // Test whether we can use the "->" operator on iterators and |
| // reverse_iterators. This stresses the btree_map_params::pair_pointer |
| // mechanism. |
| EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first); |
| EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second); |
| EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first); |
| EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second); |
| } |
| |
| template <typename T> |
| void BtreeMultiMapTest() { |
| using mapped_type = typename T::mapped_type; |
| mapped_type m = Generator<mapped_type>(0)(0); |
| (void)m; |
| } |
| |
| template <typename K, int N = 256> |
| void SetTest() { |
| EXPECT_EQ( |
| sizeof(absl::btree_set<K>), |
| 2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type)); |
| using BtreeSet = absl::btree_set<K>; |
| BtreeTest<BtreeSet, std::set<K>>(); |
| } |
| |
| template <typename K, int N = 256> |
| void MapTest() { |
| EXPECT_EQ( |
| sizeof(absl::btree_map<K, K>), |
| 2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type)); |
| using BtreeMap = absl::btree_map<K, K>; |
| BtreeTest<BtreeMap, std::map<K, K>>(); |
| BtreeMapTest<BtreeMap>(); |
| } |
| |
| TEST(Btree, set_int32) { SetTest<int32_t>(); } |
| TEST(Btree, set_string) { SetTest<std::string>(); } |
| TEST(Btree, set_cord) { SetTest<absl::Cord>(); } |
| TEST(Btree, map_int32) { MapTest<int32_t>(); } |
| TEST(Btree, map_string) { MapTest<std::string>(); } |
| TEST(Btree, map_cord) { MapTest<absl::Cord>(); } |
| |
| template <typename K, int N = 256> |
| void MultiSetTest() { |
| EXPECT_EQ( |
| sizeof(absl::btree_multiset<K>), |
| 2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type)); |
| using BtreeMSet = absl::btree_multiset<K>; |
| BtreeMultiTest<BtreeMSet, std::multiset<K>>(); |
| } |
| |
| template <typename K, int N = 256> |
| void MultiMapTest() { |
| EXPECT_EQ(sizeof(absl::btree_multimap<K, K>), |
| 2 * sizeof(void *) + |
| sizeof(typename absl::btree_multimap<K, K>::size_type)); |
| using BtreeMMap = absl::btree_multimap<K, K>; |
| BtreeMultiTest<BtreeMMap, std::multimap<K, K>>(); |
| BtreeMultiMapTest<BtreeMMap>(); |
| } |
| |
| TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); } |
| TEST(Btree, multiset_string) { MultiSetTest<std::string>(); } |
| TEST(Btree, multiset_cord) { MultiSetTest<absl::Cord>(); } |
| TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); } |
| TEST(Btree, multimap_string) { MultiMapTest<std::string>(); } |
| TEST(Btree, multimap_cord) { MultiMapTest<absl::Cord>(); } |
| |
| struct CompareIntToString { |
| bool operator()(const std::string &a, const std::string &b) const { |
| return a < b; |
| } |
| bool operator()(const std::string &a, int b) const { |
| return a < absl::StrCat(b); |
| } |
| bool operator()(int a, const std::string &b) const { |
| return absl::StrCat(a) < b; |
| } |
| using is_transparent = void; |
| }; |
| |
| struct NonTransparentCompare { |
| template <typename T, typename U> |
| bool operator()(const T &t, const U &u) const { |
| // Treating all comparators as transparent can cause inefficiencies (see |
| // N3657 C++ proposal). Test that for comparators without 'is_transparent' |
| // alias (like this one), we do not attempt heterogeneous lookup. |
| EXPECT_TRUE((std::is_same<T, U>())); |
| return t < u; |
| } |
| }; |
| |
| template <typename T> |
| bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) { |
| return true; |
| } |
| |
| template <typename T> |
| bool CanEraseWithEmptyBrace(T, ...) { |
| return false; |
| } |
| |
| template <typename T> |
| void TestHeterogeneous(T table) { |
| auto lb = table.lower_bound("3"); |
| EXPECT_EQ(lb, table.lower_bound(3)); |
| EXPECT_NE(lb, table.lower_bound(4)); |
| EXPECT_EQ(lb, table.lower_bound({"3"})); |
| EXPECT_NE(lb, table.lower_bound({})); |
| |
| auto ub = table.upper_bound("3"); |
| EXPECT_EQ(ub, table.upper_bound(3)); |
| EXPECT_NE(ub, table.upper_bound(5)); |
| EXPECT_EQ(ub, table.upper_bound({"3"})); |
| EXPECT_NE(ub, table.upper_bound({})); |
| |
| auto er = table.equal_range("3"); |
| EXPECT_EQ(er, table.equal_range(3)); |
| EXPECT_NE(er, table.equal_range(4)); |
| EXPECT_EQ(er, table.equal_range({"3"})); |
| EXPECT_NE(er, table.equal_range({})); |
| |
| auto it = table.find("3"); |
| EXPECT_EQ(it, table.find(3)); |
| EXPECT_NE(it, table.find(4)); |
| EXPECT_EQ(it, table.find({"3"})); |
| EXPECT_NE(it, table.find({})); |
| |
| EXPECT_TRUE(table.contains(3)); |
| EXPECT_FALSE(table.contains(4)); |
| EXPECT_TRUE(table.count({"3"})); |
| EXPECT_FALSE(table.contains({})); |
| |
| EXPECT_EQ(1, table.count(3)); |
| EXPECT_EQ(0, table.count(4)); |
| EXPECT_EQ(1, table.count({"3"})); |
| EXPECT_EQ(0, table.count({})); |
| |
| auto copy = table; |
| copy.erase(3); |
| EXPECT_EQ(table.size() - 1, copy.size()); |
| copy.erase(4); |
| EXPECT_EQ(table.size() - 1, copy.size()); |
| copy.erase({"5"}); |
| EXPECT_EQ(table.size() - 2, copy.size()); |
| EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr)); |
| |
| // Also run it with const T&. |
| if (std::is_class<T>()) TestHeterogeneous<const T &>(table); |
| } |
| |
| TEST(Btree, HeterogeneousLookup) { |
| TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"}); |
| TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{ |
| {"1", 1}, {"3", 3}, {"5", 5}}); |
| TestHeterogeneous( |
| btree_multiset<std::string, CompareIntToString>{"1", "3", "5"}); |
| TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{ |
| {"1", 1}, {"3", 3}, {"5", 5}}); |
| |
| // Only maps have .at() |
| btree_map<std::string, int, CompareIntToString> map{ |
| {"", -1}, {"1", 1}, {"3", 3}, {"5", 5}}; |
| EXPECT_EQ(1, map.at(1)); |
| EXPECT_EQ(3, map.at({"3"})); |
| EXPECT_EQ(-1, map.at({})); |
| const auto &cmap = map; |
| EXPECT_EQ(1, cmap.at(1)); |
| EXPECT_EQ(3, cmap.at({"3"})); |
| EXPECT_EQ(-1, cmap.at({})); |
| } |
| |
| TEST(Btree, NoHeterogeneousLookupWithoutAlias) { |
| using StringSet = absl::btree_set<std::string, NonTransparentCompare>; |
| StringSet s; |
| ASSERT_TRUE(s.insert("hello").second); |
| ASSERT_TRUE(s.insert("world").second); |
| EXPECT_TRUE(s.end() == s.find("blah")); |
| EXPECT_TRUE(s.begin() == s.lower_bound("hello")); |
| EXPECT_EQ(1, s.count("world")); |
| EXPECT_TRUE(s.contains("hello")); |
| EXPECT_TRUE(s.contains("world")); |
| EXPECT_FALSE(s.contains("blah")); |
| |
| using StringMultiSet = |
| absl::btree_multiset<std::string, NonTransparentCompare>; |
| StringMultiSet ms; |
| ms.insert("hello"); |
| ms.insert("world"); |
| ms.insert("world"); |
| EXPECT_TRUE(ms.end() == ms.find("blah")); |
| EXPECT_TRUE(ms.begin() == ms.lower_bound("hello")); |
| EXPECT_EQ(2, ms.count("world")); |
| EXPECT_TRUE(ms.contains("hello")); |
| EXPECT_TRUE(ms.contains("world")); |
| EXPECT_FALSE(ms.contains("blah")); |
| } |
| |
| TEST(Btree, DefaultTransparent) { |
| { |
| // `int` does not have a default transparent comparator. |
| // The input value is converted to key_type. |
| btree_set<int> s = {1}; |
| double d = 1.1; |
| EXPECT_EQ(s.begin(), s.find(d)); |
| EXPECT_TRUE(s.contains(d)); |
| } |
| |
| { |
| // `std::string` has heterogeneous support. |
| btree_set<std::string> s = {"A"}; |
| EXPECT_EQ(s.begin(), s.find(absl::string_view("A"))); |
| EXPECT_TRUE(s.contains(absl::string_view("A"))); |
| } |
| } |
| |
| class StringLike { |
| public: |
| StringLike() = default; |
| |
| StringLike(const char *s) : s_(s) { // NOLINT |
| ++constructor_calls_; |
| } |
| |
| bool operator<(const StringLike &a) const { return s_ < a.s_; } |
| |
| static void clear_constructor_call_count() { constructor_calls_ = 0; } |
| |
| static int constructor_calls() { return constructor_calls_; } |
| |
| private: |
| static int constructor_calls_; |
| std::string s_; |
| }; |
| |
| int StringLike::constructor_calls_ = 0; |
| |
| TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) { |
| using StringSet = absl::btree_set<StringLike>; |
| StringSet s; |
| for (int i = 0; i < 100; ++i) { |
| ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second); |
| } |
| StringLike::clear_constructor_call_count(); |
| s.find("50"); |
| ASSERT_EQ(1, StringLike::constructor_calls()); |
| |
| StringLike::clear_constructor_call_count(); |
| s.contains("50"); |
| ASSERT_EQ(1, StringLike::constructor_calls()); |
| |
| StringLike::clear_constructor_call_count(); |
| s.count("50"); |
| ASSERT_EQ(1, StringLike::constructor_calls()); |
| |
| StringLike::clear_constructor_call_count(); |
| s.lower_bound("50"); |
| ASSERT_EQ(1, StringLike::constructor_calls()); |
| |
| StringLike::clear_constructor_call_count(); |
| s.upper_bound("50"); |
| ASSERT_EQ(1, StringLike::constructor_calls()); |
| |
| StringLike::clear_constructor_call_count(); |
| s.equal_range("50"); |
| ASSERT_EQ(1, StringLike::constructor_calls()); |
| |
| StringLike::clear_constructor_call_count(); |
| s.erase("50"); |
| ASSERT_EQ(1, StringLike::constructor_calls()); |
| } |
| |
| // Verify that swapping btrees swaps the key comparison functors and that we can |
| // use non-default constructible comparators. |
| struct SubstringLess { |
| SubstringLess() = delete; |
| explicit SubstringLess(int length) : n(length) {} |
| bool operator()(const std::string &a, const std::string &b) const { |
| return absl::string_view(a).substr(0, n) < |
| absl::string_view(b).substr(0, n); |
| } |
| int n; |
| }; |
| |
| TEST(Btree, SwapKeyCompare) { |
| using SubstringSet = absl::btree_set<std::string, SubstringLess>; |
| SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type()); |
| SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type()); |
| |
| ASSERT_TRUE(s1.insert("a").second); |
| ASSERT_FALSE(s1.insert("aa").second); |
| |
| ASSERT_TRUE(s2.insert("a").second); |
| ASSERT_TRUE(s2.insert("aa").second); |
| ASSERT_FALSE(s2.insert("aaa").second); |
| |
| swap(s1, s2); |
| |
| ASSERT_TRUE(s1.insert("b").second); |
| ASSERT_TRUE(s1.insert("bb").second); |
| ASSERT_FALSE(s1.insert("bbb").second); |
| |
| ASSERT_TRUE(s2.insert("b").second); |
| ASSERT_FALSE(s2.insert("bb").second); |
| } |
| |
| TEST(Btree, UpperBoundRegression) { |
| // Regress a bug where upper_bound would default-construct a new key_compare |
| // instead of copying the existing one. |
| using SubstringSet = absl::btree_set<std::string, SubstringLess>; |
| SubstringSet my_set(SubstringLess(3)); |
| my_set.insert("aab"); |
| my_set.insert("abb"); |
| // We call upper_bound("aaa"). If this correctly uses the length 3 |
| // comparator, aaa < aab < abb, so we should get aab as the result. |
| // If it instead uses the default-constructed length 2 comparator, |
| // aa == aa < ab, so we'll get abb as our result. |
| SubstringSet::iterator it = my_set.upper_bound("aaa"); |
| ASSERT_TRUE(it != my_set.end()); |
| EXPECT_EQ("aab", *it); |
| } |
| |
| TEST(Btree, Comparison) { |
| const int kSetSize = 1201; |
| absl::btree_set<int64_t> my_set; |
| for (int i = 0; i < kSetSize; ++i) { |
| my_set.insert(i); |
| } |
| absl::btree_set<int64_t> my_set_copy(my_set); |
| EXPECT_TRUE(my_set_copy == my_set); |
| EXPECT_TRUE(my_set == my_set_copy); |
| EXPECT_FALSE(my_set_copy != my_set); |
| EXPECT_FALSE(my_set != my_set_copy); |
| |
| my_set.insert(kSetSize); |
| EXPECT_FALSE(my_set_copy == my_set); |
| EXPECT_FALSE(my_set == my_set_copy); |
| EXPECT_TRUE(my_set_copy != my_set); |
| EXPECT_TRUE(my_set != my_set_copy); |
| |
| my_set.erase(kSetSize - 1); |
| EXPECT_FALSE(my_set_copy == my_set); |
| EXPECT_FALSE(my_set == my_set_copy); |
| EXPECT_TRUE(my_set_copy != my_set); |
| EXPECT_TRUE(my_set != my_set_copy); |
| |
| absl::btree_map<std::string, int64_t> my_map; |
| for (int i = 0; i < kSetSize; ++i) { |
| my_map[std::string(i, 'a')] = i; |
| } |
