| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // Define the default Hash and Eq functions for SwissTable containers. |
| // |
| // std::hash<T> and std::equal_to<T> are not appropriate hash and equal |
| // functions for SwissTable containers. There are two reasons for this. |
| // |
| // SwissTable containers are power of 2 sized containers: |
| // |
| // This means they use the lower bits of the hash value to find the slot for |
| // each entry. The typical hash function for integral types is the identity. |
| // This is a very weak hash function for SwissTable and any power of 2 sized |
| // hashtable implementation which will lead to excessive collisions. For |
| // SwissTable we use murmur3 style mixing to reduce collisions to a minimum. |
| // |
| // SwissTable containers support heterogeneous lookup: |
| // |
| // In order to make heterogeneous lookup work, hash and equal functions must be |
| // polymorphic. At the same time they have to satisfy the same requirements the |
| // C++ standard imposes on hash functions and equality operators. That is: |
| // |
| // if hash_default_eq<T>(a, b) returns true for any a and b of type T, then |
| // hash_default_hash<T>(a) must equal hash_default_hash<T>(b) |
| // |
| // For SwissTable containers this requirement is relaxed to allow a and b of |
| // any and possibly different types. Note that like the standard the hash and |
| // equal functions are still bound to T. This is important because some type U |
| // can be hashed by/tested for equality differently depending on T. A notable |
| // example is `const char*`. `const char*` is treated as a c-style string when |
| // the hash function is hash<std::string> but as a pointer when the hash |
| // function is hash<void*>. |
| // |
| #ifndef ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ |
| #define ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ |
| |
| #include <cstddef> |
| #include <functional> |
| #include <memory> |
| #include <string> |
| #include <type_traits> |
| |
| #include "absl/base/config.h" |
| #include "absl/container/internal/common.h" |
| #include "absl/hash/hash.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/strings/cord.h" |
| #include "absl/strings/string_view.h" |
| |
| #ifdef ABSL_HAVE_STD_STRING_VIEW |
| #include <string_view> |
| #endif |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| |
| // The hash of an object of type T is computed by using absl::Hash. |
| template <class T, class E = void> |
| struct HashEq { |
| using Hash = absl::Hash<T>; |
| using Eq = std::equal_to<T>; |
| }; |
| |
| struct StringHash { |
| using is_transparent = void; |
| |
| size_t operator()(absl::string_view v) const { |
| return absl::Hash<absl::string_view>{}(v); |
| } |
| size_t operator()(const absl::Cord& v) const { |
| return absl::Hash<absl::Cord>{}(v); |
| } |
| }; |
| |
| struct StringEq { |
| using is_transparent = void; |
| bool operator()(absl::string_view lhs, absl::string_view rhs) const { |
| return lhs == rhs; |
| } |
| bool operator()(const absl::Cord& lhs, const absl::Cord& rhs) const { |
| return lhs == rhs; |
| } |
| bool operator()(const absl::Cord& lhs, absl::string_view rhs) const { |
| return lhs == rhs; |
| } |
| bool operator()(absl::string_view lhs, const absl::Cord& rhs) const { |
| return lhs == rhs; |
| } |
| }; |
| |
| // Supports heterogeneous lookup for string-like elements. |
| struct StringHashEq { |
| using Hash = StringHash; |
| using Eq = StringEq; |
| }; |
| |
| template <> |
| struct HashEq<std::string> : StringHashEq {}; |
| template <> |
| struct HashEq<absl::string_view> : StringHashEq {}; |
| template <> |
| struct HashEq<absl::Cord> : StringHashEq {}; |
| |
| #ifdef ABSL_HAVE_STD_STRING_VIEW |
| |
| template <typename TChar> |
| struct BasicStringHash { |
| using is_transparent = void; |
| |
| size_t operator()(std::basic_string_view<TChar> v) const { |
| return absl::Hash<std::basic_string_view<TChar>>{}(v); |
| } |
| }; |
| |
| template <typename TChar> |
| struct BasicStringEq { |
| using is_transparent = void; |
| bool operator()(std::basic_string_view<TChar> lhs, |
| std::basic_string_view<TChar> rhs) const { |
| return lhs == rhs; |
| } |
| }; |
| |
| // Supports heterogeneous lookup for w/u16/u32 string + string_view + char*. |
| template <typename TChar> |
| struct BasicStringHashEq { |
| using Hash = BasicStringHash<TChar>; |
| using Eq = BasicStringEq<TChar>; |
| }; |
| |
| template <> |
| struct HashEq<std::wstring> : BasicStringHashEq<wchar_t> {}; |
| template <> |
| struct HashEq<std::wstring_view> : BasicStringHashEq<wchar_t> {}; |
| template <> |
| struct HashEq<std::u16string> : BasicStringHashEq<char16_t> {}; |
