| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_ |
| #define ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_ |
| |
| #include <cassert> |
| #include <cmath> |
| #include <istream> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "absl/base/config.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/random/internal/fast_uniform_bits.h" |
| #include "absl/random/internal/generate_real.h" |
| #include "absl/random/internal/iostream_state_saver.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // absl::exponential_distribution: |
| // Generates a number conforming to an exponential distribution and is |
| // equivalent to the standard [rand.dist.pois.exp] distribution. |
| template <typename RealType = double> |
| class exponential_distribution { |
| public: |
| using result_type = RealType; |
| |
| class param_type { |
| public: |
| using distribution_type = exponential_distribution; |
| |
| explicit param_type(result_type lambda = 1) : lambda_(lambda) { |
| assert(lambda > 0); |
| neg_inv_lambda_ = -result_type(1) / lambda_; |
| } |
| |
| result_type lambda() const { return lambda_; } |
| |
| friend bool operator==(const param_type& a, const param_type& b) { |
| return a.lambda_ == b.lambda_; |
| } |
| |
| friend bool operator!=(const param_type& a, const param_type& b) { |
| return !(a == b); |
| } |
| |
| private: |
| friend class exponential_distribution; |
| |
| result_type lambda_; |
| result_type neg_inv_lambda_; |
| |
| static_assert( |
| std::is_floating_point<RealType>::value, |
| "Class-template absl::exponential_distribution<> must be parameterized " |
| "using a floating-point type."); |
| }; |
| |
| exponential_distribution() : exponential_distribution(1) {} |
| |
| explicit exponential_distribution(result_type lambda) : param_(lambda) {} |
| |
| explicit exponential_distribution(const param_type& p) : param_(p) {} |
| |
| void reset() {} |
| |
| // Generating functions |
| template <typename URBG> |
| result_type operator()(URBG& g) { // NOLINT(runtime/references) |
| return (*this)(g, param_); |
| } |
| |
| template <typename URBG> |
| result_type operator()(URBG& g, // NOLINT(runtime/references) |
| const param_type& p); |
| |
| param_type param() const { return param_; } |
| void param(const param_type& p) { param_ = p; } |
| |
| result_type(min)() const { return 0; } |
| result_type(max)() const { |
| return std::numeric_limits<result_type>::infinity(); |
| } |
| |
| result_type lambda() const { return param_.lambda(); } |
| |
| friend bool operator==(const exponential_distribution& a, |
| const exponential_distribution& b) { |
| return a.param_ == b.param_; |
| } |
| friend bool operator!=(const exponential_distribution& a, |
| const exponential_distribution& b) { |
| return a.param_ != b.param_; |
| } |
| |
| private: |
| param_type param_; |
| random_internal::FastUniformBits<uint64_t> fast_u64_; |
| }; |
| |
| // -------------------------------------------------------------------------- |
| // Implementation details follow |
| // -------------------------------------------------------------------------- |
| |
| template <typename RealType> |
| template <typename URBG> |
| typename exponential_distribution<RealType>::result_type |
| exponential_distribution<RealType>::operator()( |
| URBG& g, // NOLINT(runtime/references) |
| const param_type& p) { |
| using random_internal::GenerateNegativeTag; |
| using random_internal::GenerateRealFromBits; |
| using real_type = |
| absl::conditional_t<std::is_same<RealType, float>::value, float, double>; |
| |
| const result_type u = GenerateRealFromBits<real_type, GenerateNegativeTag, |
| false>(fast_u64_(g)); // U(-1, 0) |
| |
| // log1p(-x) is mathematically equivalent to log(1 - x) but has more |
| // accuracy for x near zero. |
| return p.neg_inv_lambda_ * std::log1p(u); |
| } |
| |
| template <typename CharT, typename Traits, typename RealType> |
| std::basic_ostream<CharT, Traits>& operator<<( |
| std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| const exponential_distribution<RealType>& x) { |
| auto saver = random_internal::make_ostream_state_saver(os); |
| os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); |
| os << x.lambda(); |
| return os; |
| } |
| |
| template <typename CharT, typename Traits, typename RealType> |
| std::basic_istream<CharT, Traits>& operator>>( |
| std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| exponential_distribution<RealType>& x) { // NOLINT(runtime/references) |
| using result_type = typename exponential_distribution<RealType>::result_type; |
| using param_type = typename exponential_distribution<RealType>::param_type; |
| result_type lambda; |
| |
| auto saver = random_internal::make_istream_state_saver(is); |
| lambda = random_internal::read_floating_point<result_type>(is); |
| if (!is.fail()) { |
| x.param(param_type(lambda)); |
| } |
| return is; |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_EXPONENTIAL_DISTRIBUTION_H_ |