| absl::btree_map<std::string, int64_t> my_map_copy(my_map); |
| EXPECT_TRUE(my_map_copy == my_map); |
| EXPECT_TRUE(my_map == my_map_copy); |
| EXPECT_FALSE(my_map_copy != my_map); |
| EXPECT_FALSE(my_map != my_map_copy); |
| |
| ++my_map_copy[std::string(7, 'a')]; |
| EXPECT_FALSE(my_map_copy == my_map); |
| EXPECT_FALSE(my_map == my_map_copy); |
| EXPECT_TRUE(my_map_copy != my_map); |
| EXPECT_TRUE(my_map != my_map_copy); |
| |
| my_map_copy = my_map; |
| my_map["hello"] = kSetSize; |
| EXPECT_FALSE(my_map_copy == my_map); |
| EXPECT_FALSE(my_map == my_map_copy); |
| EXPECT_TRUE(my_map_copy != my_map); |
| EXPECT_TRUE(my_map != my_map_copy); |
| |
| my_map.erase(std::string(kSetSize - 1, 'a')); |
| EXPECT_FALSE(my_map_copy == my_map); |
| EXPECT_FALSE(my_map == my_map_copy); |
| EXPECT_TRUE(my_map_copy != my_map); |
| EXPECT_TRUE(my_map != my_map_copy); |
| } |
| |
| TEST(Btree, RangeCtorSanity) { |
| std::vector<int> ivec; |
| ivec.push_back(1); |
| std::map<int, int> imap; |
| imap.insert(std::make_pair(1, 2)); |
| absl::btree_multiset<int> tmset(ivec.begin(), ivec.end()); |
| absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end()); |
| absl::btree_set<int> tset(ivec.begin(), ivec.end()); |
| absl::btree_map<int, int> tmap(imap.begin(), imap.end()); |
| EXPECT_EQ(1, tmset.size()); |
| EXPECT_EQ(1, tmmap.size()); |
| EXPECT_EQ(1, tset.size()); |
| EXPECT_EQ(1, tmap.size()); |
| } |
| |
| } // namespace |
| |
| class BtreeNodePeer { |
| public: |
| // Yields the size of a leaf node with a specific number of values. |
| template <typename ValueType> |
| constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) { |
| return btree_node< |
| set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>, |
| /*TargetNodeSize=*/256, // This parameter isn't used here. |
| /*Multi=*/false>>::SizeWithNSlots(target_values_per_node); |
| } |
| |
| // Yields the number of slots in a (non-root) leaf node for this btree. |
| template <typename Btree> |
| constexpr static size_t GetNumSlotsPerNode() { |
| return btree_node<typename Btree::params_type>::kNodeSlots; |
| } |
| |
| template <typename Btree> |
| constexpr static size_t GetMaxFieldType() { |
| return std::numeric_limits< |
| typename btree_node<typename Btree::params_type>::field_type>::max(); |
| } |
| |
| template <typename Btree> |
| constexpr static bool UsesLinearNodeSearch() { |
| return btree_node<typename Btree::params_type>::use_linear_search::value; |
| } |
| |
| template <typename Btree> |
| constexpr static bool FieldTypeEqualsSlotType() { |
| return std::is_same< |
| typename btree_node<typename Btree::params_type>::field_type, |
| typename btree_node<typename Btree::params_type>::slot_type>::value; |
| } |
| }; |
| |
| namespace { |
| |
| class BtreeMapTest : public ::testing::Test { |
| public: |
| struct Key {}; |
| struct Cmp { |
| template <typename T> |
| bool operator()(T, T) const { |
| return false; |
| } |
| }; |
| |
| struct KeyLin { |
| using absl_btree_prefer_linear_node_search = std::true_type; |
| }; |
| struct CmpLin : Cmp { |
| using absl_btree_prefer_linear_node_search = std::true_type; |
| }; |
| |
| struct KeyBin { |
| using absl_btree_prefer_linear_node_search = std::false_type; |
| }; |
| struct CmpBin : Cmp { |
| using absl_btree_prefer_linear_node_search = std::false_type; |
| }; |
| |
| template <typename K, typename C> |
| static bool IsLinear() { |
| return BtreeNodePeer::UsesLinearNodeSearch<absl::btree_map<K, int, C>>(); |
| } |
| }; |
| |
| TEST_F(BtreeMapTest, TestLinearSearchPreferredForKeyLinearViaAlias) { |
| // Test requesting linear search by directly exporting an alias. |
| EXPECT_FALSE((IsLinear<Key, Cmp>())); |
| EXPECT_TRUE((IsLinear<KeyLin, Cmp>())); |
| EXPECT_TRUE((IsLinear<Key, CmpLin>())); |
| EXPECT_TRUE((IsLinear<KeyLin, CmpLin>())); |
| } |
| |
| TEST_F(BtreeMapTest, LinearChoiceTree) { |
| // Cmp has precedence, and is forcing binary |
| EXPECT_FALSE((IsLinear<Key, CmpBin>())); |
| EXPECT_FALSE((IsLinear<KeyLin, CmpBin>())); |
| EXPECT_FALSE((IsLinear<KeyBin, CmpBin>())); |
| EXPECT_FALSE((IsLinear<int, CmpBin>())); |
| EXPECT_FALSE((IsLinear<std::string, CmpBin>())); |
| // Cmp has precedence, and is forcing linear |
| EXPECT_TRUE((IsLinear<Key, CmpLin>())); |
| EXPECT_TRUE((IsLinear<KeyLin, CmpLin>())); |
| EXPECT_TRUE((IsLinear<KeyBin, CmpLin>())); |
| EXPECT_TRUE((IsLinear<int, CmpLin>())); |
| EXPECT_TRUE((IsLinear<std::string, CmpLin>())); |
| // Cmp has no preference, Key determines linear vs binary. |
| EXPECT_FALSE((IsLinear<Key, Cmp>())); |
| EXPECT_TRUE((IsLinear<KeyLin, Cmp>())); |
| EXPECT_FALSE((IsLinear<KeyBin, Cmp>())); |
| // arithmetic key w/ std::less or std::greater: linear |
| EXPECT_TRUE((IsLinear<int, std::less<int>>())); |
| EXPECT_TRUE((IsLinear<double, std::greater<double>>())); |
| // arithmetic key w/ custom compare: binary |
| EXPECT_FALSE((IsLinear<int, Cmp>())); |
| // non-arithmetic key: binary |
| EXPECT_FALSE((IsLinear<std::string, std::less<std::string>>())); |
| } |
| |
| TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) { |
| absl::btree_map<std::string, std::unique_ptr<std::string>> m; |
| |
| std::unique_ptr<std::string> &v = m["A"]; |
| EXPECT_TRUE(v == nullptr); |
| v = absl::make_unique<std::string>("X"); |
| |
| auto iter = m.find("A"); |
| EXPECT_EQ("X", *iter->second); |
| } |
| |
| TEST(Btree, InitializerListConstructor) { |
| absl::btree_set<std::string> set({"a", "b"}); |
| EXPECT_EQ(set.count("a"), 1); |
| EXPECT_EQ(set.count("b"), 1); |
| |
| absl::btree_multiset<int> mset({1, 1, 4}); |
| EXPECT_EQ(mset.count(1), 2); |
| EXPECT_EQ(mset.count(4), 1); |
| |
| absl::btree_map<int, int> map({{1, 5}, {2, 10}}); |
| EXPECT_EQ(map[1], 5); |
| EXPECT_EQ(map[2], 10); |
| |
| absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}}); |
| auto range = mmap.equal_range(1); |
| auto it = range.first; |
| ASSERT_NE(it, range.second); |
| EXPECT_EQ(it->second, 5); |
| ASSERT_NE(++it, range.second); |
| EXPECT_EQ(it->second, 10); |
| EXPECT_EQ(++it, range.second); |
| } |
| |
| TEST(Btree, InitializerListInsert) { |
| absl::btree_set<std::string> set; |
| set.insert({"a", "b"}); |
| EXPECT_EQ(set.count("a"), 1); |
| EXPECT_EQ(set.count("b"), 1); |
| |
| absl::btree_multiset<int> mset; |
| mset.insert({1, 1, 4}); |
| EXPECT_EQ(mset.count(1), 2); |
| EXPECT_EQ(mset.count(4), 1); |
| |
| absl::btree_map<int, int> map; |
| map.insert({{1, 5}, {2, 10}}); |
| // Test that inserting one element using an initializer list also works. |
| map.insert({3, 15}); |
| EXPECT_EQ(map[1], 5); |
| EXPECT_EQ(map[2], 10); |
| EXPECT_EQ(map[3], 15); |
| |
| absl::btree_multimap<int, int> mmap; |
| mmap.insert({{1, 5}, {1, 10}}); |
| auto range = mmap.equal_range(1); |
| auto it = range.first; |
| ASSERT_NE(it, range.second); |
| EXPECT_EQ(it->second, 5); |
| ASSERT_NE(++it, range.second); |
| EXPECT_EQ(it->second, 10); |
| EXPECT_EQ(++it, range.second); |
| } |
| |
| template <typename Compare, typename Key> |
| void AssertKeyCompareStringAdapted() { |
| using Adapted = typename key_compare_adapter<Compare, Key>::type; |
| static_assert( |
| std::is_same<Adapted, StringBtreeDefaultLess>::value || |
| std::is_same<Adapted, StringBtreeDefaultGreater>::value, |
| "key_compare_adapter should have string-adapted this comparator."); |
| } |
| template <typename Compare, typename Key> |
| void AssertKeyCompareNotStringAdapted() { |
| using Adapted = typename key_compare_adapter<Compare, Key>::type; |
| static_assert( |
| !std::is_same<Adapted, StringBtreeDefaultLess>::value && |
| !std::is_same<Adapted, StringBtreeDefaultGreater>::value, |
| "key_compare_adapter shouldn't have string-adapted this comparator."); |
| } |
| |
| TEST(Btree, KeyCompareAdapter) { |
| AssertKeyCompareStringAdapted<std::less<std::string>, std::string>(); |
| AssertKeyCompareStringAdapted<std::greater<std::string>, std::string>(); |
| AssertKeyCompareStringAdapted<std::less<absl::string_view>, |
| absl::string_view>(); |
| AssertKeyCompareStringAdapted<std::greater<absl::string_view>, |
| absl::string_view>(); |
| AssertKeyCompareStringAdapted<std::less<absl::Cord>, absl::Cord>(); |
| AssertKeyCompareStringAdapted<std::greater<absl::Cord>, absl::Cord>(); |
| AssertKeyCompareNotStringAdapted<std::less<int>, int>(); |
| AssertKeyCompareNotStringAdapted<std::greater<int>, int>(); |
| } |
| |
| TEST(Btree, RValueInsert) { |
| InstanceTracker tracker; |
| |
| absl::btree_set<MovableOnlyInstance> set; |
| set.insert(MovableOnlyInstance(1)); |
| set.insert(MovableOnlyInstance(3)); |
| MovableOnlyInstance two(2); |
| set.insert(set.find(MovableOnlyInstance(3)), std::move(two)); |
| auto it = set.find(MovableOnlyInstance(2)); |
| ASSERT_NE(it, set.end()); |
| ASSERT_NE(++it, set.end()); |
| EXPECT_EQ(it->value(), 3); |
| |
| absl::btree_multiset<MovableOnlyInstance> mset; |
| MovableOnlyInstance zero(0); |
| MovableOnlyInstance zero2(0); |
| mset.insert(std::move(zero)); |
| mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2)); |
| EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2); |
| |
| absl::btree_map<int, MovableOnlyInstance> map; |
| std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)}; |
| std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)}; |
| std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)}; |
| map.insert(std::move(p1)); |
| map.insert(std::move(p3)); |
| map.insert(map.find(3), std::move(p2)); |
| ASSERT_NE(map.find(2), map.end()); |
| EXPECT_EQ(map.find(2)->second.value(), 10); |
| |
| absl::btree_multimap<int, MovableOnlyInstance> mmap; |
| std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)}; |
| std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)}; |
| mmap.insert(std::move(p4)); |
| mmap.insert(mmap.find(1), std::move(p5)); |
| auto range = mmap.equal_range(1); |
| auto it1 = range.first; |
| ASSERT_NE(it1, range.second); |
| EXPECT_EQ(it1->second.value(), 10); |
| ASSERT_NE(++it1, range.second); |
| EXPECT_EQ(it1->second.value(), 5); |
| EXPECT_EQ(++it1, range.second); |
| |
| EXPECT_EQ(tracker.copies(), 0); |
| EXPECT_EQ(tracker.swaps(), 0); |
| } |
| |
| template <typename Cmp> |
| struct CheckedCompareOptedOutCmp : Cmp, BtreeTestOnlyCheckedCompareOptOutBase { |
| using Cmp::Cmp; |
| CheckedCompareOptedOutCmp() {} |
| CheckedCompareOptedOutCmp(Cmp cmp) : Cmp(std::move(cmp)) {} // NOLINT |
| }; |
| |
| // A btree set with a specific number of values per node. Opt out of |
| // checked_compare so that we can expect exact numbers of comparisons. |
| template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>> |
| class SizedBtreeSet |
| : public btree_set_container<btree< |
| set_params<Key, CheckedCompareOptedOutCmp<Cmp>, std::allocator<Key>, |
| BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode), |
| /*Multi=*/false>>> { |
| using Base = typename SizedBtreeSet::btree_set_container; |
| |
| public: |
| SizedBtreeSet() = default; |
| using Base::Base; |
| }; |
| |
| template <typename Set> |
| void ExpectOperationCounts(const int expected_moves, |
| const int expected_comparisons, |
| const std::vector<int> &values, |
| InstanceTracker *tracker, Set *set) { |
| for (const int v : values) set->insert(MovableOnlyInstance(v)); |
| set->clear(); |
| EXPECT_EQ(tracker->moves(), expected_moves); |
| EXPECT_EQ(tracker->comparisons(), expected_comparisons); |
| EXPECT_EQ(tracker->copies(), 0); |
| EXPECT_EQ(tracker->swaps(), 0); |
| tracker->ResetCopiesMovesSwaps(); |
| } |
| |
| #if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ |
| defined(ABSL_HAVE_HWADDRESS_SANITIZER) |
| constexpr bool kAsan = true; |
| #else |
| constexpr bool kAsan = false; |
| #endif |
| |
| // Note: when the values in this test change, it is expected to have an impact |