| template <> |
| struct HashEq<std::u16string_view> : BasicStringHashEq<char16_t> {}; |
| template <> |
| struct HashEq<std::u32string> : BasicStringHashEq<char32_t> {}; |
| template <> |
| struct HashEq<std::u32string_view> : BasicStringHashEq<char32_t> {}; |
| |
| #endif // ABSL_HAVE_STD_STRING_VIEW |
| |
| // Supports heterogeneous lookup for pointers and smart pointers. |
| template <class T> |
| struct HashEq<T*> { |
| struct Hash { |
| using is_transparent = void; |
| template <class U> |
| size_t operator()(const U& ptr) const { |
| return absl::Hash<const T*>{}(HashEq::ToPtr(ptr)); |
| } |
| }; |
| struct Eq { |
| using is_transparent = void; |
| template <class A, class B> |
| bool operator()(const A& a, const B& b) const { |
| return HashEq::ToPtr(a) == HashEq::ToPtr(b); |
| } |
| }; |
| |
| private: |
| static const T* ToPtr(const T* ptr) { return ptr; } |
| template <class U, class D> |
| static const T* ToPtr(const std::unique_ptr<U, D>& ptr) { |
| return ptr.get(); |
| } |
| template <class U> |
| static const T* ToPtr(const std::shared_ptr<U>& ptr) { |
| return ptr.get(); |
| } |
| }; |
| |
| template <class T, class D> |
| struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {}; |
| template <class T> |
| struct HashEq<std::shared_ptr<T>> : HashEq<T*> {}; |
| |
| template <typename T, typename E = void> |
| struct HasAbslContainerHash : std::false_type {}; |
| |
| template <typename T> |
| struct HasAbslContainerHash<T, absl::void_t<typename T::absl_container_hash>> |
| : std::true_type {}; |
| |
| template <typename T, typename E = void> |
| struct HasAbslContainerEq : std::false_type {}; |
| |
| template <typename T> |
| struct HasAbslContainerEq<T, absl::void_t<typename T::absl_container_eq>> |
| : std::true_type {}; |
| |
| template <typename T, typename E = void> |
| struct AbslContainerEq { |
| using type = std::equal_to<>; |
| }; |
| |
| template <typename T> |
| struct AbslContainerEq< |
| T, typename std::enable_if_t<HasAbslContainerEq<T>::value>> { |
| using type = typename T::absl_container_eq; |
| }; |
| |
| template <typename T, typename E = void> |
| struct AbslContainerHash { |
| using type = void; |
| }; |
| |
| template <typename T> |
| struct AbslContainerHash< |
| T, typename std::enable_if_t<HasAbslContainerHash<T>::value>> { |
| using type = typename T::absl_container_hash; |
| }; |
| |
| // HashEq specialization for user types that provide `absl_container_hash` and |
| // (optionally) `absl_container_eq`. This specialization allows user types to |
| // provide heterogeneous lookup without requiring to explicitly specify Hash/Eq |
| // type arguments in unordered Abseil containers. |
| // |
| // Both `absl_container_hash` and `absl_container_eq` should be transparent |
| // (have inner is_transparent type). While there is no technical reason to |
| // restrict to transparent-only types, there is also no feasible use case when |
| // it shouldn't be transparent - it is easier to relax the requirement later if |
| // such a case arises rather than restricting it. |
| // |
| // If type provides only `absl_container_hash` then `eq` part will be |
| // `std::equal_to<void>`. |
| // |
| // User types are not allowed to provide only a `Eq` part as there is no |
| // feasible use case for this behavior - if Hash should be a default one then Eq |
| // should be an equivalent to the `std::equal_to<T>`. |
| template <typename T> |
| struct HashEq<T, typename std::enable_if_t<HasAbslContainerHash<T>::value>> { |
| using Hash = typename AbslContainerHash<T>::type; |
| using Eq = typename AbslContainerEq<T>::type; |
| static_assert(IsTransparent<Hash>::value, |
| "absl_container_hash must be transparent. To achieve it add a " |
| "`using is_transparent = void;` clause to this type."); |
| static_assert(IsTransparent<Eq>::value, |
| "absl_container_eq must be transparent. To achieve it add a " |
| "`using is_transparent = void;` clause to this type."); |
| }; |
| |
| // This header's visibility is restricted. If you need to access the default |
| // hasher please use the container's ::hasher alias instead. |
| // |
| // Example: typename Hash = typename absl::flat_hash_map<K, V>::hasher |
| template <class T> |
| using hash_default_hash = typename container_internal::HashEq<T>::Hash; |
| |
| // This header's visibility is restricted. If you need to access the default |
| // key equal please use the container's ::key_equal alias instead. |
| // |
| // Example: typename Eq = typename absl::flat_hash_map<K, V, Hash>::key_equal |
| template <class T> |
| using hash_default_eq = typename container_internal::HashEq<T>::Eq; |
| |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_ |