| // on performance. |
| TEST(Btree, MovesComparisonsCopiesSwapsTracking) { |
| if (kAsan) GTEST_SKIP() << "We do extra operations in ASan mode."; |
| |
| InstanceTracker tracker; |
| // Note: this is minimum number of values per node. |
| SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/4> set4; |
| // Note: this is the default number of values per node for a set of int32s |
| // (with 64-bit pointers). |
| SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61; |
| SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100; |
| |
| // Don't depend on flags for random values because then the expectations will |
| // fail if the flags change. |
| std::vector<int> values = |
| GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23); |
| |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set4)>(), 4); |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set61)>(), 61); |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set100)>(), 100); |
| if (sizeof(void *) == 8) { |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<absl::btree_set<int32_t>>(), |
| // When we have generations, there is one fewer slot. |
| BtreeGenerationsEnabled() ? 60 : 61); |
| } |
| |
| // Test key insertion/deletion in random order. |
| ExpectOperationCounts(56540, 134212, values, &tracker, &set4); |
| ExpectOperationCounts(386718, 129807, values, &tracker, &set61); |
| ExpectOperationCounts(586761, 130310, values, &tracker, &set100); |
| |
| // Test key insertion/deletion in sorted order. |
| std::sort(values.begin(), values.end()); |
| ExpectOperationCounts(24972, 85563, values, &tracker, &set4); |
| ExpectOperationCounts(20208, 87757, values, &tracker, &set61); |
| ExpectOperationCounts(20124, 96583, values, &tracker, &set100); |
| |
| // Test key insertion/deletion in reverse sorted order. |
| std::reverse(values.begin(), values.end()); |
| ExpectOperationCounts(54949, 127531, values, &tracker, &set4); |
| ExpectOperationCounts(338813, 118266, values, &tracker, &set61); |
| ExpectOperationCounts(534529, 125279, values, &tracker, &set100); |
| } |
| |
| struct MovableOnlyInstanceThreeWayCompare { |
| absl::weak_ordering operator()(const MovableOnlyInstance &a, |
| const MovableOnlyInstance &b) const { |
| return a.compare(b); |
| } |
| }; |
| |
| // Note: when the values in this test change, it is expected to have an impact |
| // on performance. |
| TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) { |
| if (kAsan) GTEST_SKIP() << "We do extra operations in ASan mode."; |
| |
| InstanceTracker tracker; |
| // Note: this is minimum number of values per node. |
| SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/4, |
| MovableOnlyInstanceThreeWayCompare> |
| set4; |
| // Note: this is the default number of values per node for a set of int32s |
| // (with 64-bit pointers). |
| SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61, |
| MovableOnlyInstanceThreeWayCompare> |
| set61; |
| SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100, |
| MovableOnlyInstanceThreeWayCompare> |
| set100; |
| |
| // Don't depend on flags for random values because then the expectations will |
| // fail if the flags change. |
| std::vector<int> values = |
| GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23); |
| |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set4)>(), 4); |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set61)>(), 61); |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<decltype(set100)>(), 100); |
| if (sizeof(void *) == 8) { |
| EXPECT_EQ(BtreeNodePeer::GetNumSlotsPerNode<absl::btree_set<int32_t>>(), |
| // When we have generations, there is one fewer slot. |
| BtreeGenerationsEnabled() ? 60 : 61); |
| } |
| |
| // Test key insertion/deletion in random order. |
| ExpectOperationCounts(56540, 124221, values, &tracker, &set4); |
| ExpectOperationCounts(386718, 119816, values, &tracker, &set61); |
| ExpectOperationCounts(586761, 120319, values, &tracker, &set100); |
| |
| // Test key insertion/deletion in sorted order. |
| std::sort(values.begin(), values.end()); |
| ExpectOperationCounts(24972, 85563, values, &tracker, &set4); |
| ExpectOperationCounts(20208, 87757, values, &tracker, &set61); |
| ExpectOperationCounts(20124, 96583, values, &tracker, &set100); |
| |
| // Test key insertion/deletion in reverse sorted order. |
| std::reverse(values.begin(), values.end()); |
| ExpectOperationCounts(54949, 117532, values, &tracker, &set4); |
| ExpectOperationCounts(338813, 108267, values, &tracker, &set61); |
| ExpectOperationCounts(534529, 115280, values, &tracker, &set100); |
| } |
| |
| struct NoDefaultCtor { |
| int num; |
| explicit NoDefaultCtor(int i) : num(i) {} |
| |
| friend bool operator<(const NoDefaultCtor &a, const NoDefaultCtor &b) { |
| return a.num < b.num; |
| } |
| }; |
| |
| TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) { |
| absl::btree_map<NoDefaultCtor, NoDefaultCtor> m; |
| |
| for (int i = 1; i <= 99; ++i) { |
| SCOPED_TRACE(i); |
| EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second); |
| } |
| EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second); |
| |
| auto iter99 = m.find(NoDefaultCtor(99)); |
| ASSERT_NE(iter99, m.end()); |
| EXPECT_EQ(iter99->second.num, 1); |
| |
| auto iter1 = m.find(NoDefaultCtor(1)); |
| ASSERT_NE(iter1, m.end()); |
| EXPECT_EQ(iter1->second.num, 99); |
| |
| auto iter50 = m.find(NoDefaultCtor(50)); |
| ASSERT_NE(iter50, m.end()); |
| EXPECT_EQ(iter50->second.num, 50); |
| |
| auto iter25 = m.find(NoDefaultCtor(25)); |
| ASSERT_NE(iter25, m.end()); |
| EXPECT_EQ(iter25->second.num, 75); |
| } |
| |
| TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) { |
| absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m; |
| |
| for (int i = 1; i <= 99; ++i) { |
| SCOPED_TRACE(i); |
| m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)); |
| } |
| |
| auto iter99 = m.find(NoDefaultCtor(99)); |
| ASSERT_NE(iter99, m.end()); |
| EXPECT_EQ(iter99->second.num, 1); |
| |
| auto iter1 = m.find(NoDefaultCtor(1)); |
| ASSERT_NE(iter1, m.end()); |
| EXPECT_EQ(iter1->second.num, 99); |
| |
| auto iter50 = m.find(NoDefaultCtor(50)); |
| ASSERT_NE(iter50, m.end()); |
| EXPECT_EQ(iter50->second.num, 50); |
| |
| auto iter25 = m.find(NoDefaultCtor(25)); |
| ASSERT_NE(iter25, m.end()); |
| EXPECT_EQ(iter25->second.num, 75); |
| } |
| |
| TEST(Btree, MapAt) { |
| absl::btree_map<int, int> map = {{1, 2}, {2, 4}}; |
| EXPECT_EQ(map.at(1), 2); |
| EXPECT_EQ(map.at(2), 4); |
| map.at(2) = 8; |
| const absl::btree_map<int, int> &const_map = map; |
| EXPECT_EQ(const_map.at(1), 2); |
| EXPECT_EQ(const_map.at(2), 8); |
| #ifdef ABSL_HAVE_EXCEPTIONS |
| EXPECT_THROW(map.at(3), std::out_of_range); |
| #else |
| EXPECT_DEATH_IF_SUPPORTED(map.at(3), "absl::btree_map::at"); |
| #endif |
| } |
| |
| TEST(Btree, BtreeMultisetEmplace) { |
| const int value_to_insert = 123456; |
| absl::btree_multiset<int> s; |
| auto iter = s.emplace(value_to_insert); |
| ASSERT_NE(iter, s.end()); |
| EXPECT_EQ(*iter, value_to_insert); |
| iter = s.emplace(value_to_insert); |
| ASSERT_NE(iter, s.end()); |
| EXPECT_EQ(*iter, value_to_insert); |
| auto result = s.equal_range(value_to_insert); |
| EXPECT_EQ(std::distance(result.first, result.second), 2); |
| } |
| |
| TEST(Btree, BtreeMultisetEmplaceHint) { |
| const int value_to_insert = 123456; |
| absl::btree_multiset<int> s; |
| auto iter = s.emplace(value_to_insert); |
| ASSERT_NE(iter, s.end()); |
| EXPECT_EQ(*iter, value_to_insert); |
| iter = s.emplace_hint(iter, value_to_insert); |
| // The new element should be before the previously inserted one. |
| EXPECT_EQ(iter, s.lower_bound(value_to_insert)); |
| ASSERT_NE(iter, s.end()); |
| EXPECT_EQ(*iter, value_to_insert); |
| } |
| |
| TEST(Btree, BtreeMultimapEmplace) { |
| const int key_to_insert = 123456; |
| const char value0[] = "a"; |
| absl::btree_multimap<int, std::string> m; |
| auto iter = m.emplace(key_to_insert, value0); |
| ASSERT_NE(iter, m.end()); |
| EXPECT_EQ(iter->first, key_to_insert); |
| EXPECT_EQ(iter->second, value0); |
| const char value1[] = "b"; |
| iter = m.emplace(key_to_insert, value1); |
| ASSERT_NE(iter, m.end()); |
| EXPECT_EQ(iter->first, key_to_insert); |
| EXPECT_EQ(iter->second, value1); |
| auto result = m.equal_range(key_to_insert); |
| EXPECT_EQ(std::distance(result.first, result.second), 2); |
| } |
| |
| TEST(Btree, BtreeMultimapEmplaceHint) { |
| const int key_to_insert = 123456; |
| const char value0[] = "a"; |
| absl::btree_multimap<int, std::string> m; |
| auto iter = m.emplace(key_to_insert, value0); |
| ASSERT_NE(iter, m.end()); |
| EXPECT_EQ(iter->first, key_to_insert); |
| EXPECT_EQ(iter->second, value0); |
| const char value1[] = "b"; |
| iter = m.emplace_hint(iter, key_to_insert, value1); |
| // The new element should be before the previously inserted one. |
| EXPECT_EQ(iter, m.lower_bound(key_to_insert)); |
| ASSERT_NE(iter, m.end()); |
| EXPECT_EQ(iter->first, key_to_insert); |
| EXPECT_EQ(iter->second, value1); |
| } |
| |
| TEST(Btree, ConstIteratorAccessors) { |
| absl::btree_set<int> set; |
| for (int i = 0; i < 100; ++i) { |
| set.insert(i); |
| } |
| |
| auto it = set.cbegin(); |
| auto r_it = set.crbegin(); |
| for (int i = 0; i < 100; ++i, ++it, ++r_it) { |
| ASSERT_EQ(*it, i); |
| ASSERT_EQ(*r_it, 99 - i); |
| } |
| EXPECT_EQ(it, set.cend()); |
| EXPECT_EQ(r_it, set.crend()); |
| } |
| |
| TEST(Btree, StrSplitCompatible) { |
| const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ','); |
| const absl::btree_set<std::string> expected_set = {"a", "b", "c"}; |
| |
| EXPECT_EQ(split_set, expected_set); |
| } |
| |
| TEST(Btree, KeyComp) { |
| absl::btree_set<int> s; |
| EXPECT_TRUE(s.key_comp()(1, 2)); |
| EXPECT_FALSE(s.key_comp()(2, 2)); |
| EXPECT_FALSE(s.key_comp()(2, 1)); |
| |
| absl::btree_map<int, int> m1; |
| EXPECT_TRUE(m1.key_comp()(1, 2)); |
| EXPECT_FALSE(m1.key_comp()(2, 2)); |
| EXPECT_FALSE(m1.key_comp()(2, 1)); |
| |
| // Even though we internally adapt the comparator of `m2` to be three-way and |
| // heterogeneous, the comparator we expose through key_comp() is the original |
| // unadapted comparator. |
| absl::btree_map<std::string, int> m2; |
| EXPECT_TRUE(m2.key_comp()("a", "b")); |
| EXPECT_FALSE(m2.key_comp()("b", "b")); |
| EXPECT_FALSE(m2.key_comp()("b", "a")); |
| } |
| |
| TEST(Btree, ValueComp) { |
| absl::btree_set<int> s; |
| EXPECT_TRUE(s.value_comp()(1, 2)); |
| EXPECT_FALSE(s.value_comp()(2, 2)); |
| EXPECT_FALSE(s.value_comp()(2, 1)); |
| |
| absl::btree_map<int, int> m1; |
| EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0))); |
| EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0))); |
| EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0))); |
| |
| // Even though we internally adapt the comparator of `m2` to be three-way and |
| // heterogeneous, the comparator we expose through value_comp() is based on |
| // the original unadapted comparator. |
| absl::btree_map<std::string, int> m2; |
| EXPECT_TRUE(m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0))); |
| EXPECT_FALSE(m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0))); |
| EXPECT_FALSE(m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0))); |
| } |
| |
| // Test that we have the protected members from the std::map::value_compare API. |
| // See https://en.cppreference.com/w/cpp/container/map/value_compare. |
| TEST(Btree, MapValueCompProtected) { |
| struct key_compare { |
| bool operator()(int l, int r) const { return l < r; } |
| int id; |
| }; |
| using value_compare = absl::btree_map<int, int, key_compare>::value_compare; |
| struct value_comp_child : public value_compare { |
| explicit value_comp_child(key_compare kc) : value_compare(kc) {} |
| int GetId() const { return comp.id; } |
| }; |
| value_comp_child c(key_compare{10}); |
| EXPECT_EQ(c.GetId(), 10); |
| } |
| |
| TEST(Btree, DefaultConstruction) { |
| absl::btree_set<int> s; |
| absl::btree_map<int, int> m; |
| absl::btree_multiset<int> ms; |
| absl::btree_multimap<int, int> mm; |
| |
| EXPECT_TRUE(s.empty()); |
| EXPECT_TRUE(m.empty()); |
| EXPECT_TRUE(ms.empty()); |
| EXPECT_TRUE(mm.empty()); |
| } |
| |
| TEST(Btree, SwissTableHashable) { |
| static constexpr int kValues = 10000; |
| std::vector<int> values(kValues); |
| std::iota(values.begin(), values.end(), 0); |
| std::vector<std::pair<int, int>> map_values; |
| for (int v : values) map_values.emplace_back(v, -v); |
| |
| using set = absl::btree_set<int>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
| set{}, |
| set{1}, |
| set{2}, |
| set{1, 2}, |
| set{2, 1}, |
| set(values.begin(), values.end()), |
| set(values.rbegin(), values.rend()), |
| })); |
| |
| using mset = absl::btree_multiset<int>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
| mset{}, |
| mset{1}, |
| mset{1, 1}, |
| mset{2}, |
| mset{2, 2}, |
| mset{1, 2}, |
| mset{1, 1, 2}, |
| mset{1, 2, 2}, |
| mset{1, 1, 2, 2}, |
| mset(values.begin(), values.end()), |
| mset(values.rbegin(), values.rend()), |
| })); |
| |
| using map = absl::btree_map<int, int>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
| map{}, |
| map{{1, 0}}, |
| map{{1, 1}}, |
| map{{2, 0}}, |
| map{{2, 2}}, |
| map{{1, 0}, {2, 1}}, |
| map(map_values.begin(), map_values.end()), |
| map(map_values.rbegin(), map_values.rend()), |
| })); |
| |
| using mmap = absl::btree_multimap<int, int>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
| mmap{}, |
| mmap{{1, 0}}, |
| mmap{{1, 1}}, |
| mmap{{1, 0}, {1, 1}}, |
| mmap{{1, 1}, {1, 0}}, |
| mmap{{2, 0}}, |
| mmap{{2, 2}}, |
| mmap{{1, 0}, {2, 1}}, |
| mmap(map_values.begin(), map_values.end()), |
| mmap(map_values.rbegin(), map_values.rend()), |
| })); |
| } |
| |
| TEST(Btree, ComparableSet) { |
| absl::btree_set<int> s1 = {1, 2}; |
| absl::btree_set<int> s2 = {2, 3}; |
| EXPECT_LT(s1, s2); |
| EXPECT_LE(s1, s2); |
| EXPECT_LE(s1, s1); |
| EXPECT_GT(s2, s1); |
| EXPECT_GE(s2, s1); |
| EXPECT_GE(s1, s1); |
| } |
| |
| TEST(Btree, ComparableSetsDifferentLength) { |
| absl::btree_set<int> s1 = {1, 2}; |
| absl::btree_set<int> s2 = {1, 2, 3}; |
| EXPECT_LT(s1, s2); |
| EXPECT_LE(s1, s2); |
| EXPECT_GT(s2, s1); |
| EXPECT_GE(s2, s1); |
| } |
| |
| TEST(Btree, ComparableMultiset) { |
| absl::btree_multiset<int> s1 = {1, 2}; |
| absl::btree_multiset<int> s2 = {2, 3}; |
| EXPECT_LT(s1, s2); |
| EXPECT_LE(s1, s2); |
| EXPECT_LE(s1, s1); |
| EXPECT_GT(s2, s1); |
| EXPECT_GE(s2, s1); |
| EXPECT_GE(s1, s1); |
| } |
| |
| TEST(Btree, ComparableMap) { |
| absl::btree_map<int, int> s1 = {{1, 2}}; |
| absl::btree_map<int, int> s2 = {{2, 3}}; |
| EXPECT_LT(s1, s2); |
| EXPECT_LE(s1, s2); |
| EXPECT_LE(s1, s1); |
| EXPECT_GT(s2, s1); |
| EXPECT_GE(s2, s1); |
| EXPECT_GE(s1, s1); |
| } |
| |
| TEST(Btree, ComparableMultimap) { |
| absl::btree_multimap<int, int> s1 = {{1, 2}}; |
| absl::btree_multimap<int, int> s2 = {{2, 3}}; |
| EXPECT_LT(s1, s2); |
| EXPECT_LE(s1, s2); |
| EXPECT_LE(s1, s1); |
| EXPECT_GT(s2, s1); |
| EXPECT_GE(s2, s1); |
| EXPECT_GE(s1, s1); |
| } |
| |
| TEST(Btree, ComparableSetWithCustomComparator) { |
| // As specified by |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section |
| // [container.requirements.general].12, ordering associative containers always |
| // uses default '<' operator |
| // - even if otherwise the container uses custom functor. |
| absl::btree_set<int, std::greater<int>> s1 = {1, 2}; |
| absl::btree_set<int, std::greater<int>> s2 = {2, 3}; |
| EXPECT_LT(s1, s2); |
| EXPECT_LE(s1, s2); |
| EXPECT_LE(s1, s1); |
| EXPECT_GT(s2, s1); |
| EXPECT_GE(s2, s1); |
| EXPECT_GE(s1, s1); |
| } |
| |
| TEST(Btree, EraseReturnsIterator) { |
| absl::btree_set<int> set = {1, 2, 3, 4, 5}; |
| auto result_it = set.erase(set.begin(), set.find(3)); |
| EXPECT_EQ(result_it, set.find(3)); |
| result_it = set.erase(set.find(5)); |
| EXPECT_EQ(result_it, set.end()); |
| } |
| |
| TEST(Btree, ExtractAndInsertNodeHandleSet) { |
| absl::btree_set<int> src1 = {1, 2, 3, 4, 5}; |
| auto nh = src1.extract(src1.find(3)); |
| EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5)); |
| absl::btree_set<int> other; |
| absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(3)); |
| EXPECT_EQ(res.position, other.find(3)); |
| EXPECT_TRUE(res.inserted); |
| EXPECT_TRUE(res.node.empty()); |
| |
| absl::btree_set<int> src2 = {3, 4}; |
| nh = src2.extract(src2.find(3)); |
| EXPECT_THAT(src2, ElementsAre(4)); |
| res = other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(3)); |
| EXPECT_EQ(res.position, other.find(3)); |
| EXPECT_FALSE(res.inserted); |
| ASSERT_FALSE(res.node.empty()); |
| EXPECT_EQ(res.node.value(), 3); |
| } |
| |
| template <typename Set> |
| void TestExtractWithTrackingForSet() { |
| InstanceTracker tracker; |
| { |
| Set s; |
| // Add enough elements to make sure we test internal nodes too. |
| const size_t kSize = 1000; |
| while (s.size() < kSize) { |
| s.insert(MovableOnlyInstance(s.size())); |
| } |
| for (int i = 0; i < kSize; ++i) { |
| // Extract with key |
| auto nh = s.extract(MovableOnlyInstance(i)); |
| EXPECT_EQ(s.size(), kSize - 1); |
| EXPECT_EQ(nh.value().value(), i); |
| // Insert with node |
| s.insert(std::move(nh)); |
| EXPECT_EQ(s.size(), kSize); |
| |
| // Extract with iterator |
| auto it = s.find(MovableOnlyInstance(i)); |
| nh = s.extract(it); |
| EXPECT_EQ(s.size(), kSize - 1); |
| EXPECT_EQ(nh.value().value(), i); |
| // Insert with node and hint |
| s.insert(s.begin(), std::move(nh)); |
| EXPECT_EQ(s.size(), kSize); |
| } |
| } |
| EXPECT_EQ(0, tracker.instances()); |
| } |
| |
| template <typename Map> |
| void TestExtractWithTrackingForMap() { |
| InstanceTracker tracker; |
| { |
| Map m; |
| // Add enough elements to make sure we test internal nodes too. |
| const size_t kSize = 1000; |
| while (m.size() < kSize) { |
| m.insert( |
| {CopyableMovableInstance(m.size()), MovableOnlyInstance(m.size())}); |
| } |
| for (int i = 0; i < kSize; ++i) { |
| // Extract with key |
| auto nh = m.extract(CopyableMovableInstance(i)); |
| EXPECT_EQ(m.size(), kSize - 1); |
| EXPECT_EQ(nh.key().value(), i); |
| EXPECT_EQ(nh.mapped().value(), i); |
| // Insert with node |
| m.insert(std::move(nh)); |
| EXPECT_EQ(m.size(), kSize); |
| |
| // Extract with iterator |
| auto it = m.find(CopyableMovableInstance(i)); |
| nh = m.extract(it); |
| EXPECT_EQ(m.size(), kSize - 1); |
| EXPECT_EQ(nh.key().value(), i); |
| EXPECT_EQ(nh.mapped().value(), i); |
| // Insert with node and hint |
| m.insert(m.begin(), std::move(nh)); |
| EXPECT_EQ(m.size(), kSize); |
| } |
| } |
| EXPECT_EQ(0, tracker.instances()); |
| } |
| |
| TEST(Btree, ExtractTracking) { |
| TestExtractWithTrackingForSet<absl::btree_set<MovableOnlyInstance>>(); |
| TestExtractWithTrackingForSet<absl::btree_multiset<MovableOnlyInstance>>(); |
| TestExtractWithTrackingForMap< |
| absl::btree_map<CopyableMovableInstance, MovableOnlyInstance>>(); |
| TestExtractWithTrackingForMap< |
| absl::btree_multimap<CopyableMovableInstance, MovableOnlyInstance>>(); |
| } |
| |
| TEST(Btree, ExtractAndInsertNodeHandleMultiSet) { |
| absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5}; |
| auto nh = src1.extract(src1.find(3)); |
| EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5)); |
| absl::btree_multiset<int> other; |
| auto res = other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(3)); |
| EXPECT_EQ(res, other.find(3)); |
| |
| absl::btree_multiset<int> src2 = {3, 4}; |
| nh = src2.extract(src2.find(3)); |
| EXPECT_THAT(src2, ElementsAre(4)); |
| res = other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(3, 3)); |
| EXPECT_EQ(res, ++other.find(3)); |
| } |
| |
| TEST(Btree, ExtractAndInsertNodeHandleMap) { |
| absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; |
| auto nh = src1.extract(src1.find(3)); |
| EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); |
| absl::btree_map<int, int> other; |
| absl::btree_map<int, int>::insert_return_type res = |
| other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(Pair(3, 4))); |
| EXPECT_EQ(res.position, other.find(3)); |
| EXPECT_TRUE(res.inserted); |
| EXPECT_TRUE(res.node.empty()); |
| |
| absl::btree_map<int, int> src2 = {{3, 6}}; |
| nh = src2.extract(src2.find(3)); |
| EXPECT_TRUE(src2.empty()); |
| res = other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(Pair(3, 4))); |
| EXPECT_EQ(res.position, other.find(3)); |
| EXPECT_FALSE(res.inserted); |
| ASSERT_FALSE(res.node.empty()); |
| EXPECT_EQ(res.node.key(), 3); |
| EXPECT_EQ(res.node.mapped(), 6); |
| } |
| |
| TEST(Btree, ExtractAndInsertNodeHandleMultiMap) { |
| absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; |
| auto nh = src1.extract(src1.find(3)); |
| EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); |
| absl::btree_multimap<int, int> other; |
| auto res = other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(Pair(3, 4))); |
| EXPECT_EQ(res, other.find(3)); |
| |
| absl::btree_multimap<int, int> src2 = {{3, 6}}; |
| nh = src2.extract(src2.find(3)); |
| EXPECT_TRUE(src2.empty()); |
| res = other.insert(std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6))); |
| EXPECT_EQ(res, ++other.begin()); |
| } |
| |
| TEST(Btree, ExtractMultiMapEquivalentKeys) { |
| // Note: using string keys means a three-way comparator. |
| absl::btree_multimap<std::string, int> map; |
| for (int i = 0; i < 100; ++i) { |
| for (int j = 0; j < 100; ++j) { |
| map.insert({absl::StrCat(i), j}); |
| } |
| } |
| |
| for (int i = 0; i < 100; ++i) { |
| const std::string key = absl::StrCat(i); |
| auto node_handle = map.extract(key); |
| EXPECT_EQ(node_handle.key(), key); |
| EXPECT_EQ(node_handle.mapped(), 0) << i; |
| } |
| |
| for (int i = 0; i < 100; ++i) { |
| const std::string key = absl::StrCat(i); |
| auto node_handle = map.extract(key); |
| EXPECT_EQ(node_handle.key(), key); |
| EXPECT_EQ(node_handle.mapped(), 1) << i; |
| } |
| } |
| |
| TEST(Btree, ExtractAndGetNextSet) { |
| absl::btree_set<int> src = {1, 2, 3, 4, 5}; |
| auto it = src.find(3); |
| auto extracted_and_next = src.extract_and_get_next(it); |
| EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); |
| EXPECT_EQ(extracted_and_next.node.value(), 3); |
| EXPECT_EQ(*extracted_and_next.next, 4); |
| } |
| |
| TEST(Btree, ExtractAndGetNextMultiSet) { |
| absl::btree_multiset<int> src = {1, 2, 3, 4, 5}; |
| auto it = src.find(3); |
| auto extracted_and_next = src.extract_and_get_next(it); |
| EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); |
| EXPECT_EQ(extracted_and_next.node.value(), 3); |
| EXPECT_EQ(*extracted_and_next.next, 4); |
| } |
| |
| TEST(Btree, ExtractAndGetNextMap) { |
| absl::btree_map<int, int> src = {{1, 2}, {3, 4}, {5, 6}}; |
| auto it = src.find(3); |
| auto extracted_and_next = src.extract_and_get_next(it); |
| EXPECT_THAT(src, ElementsAre(Pair(1, 2), Pair(5, 6))); |
| EXPECT_EQ(extracted_and_next.node.key(), 3); |
| EXPECT_EQ(extracted_and_next.node.mapped(), 4); |
| EXPECT_THAT(*extracted_and_next.next, Pair(5, 6)); |
| } |
| |
| TEST(Btree, ExtractAndGetNextMultiMap) { |
| absl::btree_multimap<int, int> src = {{1, 2}, {3, 4}, {5, 6}}; |
| auto it = src.find(3); |
| auto extracted_and_next = src.extract_and_get_next(it); |
| EXPECT_THAT(src, ElementsAre(Pair(1, 2), Pair(5, 6))); |
| EXPECT_EQ(extracted_and_next.node.key(), 3); |
| EXPECT_EQ(extracted_and_next.node.mapped(), 4); |
| EXPECT_THAT(*extracted_and_next.next, Pair(5, 6)); |
| } |
| |
| TEST(Btree, ExtractAndGetNextEndIter) { |
| absl::btree_set<int> src = {1, 2, 3, 4, 5}; |
| auto it = src.find(5); |
| auto extracted_and_next = src.extract_and_get_next(it); |
| EXPECT_THAT(src, ElementsAre(1, 2, 3, 4)); |
| EXPECT_EQ(extracted_and_next.node.value(), 5); |
| EXPECT_EQ(extracted_and_next.next, src.end()); |
| } |
| |
| TEST(Btree, ExtractDoesntCauseExtraMoves) { |
| #ifdef _MSC_VER |
| GTEST_SKIP() << "This test fails on MSVC."; |
| #endif |
| |
| using Set = absl::btree_set<MovableOnlyInstance>; |
| std::array<std::function<void(Set &)>, 3> extracters = { |
| [](Set &s) { auto node = s.extract(s.begin()); }, |
| [](Set &s) { auto ret = s.extract_and_get_next(s.begin()); }, |
| [](Set &s) { auto node = s.extract(MovableOnlyInstance(0)); }}; |
| |
| InstanceTracker tracker; |
| for (int i = 0; i < 3; ++i) { |
| Set s; |
| s.insert(MovableOnlyInstance(0)); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| extracters[i](s); |
| // We expect to see exactly 1 move: from the original slot into the |
| // extracted node. |
| EXPECT_EQ(tracker.copies(), 0) << i; |
| EXPECT_EQ(tracker.moves(), 1) << i; |
| EXPECT_EQ(tracker.swaps(), 0) << i; |
| } |
| } |
| |
| // For multisets, insert with hint also affects correctness because we need to |
| // insert immediately before the hint if possible. |
| struct InsertMultiHintData { |
| int key; |
| int not_key; |
| bool operator==(const InsertMultiHintData other) const { |
| return key == other.key && not_key == other.not_key; |
| } |
| }; |
| |
| struct InsertMultiHintDataKeyCompare { |
| using is_transparent = void; |
| bool operator()(const InsertMultiHintData a, |
| const InsertMultiHintData b) const { |
| return a.key < b.key; |
| } |
| bool operator()(const int a, const InsertMultiHintData b) const { |
| return a < b.key; |
| } |
| bool operator()(const InsertMultiHintData a, const int b) const { |
| return a.key < b; |
| } |
| }; |
| |
| TEST(Btree, InsertHintNodeHandle) { |
| // For unique sets, insert with hint is just a performance optimization. |
| // Test that insert works correctly when the hint is right or wrong. |
| { |
| absl::btree_set<int> src = {1, 2, 3, 4, 5}; |
| auto nh = src.extract(src.find(3)); |
| EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); |
| absl::btree_set<int> other = {0, 100}; |
| // Test a correct hint. |
| auto it = other.insert(other.lower_bound(3), std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(0, 3, 100)); |
| EXPECT_EQ(it, other.find(3)); |
| |
| nh = src.extract(src.find(5)); |
| // Test an incorrect hint. |
| it = other.insert(other.end(), std::move(nh)); |
| EXPECT_THAT(other, ElementsAre(0, 3, 5, 100)); |
| EXPECT_EQ(it, other.find(5)); |
| } |
| |
| absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src = |
| {{1, 2}, {3, 4}, {3, 5}}; |
| auto nh = src.extract(src.lower_bound(3)); |
| EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4})); |
| absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> |
| other = {{3, 1}, {3, 2}, {3, 3}}; |
| auto it = other.insert(--other.end(), std::move(nh)); |
| EXPECT_THAT( |
| other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2}, |
| InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3})); |
| EXPECT_EQ(it, --(--other.end())); |
| |
| nh = src.extract(src.find(3)); |
| EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5})); |
| it = other.insert(other.begin(), std::move(nh)); |
| EXPECT_THAT(other, |
| ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1}, |
| InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4}, |
| InsertMultiHintData{3, 3})); |
| EXPECT_EQ(it, other.begin()); |
| } |
| |
| struct IntCompareToCmp { |
| absl::weak_ordering operator()(int a, int b) const { |
| if (a < b) return absl::weak_ordering::less; |
| if (a > b) return absl::weak_ordering::greater; |
| return absl::weak_ordering::equivalent; |
| } |
| }; |
| |
| TEST(Btree, MergeIntoUniqueContainers) { |
| absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
| absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
| absl::btree_set<int> dst; |
| |
| dst.merge(src1); |
| EXPECT_TRUE(src1.empty()); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
| dst.merge(src2); |
| EXPECT_THAT(src2, ElementsAre(3, 4)); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); |
| } |
| |
| TEST(Btree, MergeIntoUniqueContainersWithCompareTo) { |
| absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
| absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
| absl::btree_set<int, IntCompareToCmp> dst; |
| |
| dst.merge(src1); |
| EXPECT_TRUE(src1.empty()); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
| dst.merge(src2); |
| EXPECT_THAT(src2, ElementsAre(3, 4)); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); |
| } |
| |
| TEST(Btree, MergeIntoMultiContainers) { |
| absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
| absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
| absl::btree_multiset<int> dst; |
| |
| dst.merge(src1); |
| EXPECT_TRUE(src1.empty()); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
| dst.merge(src2); |
| EXPECT_TRUE(src2.empty()); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); |
| } |
| |
| TEST(Btree, MergeIntoMultiContainersWithCompareTo) { |
| absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
| absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
| absl::btree_multiset<int, IntCompareToCmp> dst; |
| |
| dst.merge(src1); |
| EXPECT_TRUE(src1.empty()); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
| dst.merge(src2); |
| EXPECT_TRUE(src2.empty()); |
| EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); |
| } |
| |
| TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) { |
| absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}}; |
| absl::btree_multimap<int, int, std::greater<int>> src2 = { |
| {5, 5}, {4, 1}, {4, 4}, {3, 2}}; |
| absl::btree_multimap<int, int> dst; |
| |
| dst.merge(src1); |
| EXPECT_TRUE(src1.empty()); |
| EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3))); |
| dst.merge(src2); |
| EXPECT_TRUE(src2.empty()); |
| EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2), |
| Pair(4, 1), Pair(4, 4), Pair(5, 5))); |
| } |
| |
| TEST(Btree, MergeIntoSetMovableOnly) { |
| absl::btree_set<MovableOnlyInstance> src; |
| src.insert(MovableOnlyInstance(1)); |
| absl::btree_multiset<MovableOnlyInstance> dst1; |
| dst1.insert(MovableOnlyInstance(2)); |
| absl::btree_set<MovableOnlyInstance> dst2; |
| |
| // Test merge into multiset. |
| dst1.merge(src); |
| |
| EXPECT_TRUE(src.empty()); |
| // ElementsAre/ElementsAreArray don't work with move-only types. |
| ASSERT_THAT(dst1, SizeIs(2)); |
| EXPECT_EQ(*dst1.begin(), MovableOnlyInstance(1)); |
| EXPECT_EQ(*std::next(dst1.begin()), MovableOnlyInstance(2)); |
| |
| // Test merge into set. |
| dst2.merge(dst1); |
| |
| EXPECT_TRUE(dst1.empty()); |
| ASSERT_THAT(dst2, SizeIs(2)); |
| EXPECT_EQ(*dst2.begin(), MovableOnlyInstance(1)); |
| EXPECT_EQ(*std::next(dst2.begin()), MovableOnlyInstance(2)); |
| } |
| |
| struct KeyCompareToWeakOrdering { |
| template <typename T> |
| absl::weak_ordering operator()(const T &a, const T &b) const { |
| return a < b ? absl::weak_ordering::less |
| : a == b ? absl::weak_ordering::equivalent |
| : absl::weak_ordering::greater; |
| } |
| }; |
| |
| struct KeyCompareToStrongOrdering { |
| template <typename T> |
| absl::strong_ordering operator()(const T &a, const T &b) const { |
| return a < b ? absl::strong_ordering::less |
| : a == b ? absl::strong_ordering::equal |
| : absl::strong_ordering::greater; |
| } |
| }; |
| |
| TEST(Btree, UserProvidedKeyCompareToComparators) { |
| absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3}; |
| EXPECT_TRUE(weak_set.contains(2)); |
| EXPECT_FALSE(weak_set.contains(4)); |
| |
| absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3}; |
| EXPECT_TRUE(strong_set.contains(2)); |
| EXPECT_FALSE(strong_set.contains(4)); |
| } |
| |
| TEST(Btree, TryEmplaceBasicTest) { |
| absl::btree_map<int, std::string> m; |
| |
| // Should construct a string from the literal. |
| m.try_emplace(1, "one"); |
| EXPECT_EQ(1, m.size()); |
| |
| // Try other string constructors and const lvalue key. |
| const int key(42); |
| m.try_emplace(key, 3, 'a'); |
| m.try_emplace(2, std::string("two")); |
| |
| EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
| EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{ |
| {1, "one"}, {2, "two"}, {42, "aaa"}})); |
| } |
| |
| TEST(Btree, TryEmplaceWithHintWorks) { |
| // Use a counting comparator here to verify that hint is used. |
| int calls = 0; |
| auto cmp = [&calls](int x, int y) { |
| ++calls; |
| return x < y; |
| }; |
| using Cmp = decltype(cmp); |
| |
| // Use a map that is opted out of key_compare being adapted so we can expect |
| // strict comparison call limits. |
| absl::btree_map<int, int, CheckedCompareOptedOutCmp<Cmp>> m(cmp); |
| for (int i = 0; i < 128; ++i) { |
| m.emplace(i, i); |
| } |
| |
| // Sanity check for the comparator |
| calls = 0; |
| m.emplace(127, 127); |
| EXPECT_GE(calls, 4); |
| |
| // Try with begin hint: |
| calls = 0; |
| auto it = m.try_emplace(m.begin(), -1, -1); |
| EXPECT_EQ(129, m.size()); |
| EXPECT_EQ(it, m.begin()); |
| EXPECT_LE(calls, 2); |
| |
| // Try with end hint: |
| calls = 0; |
| std::pair<int, int> pair1024 = {1024, 1024}; |
| it = m.try_emplace(m.end(), pair1024.first, pair1024.second); |
| EXPECT_EQ(130, m.size()); |
| EXPECT_EQ(it, --m.end()); |
| EXPECT_LE(calls, 2); |
| |
| // Try value already present, bad hint; ensure no duplicate added: |
| calls = 0; |
| it = m.try_emplace(m.end(), 16, 17); |
| EXPECT_EQ(130, m.size()); |
| EXPECT_GE(calls, 4); |
| EXPECT_EQ(it, m.find(16)); |
| |
| // Try value already present, hint points directly to it: |
| calls = 0; |
| it = m.try_emplace(it, 16, 17); |
| EXPECT_EQ(130, m.size()); |
| EXPECT_LE(calls, 2); |
| EXPECT_EQ(it, m.find(16)); |
| |
| m.erase(2); |
| EXPECT_EQ(129, m.size()); |
| auto hint = m.find(3); |
| // Try emplace in the middle of two other elements. |
| calls = 0; |
| m.try_emplace(hint, 2, 2); |
| EXPECT_EQ(130, m.size()); |
| EXPECT_LE(calls, 2); |
| |
| EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
| } |
| |
| TEST(Btree, TryEmplaceWithBadHint) { |
| absl::btree_map<int, int> m = {{1, 1}, {9, 9}}; |
| |
| // Bad hint (too small), should still emplace: |
| auto it = m.try_emplace(m.begin(), 2, 2); |
| EXPECT_EQ(it, ++m.begin()); |
| EXPECT_THAT(m, ElementsAreArray( |
| std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}})); |
| |
| // Bad hint, too large this time: |
| it = m.try_emplace(++(++m.begin()), 0, 0); |
| EXPECT_EQ(it, m.begin()); |
| EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{ |
| {0, 0}, {1, 1}, {2, 2}, {9, 9}})); |
| } |
| |
| TEST(Btree, TryEmplaceMaintainsSortedOrder) { |
| absl::btree_map<int, std::string> m; |
| std::pair<int, std::string> pair5 = {5, "five"}; |
| |
| // Test both lvalue & rvalue emplace. |
| m.try_emplace(10, "ten"); |
| m.try_emplace(pair5.first, pair5.second); |
| EXPECT_EQ(2, m.size()); |
| EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
| |
| int int100{100}; |
| m.try_emplace(int100, "hundred"); |
| m.try_emplace(1, "one"); |
| EXPECT_EQ(4, m.size()); |
| EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
| } |
| |
| TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) { |
| absl::btree_map<int, int> m; |
| m.try_emplace(m.end(), 1); |
| EXPECT_EQ(0, m[1]); |
| } |
| |
| TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) { |
| absl::btree_map<int, std::string> m; |
| m.try_emplace(m.end(), 1, 10, 'a'); |
| EXPECT_EQ(std::string(10, 'a'), m[1]); |
| } |
| |
| template <typename Alloc> |
| using BtreeSetAlloc = absl::btree_set<int, std::less<int>, Alloc>; |
| |
| TEST(Btree, AllocatorPropagation) { |
| TestAllocPropagation<BtreeSetAlloc>(); |
| } |
| |
| TEST(Btree, MinimumAlignmentAllocator) { |
| absl::btree_set<int8_t, std::less<int8_t>, MinimumAlignmentAlloc<int8_t>> set; |
| |
| // Do some basic operations. Test that everything is fine when allocator uses |
| // minimal alignment. |
| for (int8_t i = 0; i < 100; ++i) set.insert(i); |
| set.erase(set.find(50), set.end()); |
| for (int8_t i = 51; i < 101; ++i) set.insert(i); |
| |
| EXPECT_EQ(set.size(), 100); |
| } |
| |
| TEST(Btree, EmptyTree) { |
| absl::btree_set<int> s; |
| EXPECT_TRUE(s.empty()); |
| EXPECT_EQ(s.size(), 0); |
| EXPECT_GT(s.max_size(), 0); |
| } |
| |
| bool IsEven(int k) { return k % 2 == 0; } |
| |
| TEST(Btree, EraseIf) { |
| // Test that erase_if works with all the container types and supports lambdas. |
| { |
| absl::btree_set<int> s = {1, 3, 5, 6, 100}; |
| EXPECT_EQ(erase_if(s, [](int k) { return k > 3; }), 3); |
| EXPECT_THAT(s, ElementsAre(1, 3)); |
| } |
| { |
| absl::btree_multiset<int> s = {1, 3, 3, 5, 6, 6, 100}; |
| EXPECT_EQ(erase_if(s, [](int k) { return k <= 3; }), 3); |
| EXPECT_THAT(s, ElementsAre(5, 6, 6, 100)); |
| } |
| { |
| absl::btree_map<int, int> m = {{1, 1}, {3, 3}, {6, 6}, {100, 100}}; |
| EXPECT_EQ( |
| erase_if(m, [](std::pair<const int, int> kv) { return kv.first > 3; }), |
| 2); |
| EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3))); |
| } |
| { |
| absl::btree_multimap<int, int> m = {{1, 1}, {3, 3}, {3, 6}, |
| {6, 6}, {6, 7}, {100, 6}}; |
| EXPECT_EQ( |
| erase_if(m, |
| [](std::pair<const int, int> kv) { return kv.second == 6; }), |
| 3); |
| EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3), Pair(6, 7))); |
| } |
| // Test that erasing all elements from a large set works and test support for |
| // function pointers. |
| { |
| absl::btree_set<int> s; |
| for (int i = 0; i < 1000; ++i) s.insert(2 * i); |
| EXPECT_EQ(erase_if(s, IsEven), 1000); |
| EXPECT_THAT(s, IsEmpty()); |
| } |
| // Test that erase_if supports other format of function pointers. |
| { |
| absl::btree_set<int> s = {1, 3, 5, 6, 100}; |
| EXPECT_EQ(erase_if(s, &IsEven), 2); |
| EXPECT_THAT(s, ElementsAre(1, 3, 5)); |
| } |
| // Test that erase_if invokes the predicate once per element. |
| { |
| absl::btree_set<int> s; |
| for (int i = 0; i < 1000; ++i) s.insert(i); |
| int pred_calls = 0; |
| EXPECT_EQ(erase_if(s, |
| [&pred_calls](int k) { |
| ++pred_calls; |
| return k % 2; |
| }), |
| 500); |
| EXPECT_THAT(s, SizeIs(500)); |
| EXPECT_EQ(pred_calls, 1000); |
| } |
| } |
| |
| TEST(Btree, InsertOrAssign) { |
| absl::btree_map<int, int> m = {{1, 1}, {3, 3}}; |
| using value_type = typename decltype(m)::value_type; |
| |
| auto ret = m.insert_or_assign(4, 4); |
| EXPECT_EQ(*ret.first, value_type(4, 4)); |
| EXPECT_TRUE(ret.second); |
| ret = m.insert_or_assign(3, 100); |
| EXPECT_EQ(*ret.first, value_type(3, 100)); |
| EXPECT_FALSE(ret.second); |
| |
| auto hint_ret = m.insert_or_assign(ret.first, 3, 200); |
| EXPECT_EQ(*hint_ret, value_type(3, 200)); |
| hint_ret = m.insert_or_assign(m.find(1), 0, 1); |
| EXPECT_EQ(*hint_ret, value_type(0, 1)); |
| // Test with bad hint. |
| hint_ret = m.insert_or_assign(m.end(), -1, 1); |
| EXPECT_EQ(*hint_ret, value_type(-1, 1)); |
| |
| EXPECT_THAT(m, ElementsAre(Pair(-1, 1), Pair(0, 1), Pair(1, 1), Pair(3, 200), |
| Pair(4, 4))); |
| } |
| |
| TEST(Btree, InsertOrAssignMovableOnly) { |
| absl::btree_map<int, MovableOnlyInstance> m; |
| using value_type = typename decltype(m)::value_type; |
| |
| auto ret = m.insert_or_assign(4, MovableOnlyInstance(4)); |
| EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(4))); |
| EXPECT_TRUE(ret.second); |
| ret = m.insert_or_assign(4, MovableOnlyInstance(100)); |
| EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(100))); |
| EXPECT_FALSE(ret.second); |
| |
| auto hint_ret = m.insert_or_assign(ret.first, 3, MovableOnlyInstance(200)); |
| EXPECT_EQ(*hint_ret, value_type(3, MovableOnlyInstance(200))); |
| |
| EXPECT_EQ(m.size(), 2); |
| } |
| |
| TEST(Btree, BitfieldArgument) { |
| union { |
| int n : 1; |
| }; |
| n = 0; |
| absl::btree_map<int, int> m; |
| m.erase(n); |
| m.count(n); |
| m.find(n); |
| m.contains(n); |
| m.equal_range(n); |
| m.insert_or_assign(n, n); |
| m.insert_or_assign(m.end(), n, n); |
| m.try_emplace(n); |
| m.try_emplace(m.end(), n); |
| m.at(n); |
| m[n]; |
| } |
| |
| TEST(Btree, SetRangeConstructorAndInsertSupportExplicitConversionComparable) { |
| const absl::string_view names[] = {"n1", "n2"}; |
| |
| absl::btree_set<std::string> name_set1{std::begin(names), std::end(names)}; |
| EXPECT_THAT(name_set1, ElementsAreArray(names)); |
| |
| absl::btree_set<std::string> name_set2; |
| name_set2.insert(std::begin(names), std::end(names)); |
| EXPECT_THAT(name_set2, ElementsAreArray(names)); |
| } |
| |
| // A type that is explicitly convertible from int and counts constructor calls. |
| struct ConstructorCounted { |
| explicit ConstructorCounted(int i) : i(i) { ++constructor_calls; } |
| bool operator==(int other) const { return i == other; } |
| |
| int i; |
| static int constructor_calls; |
| }; |
| int ConstructorCounted::constructor_calls = 0; |
| |
| struct ConstructorCountedCompare { |
| bool operator()(int a, const ConstructorCounted &b) const { return a < b.i; } |
| bool operator()(const ConstructorCounted &a, int b) const { return a.i < b; } |
| bool operator()(const ConstructorCounted &a, |
| const ConstructorCounted &b) const { |
| return a.i < b.i; |
| } |
| using is_transparent = void; |
| }; |
| |
| TEST(Btree, |
| SetRangeConstructorAndInsertExplicitConvComparableLimitConstruction) { |
| const int i[] = {0, 1, 1}; |
| ConstructorCounted::constructor_calls = 0; |
| |
| absl::btree_set<ConstructorCounted, ConstructorCountedCompare> set{ |
| std::begin(i), std::end(i)}; |
| EXPECT_THAT(set, ElementsAre(0, 1)); |
| EXPECT_EQ(ConstructorCounted::constructor_calls, 2); |
| |
| set.insert(std::begin(i), std::end(i)); |
| EXPECT_THAT(set, ElementsAre(0, 1)); |
| EXPECT_EQ(ConstructorCounted::constructor_calls, 2); |
| } |
| |
| TEST(Btree, |
| SetRangeConstructorAndInsertSupportExplicitConversionNonComparable) { |
| const int i[] = {0, 1}; |
| |
| absl::btree_set<std::vector<void *>> s1{std::begin(i), std::end(i)}; |
| EXPECT_THAT(s1, ElementsAre(IsEmpty(), ElementsAre(IsNull()))); |
| |
| absl::btree_set<std::vector<void *>> s2; |
| s2.insert(std::begin(i), std::end(i)); |
| EXPECT_THAT(s2, ElementsAre(IsEmpty(), ElementsAre(IsNull()))); |
| } |
| |
| // libstdc++ included with GCC 4.9 has a bug in the std::pair constructors that |
| // prevents explicit conversions between pair types. |
| // We only run this test for the libstdc++ from GCC 7 or newer because we can't |
| // reliably check the libstdc++ version prior to that release. |
| #if !defined(__GLIBCXX__) || \ |
| (defined(_GLIBCXX_RELEASE) && _GLIBCXX_RELEASE >= 7) |
| TEST(Btree, MapRangeConstructorAndInsertSupportExplicitConversionComparable) { |
| const std::pair<absl::string_view, int> names[] = {{"n1", 1}, {"n2", 2}}; |
| |
| absl::btree_map<std::string, int> name_map1{std::begin(names), |
| std::end(names)}; |
| EXPECT_THAT(name_map1, ElementsAre(Pair("n1", 1), Pair("n2", 2))); |
| |
| absl::btree_map<std::string, int> name_map2; |
| name_map2.insert(std::begin(names), std::end(names)); |
| EXPECT_THAT(name_map2, ElementsAre(Pair("n1", 1), Pair("n2", 2))); |
| } |
| |
| TEST(Btree, |
| MapRangeConstructorAndInsertExplicitConvComparableLimitConstruction) { |
| const std::pair<int, int> i[] = {{0, 1}, {1, 2}, {1, 3}}; |
| ConstructorCounted::constructor_calls = 0; |
| |
| absl::btree_map<ConstructorCounted, int, ConstructorCountedCompare> map{ |
| std::begin(i), std::end(i)}; |
| EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2))); |
| EXPECT_EQ(ConstructorCounted::constructor_calls, 2); |
| |
| map.insert(std::begin(i), std::end(i)); |
| EXPECT_THAT(map, ElementsAre(Pair(0, 1), Pair(1, 2))); |
| EXPECT_EQ(ConstructorCounted::constructor_calls, 2); |
| } |
| |
| TEST(Btree, |
| MapRangeConstructorAndInsertSupportExplicitConversionNonComparable) { |
| const std::pair<int, int> i[] = {{0, 1}, {1, 2}}; |
| |
| absl::btree_map<std::vector<void *>, int> m1{std::begin(i), std::end(i)}; |
| EXPECT_THAT(m1, |
| ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2))); |
| |
| absl::btree_map<std::vector<void *>, int> m2; |
| m2.insert(std::begin(i), std::end(i)); |
| EXPECT_THAT(m2, |
| ElementsAre(Pair(IsEmpty(), 1), Pair(ElementsAre(IsNull()), 2))); |
| } |
| |
| TEST(Btree, HeterogeneousTryEmplace) { |
| absl::btree_map<std::string, int> m; |
| std::string s = "key"; |
| absl::string_view sv = s; |
| m.try_emplace(sv, 1); |
| EXPECT_EQ(m[s], 1); |
| |
| m.try_emplace(m.end(), sv, 2); |
| EXPECT_EQ(m[s], 1); |
| } |
| |
| TEST(Btree, HeterogeneousOperatorMapped) { |
| absl::btree_map<std::string, int> m; |
| std::string s = "key"; |
| absl::string_view sv = s; |
| m[sv] = 1; |
| EXPECT_EQ(m[s], 1); |
| |
| m[sv] = 2; |
| EXPECT_EQ(m[s], 2); |
| } |
| |
| TEST(Btree, HeterogeneousInsertOrAssign) { |
| absl::btree_map<std::string, int> m; |
| std::string s = "key"; |
| absl::string_view sv = s; |
| m.insert_or_assign(sv, 1); |
| EXPECT_EQ(m[s], 1); |
| |
| m.insert_or_assign(m.end(), sv, 2); |
| EXPECT_EQ(m[s], 2); |
| } |
| #endif |
| |
| // This test requires std::launder for mutable key access in node handles. |
| #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 |
| TEST(Btree, NodeHandleMutableKeyAccess) { |
| { |
| absl::btree_map<std::string, std::string> map; |
| |
| map["key1"] = "mapped"; |
| |
| auto nh = map.extract(map.begin()); |
| nh.key().resize(3); |
| map.insert(std::move(nh)); |
| |
| EXPECT_THAT(map, ElementsAre(Pair("key", "mapped"))); |
| } |
| // Also for multimap. |
| { |
| absl::btree_multimap<std::string, std::string> map; |
| |
| map.emplace("key1", "mapped"); |
| |
| auto nh = map.extract(map.begin()); |
| nh.key().resize(3); |
| map.insert(std::move(nh)); |
| |
| EXPECT_THAT(map, ElementsAre(Pair("key", "mapped"))); |
| } |
| } |
| #endif |
| |
| struct MultiKey { |
| int i1; |
| int i2; |
| }; |
| |
| bool operator==(const MultiKey a, const MultiKey b) { |
| return a.i1 == b.i1 && a.i2 == b.i2; |
| } |
| |
| // A heterogeneous comparator that has different equivalence classes for |
| // different lookup types. |
| struct MultiKeyComp { |
| using is_transparent = void; |
| bool operator()(const MultiKey a, const MultiKey b) const { |
| if (a.i1 != b.i1) return a.i1 < b.i1; |
| return a.i2 < b.i2; |
| } |
| bool operator()(const int a, const MultiKey b) const { return a < b.i1; } |
| bool operator()(const MultiKey a, const int b) const { return a.i1 < b; } |
| }; |
| |
| // A heterogeneous, three-way comparator that has different equivalence classes |
| // for different lookup types. |
| struct MultiKeyThreeWayComp { |
| using is_transparent = void; |
| absl::weak_ordering operator()(const MultiKey a, const MultiKey b) const { |
| if (a.i1 < b.i1) return absl::weak_ordering::less; |
| if (a.i1 > b.i1) return absl::weak_ordering::greater; |
| if (a.i2 < b.i2) return absl::weak_ordering::less; |
| if (a.i2 > b.i2) return absl::weak_ordering::greater; |
| return absl::weak_ordering::equivalent; |
| } |
| absl::weak_ordering operator()(const int a, const MultiKey b) const { |
| if (a < b.i1) return absl::weak_ordering::less; |
| if (a > b.i1) return absl::weak_ordering::greater; |
| return absl::weak_ordering::equivalent; |
| } |
| absl::weak_ordering operator()(const MultiKey a, const int b) const { |
| if (a.i1 < b) return absl::weak_ordering::less; |
| if (a.i1 > b) return absl::weak_ordering::greater; |
| return absl::weak_ordering::equivalent; |
| } |
| }; |
| |
| template <typename Compare> |
| class BtreeMultiKeyTest : public ::testing::Test {}; |
| using MultiKeyComps = ::testing::Types<MultiKeyComp, MultiKeyThreeWayComp>; |
| TYPED_TEST_SUITE(BtreeMultiKeyTest, MultiKeyComps); |
| |
| TYPED_TEST(BtreeMultiKeyTest, EqualRange) { |
| absl::btree_set<MultiKey, TypeParam> set; |
| for (int i = 0; i < 100; ++i) { |
| for (int j = 0; j < 100; ++j) { |
| set.insert({i, j}); |
| } |
| } |
| |
| for (int i = 0; i < 100; ++i) { |
| auto equal_range = set.equal_range(i); |
| EXPECT_EQ(equal_range.first->i1, i); |
| EXPECT_EQ(equal_range.first->i2, 0) << i; |
| EXPECT_EQ(std::distance(equal_range.first, equal_range.second), 100) << i; |
| } |
| } |
| |
| TYPED_TEST(BtreeMultiKeyTest, Extract) { |
| absl::btree_set<MultiKey, TypeParam> set; |
| for (int i = 0; i < 100; ++i) { |
| for (int j = 0; j < 100; ++j) { |
| set.insert({i, j}); |
| } |
| } |
| |
| for (int i = 0; i < 100; ++i) { |
| auto node_handle = set.extract(i); |
| EXPECT_EQ(node_handle.value().i1, i); |
| EXPECT_EQ(node_handle.value().i2, 0) << i; |
| } |
| |
| for (int i = 0; i < 100; ++i) { |
| auto node_handle = set.extract(i); |
| EXPECT_EQ(node_handle.value().i1, i); |
| EXPECT_EQ(node_handle.value().i2, 1) << i; |
| } |
| } |
| |
| TYPED_TEST(BtreeMultiKeyTest, Erase) { |
| absl::btree_set<MultiKey, TypeParam> set = { |
| {1, 1}, {2, 1}, {2, 2}, {3, 1}}; |
| EXPECT_EQ(set.erase(2), 2); |
| EXPECT_THAT(set, ElementsAre(MultiKey{1, 1}, MultiKey{3, 1})); |
| } |
| |
| TYPED_TEST(BtreeMultiKeyTest, Count) { |
| const absl::btree_set<MultiKey, TypeParam> set = { |
| {1, 1}, {2, 1}, {2, 2}, {3, 1}}; |
| EXPECT_EQ(set.count(2), 2); |
| } |
| |
| TEST(Btree, SetIteratorsAreConst) { |
| using Set = absl::btree_set<int>; |
| EXPECT_TRUE( |
| (std::is_same<typename Set::iterator::reference, const int &>::value)); |
| EXPECT_TRUE( |
| (std::is_same<typename Set::iterator::pointer, const int *>::value)); |
| |
| using MSet = absl::btree_multiset<int>; |
| EXPECT_TRUE( |
| (std::is_same<typename MSet::iterator::reference, const int &>::value)); |
| EXPECT_TRUE( |
| (std::is_same<typename MSet::iterator::pointer, const int *>::value)); |
| } |
| |
| TEST(Btree, AllocConstructor) { |
| using Alloc = CountingAllocator<int>; |
| using Set = absl::btree_set<int, std::less<int>, Alloc>; |
| int64_t bytes_used = 0; |
| Alloc alloc(&bytes_used); |
| Set set(alloc); |
| |
| set.insert({1, 2, 3}); |
| |
| EXPECT_THAT(set, ElementsAre(1, 2, 3)); |
| EXPECT_GT(bytes_used, set.size() * sizeof(int)); |
| } |
| |
| TEST(Btree, AllocInitializerListConstructor) { |
| using Alloc = CountingAllocator<int>; |
| using Set = absl::btree_set<int, std::less<int>, Alloc>; |
| int64_t bytes_used = 0; |
| Alloc alloc(&bytes_used); |
| Set set({1, 2, 3}, alloc); |
| |
| EXPECT_THAT(set, ElementsAre(1, 2, 3)); |
| EXPECT_GT(bytes_used, set.size() * sizeof(int)); |
| } |
| |
| TEST(Btree, AllocRangeConstructor) { |
| using Alloc = CountingAllocator<int>; |
| using Set = absl::btree_set<int, std::less<int>, Alloc>; |
| int64_t bytes_used = 0; |
| Alloc alloc(&bytes_used); |
| std::vector<int> v = {1, 2, 3}; |
| Set set(v.begin(), v.end(), alloc); |
| |
| EXPECT_THAT(set, ElementsAre(1, 2, 3)); |
| EXPECT_GT(bytes_used, set.size() * sizeof(int)); |
| } |
| |
| TEST(Btree, AllocCopyConstructor) { |
| using Alloc = CountingAllocator<int>; |
| using Set = absl::btree_set<int, std::less<int>, Alloc>; |
| int64_t bytes_used1 = 0; |
| Alloc alloc1(&bytes_used1); |
| Set set1(alloc1); |
| |
| set1.insert({1, 2, 3}); |
| |
| int64_t bytes_used2 = 0; |
| Alloc alloc2(&bytes_used2); |
| Set set2(set1, alloc2); |
| |
| EXPECT_THAT(set1, ElementsAre(1, 2, 3)); |
| EXPECT_THAT(set2, ElementsAre(1, 2, 3)); |
| EXPECT_GT(bytes_used1, set1.size() * sizeof(int)); |
| EXPECT_EQ(bytes_used1, bytes_used2); |
| } |
| |
| TEST(Btree, AllocMoveConstructor_SameAlloc) { |
| using Alloc = CountingAllocator<int>; |
| using Set = absl::btree_set<int, std::less<int>, Alloc>; |
| int64_t bytes_used = 0; |
| Alloc alloc(&bytes_used); |
| Set set1(alloc); |
| |
| set1.insert({1, 2, 3}); |
| |
| const int64_t original_bytes_used = bytes_used; |
| EXPECT_GT(original_bytes_used, set1.size() * sizeof(int)); |
| |
| Set set2(std::move(set1), alloc); |
| |
| EXPECT_THAT(set2, ElementsAre(1, 2, 3)); |
| EXPECT_EQ(bytes_used, original_bytes_used); |
| } |
| |
| TEST(Btree, AllocMoveConstructor_DifferentAlloc) { |
| using Alloc = CountingAllocator<int>; |
| using Set = absl::btree_set<int, std::less<int>, Alloc>; |
| int64_t bytes_used1 = 0; |
| Alloc alloc1(&bytes_used1); |
| Set set1(alloc1); |
| |
| set1.insert({1, 2, 3}); |
| |
| const int64_t original_bytes_used = bytes_used1; |
| EXPECT_GT(original_bytes_used, set1.size() * sizeof(int)); |
| |
| int64_t bytes_used2 = 0; |
| Alloc alloc2(&bytes_used2); |
| Set set2(std::move(set1), alloc2); |
| |
| EXPECT_THAT(set2, ElementsAre(1, 2, 3)); |
| // We didn't free these bytes allocated by `set1` yet. |
| EXPECT_EQ(bytes_used1, original_bytes_used); |
| EXPECT_EQ(bytes_used2, original_bytes_used); |
| } |
| |
| bool IntCmp(const int a, const int b) { return a < b; } |
| |
| TEST(Btree, SupportsFunctionPtrComparator) { |
| absl::btree_set<int, decltype(IntCmp) *> set(IntCmp); |
| set.insert({1, 2, 3}); |
| EXPECT_THAT(set, ElementsAre(1, 2, 3)); |
| EXPECT_TRUE(set.key_comp()(1, 2)); |
| EXPECT_TRUE(set.value_comp()(1, 2)); |
| |
| absl::btree_map<int, int, decltype(IntCmp) *> map(&IntCmp); |
| map[1] = 1; |
| EXPECT_THAT(map, ElementsAre(Pair(1, 1))); |
| EXPECT_TRUE(map.key_comp()(1, 2)); |
| EXPECT_TRUE(map.value_comp()(std::make_pair(1, 1), std::make_pair(2, 2))); |
| } |
| |
| template <typename Compare> |
| struct TransparentPassThroughComp { |
| using is_transparent = void; |
| |
| // This will fail compilation if we attempt a comparison that Compare does not |
| // support, and the failure will happen inside the function implementation so |
| // it can't be avoided by using SFINAE on this comparator. |
| template <typename T, typename U> |
| bool operator()(const T &lhs, const U &rhs) const { |
| return Compare()(lhs, rhs); |
| } |
| }; |
| |
| TEST(Btree, |
| SupportsTransparentComparatorThatDoesNotImplementAllVisibleOperators) { |
| absl::btree_set<MultiKey, TransparentPassThroughComp<MultiKeyComp>> set; |
| set.insert(MultiKey{1, 2}); |
| EXPECT_TRUE(set.contains(1)); |
| } |
| |
| TEST(Btree, ConstructImplicitlyWithUnadaptedComparator) { |
| absl::btree_set<MultiKey, MultiKeyComp> set = {{}, MultiKeyComp{}}; |
| } |
| |
| TEST(Btree, InvalidComparatorsCaught) { |
| if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; |
| |
| { |
| struct ZeroAlwaysLessCmp { |
| bool operator()(int lhs, int rhs) const { |
| if (lhs == 0) return true; |
| return lhs < rhs; |
| } |
| }; |
| absl::btree_set<int, ZeroAlwaysLessCmp> set; |
| EXPECT_DEATH(set.insert({0, 1, 2}), "is_self_equivalent"); |
| } |
| { |
| struct ThreeWayAlwaysLessCmp { |
| absl::weak_ordering operator()(int, int) const { |
| return absl::weak_ordering::less; |
| } |
| }; |
| absl::btree_set<int, ThreeWayAlwaysLessCmp> set; |
| EXPECT_DEATH(set.insert({0, 1, 2}), "is_self_equivalent"); |
| } |
| { |
| struct SumGreaterZeroCmp { |
| bool operator()(int lhs, int rhs) const { |
| // First, do equivalence correctly - so we can test later condition. |
| if (lhs == rhs) return false; |
| return lhs + rhs > 0; |
| } |
| }; |
| absl::btree_set<int, SumGreaterZeroCmp> set; |
| // Note: '!' only needs to be escaped when it's the first character. |
| EXPECT_DEATH(set.insert({0, 1, 2}), |
| R"regex(\!lhs_comp_rhs \|\| !comp\(\)\(rhs, lhs\))regex"); |
| } |
| { |
| struct ThreeWaySumGreaterZeroCmp { |
| absl::weak_ordering operator()(int lhs, int rhs) const { |
| // First, do equivalence correctly - so we can test later condition. |
| if (lhs == rhs) return absl::weak_ordering::equivalent; |
| |
| if (lhs + rhs > 0) return absl::weak_ordering::less; |
| if (lhs + rhs == 0) return absl::weak_ordering::equivalent; |
| return absl::weak_ordering::greater; |
| } |
| }; |
| absl::btree_set<int, ThreeWaySumGreaterZeroCmp> set; |
| EXPECT_DEATH(set.insert({0, 1, 2}), "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0"); |
| } |
| // Verify that we detect cases of comparators that violate transitivity. |
| // When the comparators below check for the presence of an optional field, |
| // they violate transitivity because instances that have the optional field |
| // compare differently with each other from how they compare with instances |
| // that don't have the optional field. |
| struct ClockTime { |
| absl::optional<int> hour; |
| int minute; |
| }; |
| // `comp(a,b) && comp(b,c) && !comp(a,c)` violates transitivity. |
| ClockTime a = {absl::nullopt, 1}; |
| ClockTime b = {2, 5}; |
| ClockTime c = {6, 0}; |
| { |
| struct NonTransitiveTimeCmp { |
| bool operator()(ClockTime lhs, ClockTime rhs) const { |
| if (lhs.hour.has_value() && rhs.hour.has_value() && |
| *lhs.hour != *rhs.hour) { |
| return *lhs.hour < *rhs.hour; |
| } |
| return lhs.minute < rhs.minute; |
| } |
| }; |
| NonTransitiveTimeCmp cmp; |
| ASSERT_TRUE(cmp(a, b) && cmp(b, c) && !cmp(a, c)); |
| absl::btree_set<ClockTime, NonTransitiveTimeCmp> set; |
| EXPECT_DEATH(set.insert({a, b, c}), "is_ordered_correctly"); |
| absl::btree_multiset<ClockTime, NonTransitiveTimeCmp> mset; |
| EXPECT_DEATH(mset.insert({a, a, b, b, c, c}), "is_ordered_correctly"); |
| } |
| { |
| struct ThreeWayNonTransitiveTimeCmp { |
| absl::weak_ordering operator()(ClockTime lhs, ClockTime rhs) const { |
| if (lhs.hour.has_value() && rhs.hour.has_value() && |
| *lhs.hour != *rhs.hour) { |
| return *lhs.hour < *rhs.hour ? absl::weak_ordering::less |
| : absl::weak_ordering::greater; |
| } |
| return lhs.minute < rhs.minute ? absl::weak_ordering::less |
| : lhs.minute == rhs.minute ? absl::weak_ordering::equivalent |
| : absl::weak_ordering::greater; |
| } |
| }; |
| ThreeWayNonTransitiveTimeCmp cmp; |
| ASSERT_TRUE(cmp(a, b) < 0 && cmp(b, c) < 0 && cmp(a, c) > 0); |
| absl::btree_set<ClockTime, ThreeWayNonTransitiveTimeCmp> set; |
| EXPECT_DEATH(set.insert({a, b, c}), "is_ordered_correctly"); |
| absl::btree_multiset<ClockTime, ThreeWayNonTransitiveTimeCmp> mset; |
| EXPECT_DEATH(mset.insert({a, a, b, b, c, c}), "is_ordered_correctly"); |
| } |
| } |
| |
| TEST(Btree, MutatedKeysCaught) { |
| if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; |
| |
| struct IntPtrCmp { |
| bool operator()(int *lhs, int *rhs) const { return *lhs < *rhs; } |
| }; |
| { |
| absl::btree_set<int *, IntPtrCmp> set; |
| int arr[] = {0, 1, 2}; |
| set.insert({&arr[0], &arr[1], &arr[2]}); |
| arr[0] = 100; |
| EXPECT_DEATH(set.insert(&arr[0]), "is_ordered_correctly"); |
| } |
| { |
| absl::btree_multiset<int *, IntPtrCmp> set; |
| int arr[] = {0, 1, 2}; |
| set.insert({&arr[0], &arr[0], &arr[1], &arr[1], &arr[2], &arr[2]}); |
| arr[0] = 100; |
| EXPECT_DEATH(set.insert(&arr[0]), "is_ordered_correctly"); |
| } |
| } |
| |
| #ifndef _MSC_VER |
| // This test crashes on MSVC. |
| TEST(Btree, InvalidIteratorUse) { |
| if (!BtreeGenerationsEnabled()) |
| GTEST_SKIP() << "Generation validation for iterators is disabled."; |
| |
| // Invalid memory use can trigger use-after-free in ASan, HWASAN or |
| // invalidated iterator assertions. |
| constexpr const char *kInvalidMemoryDeathMessage = |
| "use-after-free|invalidated iterator"; |
| |
| { |
| absl::btree_set<int> set; |
| for (int i = 0; i < 10; ++i) set.insert(i); |
| auto it = set.begin(); |
| set.erase(it++); |
| EXPECT_DEATH(set.erase(it++), kInvalidMemoryDeathMessage); |
| } |
| { |
| absl::btree_set<int> set; |
| for (int i = 0; i < 10; ++i) set.insert(i); |
| auto it = set.insert(20).first; |
| set.insert(30); |
| EXPECT_DEATH(*it, kInvalidMemoryDeathMessage); |
| } |
| { |
| absl::btree_set<int> set; |
| for (int i = 0; i < 10000; ++i) set.insert(i); |
| auto it = set.find(5000); |
| ASSERT_NE(it, set.end()); |
| set.erase(1); |
| EXPECT_DEATH(*it, kInvalidMemoryDeathMessage); |
| } |
| { |
| absl::btree_set<int> set; |
| for (int i = 0; i < 10; ++i) set.insert(i); |
| auto it = set.insert(20).first; |
| set.insert(30); |
| EXPECT_DEATH(void(it == set.begin()), kInvalidMemoryDeathMessage); |
| EXPECT_DEATH(void(set.begin() == it), kInvalidMemoryDeathMessage); |
| } |
| } |
| #endif |
| |
| class OnlyConstructibleByAllocator { |
| explicit OnlyConstructibleByAllocator(int i) : i_(i) {} |
| |
| public: |
| OnlyConstructibleByAllocator(const OnlyConstructibleByAllocator &other) |
| : i_(other.i_) {} |
| OnlyConstructibleByAllocator &operator=( |
| const OnlyConstructibleByAllocator &other) { |
| i_ = other.i_; |
| return *this; |
| } |
| int Get() const { return i_; } |
| bool operator==(int i) const { return i_ == i; } |
| |
| private: |
| template <typename T> |
| friend class OnlyConstructibleAllocator; |
| |
| int i_; |
| }; |
| |
| template <typename T = OnlyConstructibleByAllocator> |
| class OnlyConstructibleAllocator : public std::allocator<T> { |
| public: |
| OnlyConstructibleAllocator() = default; |
| template <class U> |
| explicit OnlyConstructibleAllocator(const OnlyConstructibleAllocator<U> &) {} |
| |
| void construct(OnlyConstructibleByAllocator *p, int i) { |
| new (p) OnlyConstructibleByAllocator(i); |
| } |
| template <typename Pair> |
| void construct(Pair *p, const int i) { |
| OnlyConstructibleByAllocator only(i); |
| new (p) Pair(std::move(only), i); |
| } |
| |
| template <class U> |
| struct rebind { |
| using other = OnlyConstructibleAllocator<U>; |
| }; |
| }; |
| |
| struct OnlyConstructibleByAllocatorComp { |
| using is_transparent = void; |
| bool operator()(OnlyConstructibleByAllocator a, |
| OnlyConstructibleByAllocator b) const { |
| return a.Get() < b.Get(); |
| } |
| bool operator()(int a, OnlyConstructibleByAllocator b) const { |
| return a < b.Get(); |
| } |
| bool operator()(OnlyConstructibleByAllocator a, int b) const { |
| return a.Get() < b; |
| } |
| }; |
| |
| TEST(Btree, OnlyConstructibleByAllocatorType) { |
| const std::array<int, 2> arr = {3, 4}; |
| { |
| absl::btree_set<OnlyConstructibleByAllocator, |
| OnlyConstructibleByAllocatorComp, |
| OnlyConstructibleAllocator<>> |
| set; |
| set.emplace(1); |
| set.emplace_hint(set.end(), 2); |
| set.insert(arr.begin(), arr.end()); |
| EXPECT_THAT(set, ElementsAre(1, 2, 3, 4)); |
| } |
| { |
| absl::btree_multiset<OnlyConstructibleByAllocator, |
| OnlyConstructibleByAllocatorComp, |
| OnlyConstructibleAllocator<>> |
| set; |
| set.emplace(1); |
| set.emplace_hint(set.end(), 2); |
| // TODO(ezb): fix insert_multi to allow this to compile. |
| // set.insert(arr.begin(), arr.end()); |
| EXPECT_THAT(set, ElementsAre(1, 2)); |
| } |
| { |
| absl::btree_map<OnlyConstructibleByAllocator, int, |
| OnlyConstructibleByAllocatorComp, |
| OnlyConstructibleAllocator<>> |
| map; |
| map.emplace(1); |
| map.emplace_hint(map.end(), 2); |
| map.insert(arr.begin(), arr.end()); |
| EXPECT_THAT(map, |
| ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(4, 4))); |
| } |
| { |
| absl::btree_multimap<OnlyConstructibleByAllocator, int, |
| OnlyConstructibleByAllocatorComp, |
| OnlyConstructibleAllocator<>> |
| map; |
| map.emplace(1); |
| map.emplace_hint(map.end(), 2); |
| // TODO(ezb): fix insert_multi to allow this to compile. |
| // map.insert(arr.begin(), arr.end()); |
| EXPECT_THAT(map, ElementsAre(Pair(1, 1), Pair(2, 2))); |
| } |
| } |
| |
| class NotAssignable { |
| public: |
| explicit NotAssignable(int i) : i_(i) {} |
| NotAssignable(const NotAssignable &other) : i_(other.i_) {} |
| NotAssignable &operator=(NotAssignable &&other) = delete; |
| int Get() const { return i_; } |
| bool operator==(int i) const { return i_ == i; } |
| friend bool operator<(NotAssignable a, NotAssignable b) { |
| return a.i_ < b.i_; |
| } |
| |
| private: |
| int i_; |
| }; |
| |
| TEST(Btree, NotAssignableType) { |
| { |
| absl::btree_set<NotAssignable> set; |
| set.emplace(1); |
| set.emplace_hint(set.end(), 2); |
| set.insert(NotAssignable(3)); |
| set.insert(set.end(), NotAssignable(4)); |
| EXPECT_THAT(set, ElementsAre(1, 2, 3, 4)); |
| set.erase(set.begin()); |
| EXPECT_THAT(set, ElementsAre(2, 3, 4)); |
| } |
| { |
| absl::btree_multiset<NotAssignable> set; |
| set.emplace(1); |
| set.emplace_hint(set.end(), 2); |
| set.insert(NotAssignable(2)); |
| set.insert(set.end(), NotAssignable(3)); |
| EXPECT_THAT(set, ElementsAre(1, 2, 2, 3)); |
| set.erase(set.begin()); |
| EXPECT_THAT(set, ElementsAre(2, 2, 3)); |
| } |
| { |
| absl::btree_map<NotAssignable, int> map; |
| map.emplace(NotAssignable(1), 1); |
| map.emplace_hint(map.end(), NotAssignable(2), 2); |
| map.insert({NotAssignable(3), 3}); |
| map.insert(map.end(), {NotAssignable(4), 4}); |
| EXPECT_THAT(map, |
| ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(4, 4))); |
| map.erase(map.begin()); |
| EXPECT_THAT(map, ElementsAre(Pair(2, 2), Pair(3, 3), Pair(4, 4))); |
| } |
| { |
| absl::btree_multimap<NotAssignable, int> map; |
| map.emplace(NotAssignable(1), 1); |
| map.emplace_hint(map.end(), NotAssignable(2), 2); |
| map.insert({NotAssignable(2), 3}); |
| map.insert(map.end(), {NotAssignable(3), 3}); |
| EXPECT_THAT(map, |
| ElementsAre(Pair(1, 1), Pair(2, 2), Pair(2, 3), Pair(3, 3))); |
| map.erase(map.begin()); |
| EXPECT_THAT(map, ElementsAre(Pair(2, 2), Pair(2, 3), Pair(3, 3))); |
| } |
| } |
| |
| struct ArenaLike { |
| void* recycled = nullptr; |
| size_t recycled_size = 0; |
| }; |
| |
| // A very simple implementation of arena allocation. |
| template <typename T> |
| class ArenaLikeAllocator : public std::allocator<T> { |
| public: |
| // Standard library containers require the ability to allocate objects of |
| // different types which they can do so via rebind.other. |
| template <typename U> |
| struct rebind { |
| using other = ArenaLikeAllocator<U>; |
| }; |
| |
| explicit ArenaLikeAllocator(ArenaLike* arena) noexcept : arena_(arena) {} |
| |
| ~ArenaLikeAllocator() { |
| if (arena_->recycled != nullptr) { |
| delete [] static_cast<T*>(arena_->recycled); |
| arena_->recycled = nullptr; |
| } |
| } |
| |
| template<typename U> |
| explicit ArenaLikeAllocator(const ArenaLikeAllocator<U>& other) noexcept |
| : arena_(other.arena_) {} |
| |
| T* allocate(size_t num_objects, const void* = nullptr) { |
| size_t size = num_objects * sizeof(T); |
| if (arena_->recycled != nullptr && arena_->recycled_size == size) { |
| T* result = static_cast<T*>(arena_->recycled); |
| arena_->recycled = nullptr; |
| return result; |
| } |
| return new T[num_objects]; |
| } |
| |
| void deallocate(T* p, size_t num_objects) { |
| size_t size = num_objects * sizeof(T); |
| |
| // Simulate writing to the freed memory as an actual arena allocator might |
| // do. This triggers an error report if the memory is poisoned. |
| memset(p, 0xde, size); |
| |
| if (arena_->recycled == nullptr) { |
| arena_->recycled = p; |
| arena_->recycled_size = size; |
| } else { |
| delete [] p; |
| } |
| } |
| |
| ArenaLike* arena_; |
| }; |
| |
| // This test verifies that an arena allocator that reuses memory will not be |
| // asked to free poisoned BTree memory. |
| TEST(Btree, ReusePoisonMemory) { |
| using Alloc = ArenaLikeAllocator<int64_t>; |
| using Set = absl::btree_set<int64_t, std::less<int64_t>, Alloc>; |
| ArenaLike arena; |
| Alloc alloc(&arena); |
| Set set(alloc); |
| |
| set.insert(0); |
| set.erase(0); |
| set.insert(0); |
| } |
| |
| TEST(Btree, IteratorSubtraction) { |
| absl::BitGen bitgen; |
| std::vector<int> vec; |
| // Randomize the set's insertion order so the nodes aren't all full. |
| for (int i = 0; i < 1000000; ++i) vec.push_back(i); |
| absl::c_shuffle(vec, bitgen); |
| |
| absl::btree_set<int> set; |
| for (int i : vec) set.insert(i); |
| |
| for (int i = 0; i < 1000; ++i) { |
| size_t begin = absl::Uniform(bitgen, 0u, set.size()); |
| size_t end = absl::Uniform(bitgen, begin, set.size()); |
| ASSERT_EQ(end - begin, set.find(end) - set.find(begin)) |
| << begin << " " << end; |
| } |
| } |
| |
| TEST(Btree, DereferencingEndIterator) { |
| if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; |
| |
| absl::btree_set<int> set; |
| for (int i = 0; i < 1000; ++i) set.insert(i); |
| EXPECT_DEATH(*set.end(), R"regex(Dereferencing end\(\) iterator)regex"); |
| } |
| |
| TEST(Btree, InvalidIteratorComparison) { |
| if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled."; |
| |
| absl::btree_set<int> set1, set2; |
| for (int i = 0; i < 1000; ++i) { |
| set1.insert(i); |
| set2.insert(i); |
| } |
| |
| constexpr const char *kValueInitDeathMessage = |
| "Comparing default-constructed iterator with .*non-default-constructed " |
| "iterator"; |
| typename absl::btree_set<int>::iterator iter1, iter2; |
| EXPECT_EQ(iter1, iter2); |
| EXPECT_DEATH(void(set1.begin() == iter1), kValueInitDeathMessage); |
| EXPECT_DEATH(void(iter1 == set1.begin()), kValueInitDeathMessage); |
| |
| constexpr const char *kDifferentContainerDeathMessage = |
| "Comparing iterators from different containers"; |
| iter1 = set1.begin(); |
| iter2 = set2.begin(); |
| EXPECT_DEATH(void(iter1 == iter2), kDifferentContainerDeathMessage); |
| EXPECT_DEATH(void(iter2 == iter1), kDifferentContainerDeathMessage); |
| } |
| |
| TEST(Btree, InvalidPointerUse) { |
| if (!kAsan) |
| GTEST_SKIP() << "We only detect invalid pointer use in ASan mode."; |
| |
| absl::btree_set<int> set; |
| set.insert(0); |
| const int *ptr = &*set.begin(); |
| set.insert(1); |
| EXPECT_DEATH(std::cout << *ptr, "use-after-free"); |
| size_t slots_per_node = BtreeNodePeer::GetNumSlotsPerNode<decltype(set)>(); |
| for (int i = 2; i < slots_per_node - 1; ++i) set.insert(i); |
| ptr = &*set.begin(); |
| set.insert(static_cast<int>(slots_per_node)); |
| EXPECT_DEATH(std::cout << *ptr, "use-after-free"); |
| } |
| |
| template<typename Set> |
| void TestBasicFunctionality(Set set) { |
| using value_type = typename Set::value_type; |
| for (int i = 0; i < 100; ++i) { set.insert(value_type(i)); } |
| for (int i = 50; i < 100; ++i) { set.erase(value_type(i)); } |
| auto it = set.begin(); |
| for (int i = 0; i < 50; ++i, ++it) { |
| ASSERT_EQ(set.find(value_type(i)), it) << i; |
| } |
| } |
| |
| template<size_t align> |
| struct alignas(align) OveralignedKey { |
| explicit OveralignedKey(int i) : key(i) {} |
| bool operator<(const OveralignedKey &other) const { return key < other.key; } |
| int key = 0; |
| }; |
| |
| TEST(Btree, OveralignedKey) { |
| // Test basic functionality with both even and odd numbers of slots per node. |
| // The goal here is to detect cases where alignment may be incorrect. |
| TestBasicFunctionality( |
| SizedBtreeSet<OveralignedKey<16>, /*TargetValuesPerNode=*/8>()); |
| TestBasicFunctionality( |
| SizedBtreeSet<OveralignedKey<16>, /*TargetValuesPerNode=*/9>()); |
| } |
| |
| TEST(Btree, FieldTypeEqualsSlotType) { |
| // This breaks if we try to do layout_type::Pointer<slot_type> because |
| // slot_type is the same as field_type. |
| using set_type = absl::btree_set<uint8_t>; |
| static_assert(BtreeNodePeer::FieldTypeEqualsSlotType<set_type>(), ""); |
| TestBasicFunctionality(set_type()); |
| } |
| |
| } // namespace |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |