| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_ |
| #define ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_ |
| |
| #include <cstdint> |
| #include <istream> |
| #include <limits> |
| |
| #include "absl/base/optimization.h" |
| #include "absl/random/internal/fast_uniform_bits.h" |
| #include "absl/random/internal/iostream_state_saver.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // absl::bernoulli_distribution is a drop in replacement for |
| // std::bernoulli_distribution. It guarantees that (given a perfect |
| // UniformRandomBitGenerator) the acceptance probability is *exactly* equal to |
| // the given double. |
| // |
| // The implementation assumes that double is IEEE754 |
| class bernoulli_distribution { |
| public: |
| using result_type = bool; |
| |
| class param_type { |
| public: |
| using distribution_type = bernoulli_distribution; |
| |
| explicit param_type(double p = 0.5) : prob_(p) { |
| assert(p >= 0.0 && p <= 1.0); |
| } |
| |
| double p() const { return prob_; } |
| |
| friend bool operator==(const param_type& p1, const param_type& p2) { |
| return p1.p() == p2.p(); |
| } |
| friend bool operator!=(const param_type& p1, const param_type& p2) { |
| return p1.p() != p2.p(); |
| } |
| |
| private: |
| double prob_; |
| }; |
| |
| bernoulli_distribution() : bernoulli_distribution(0.5) {} |
| |
| explicit bernoulli_distribution(double p) : param_(p) {} |
| |
| explicit bernoulli_distribution(param_type p) : param_(p) {} |
| |
| // no-op |
| void reset() {} |
| |
| template <typename URBG> |
| bool operator()(URBG& g) { // NOLINT(runtime/references) |
| return Generate(param_.p(), g); |
| } |
| |
| template <typename URBG> |
| bool operator()(URBG& g, // NOLINT(runtime/references) |
| const param_type& param) { |
| return Generate(param.p(), g); |
| } |
| |
| param_type param() const { return param_; } |
| void param(const param_type& param) { param_ = param; } |
| |
| double p() const { return param_.p(); } |
| |
| result_type(min)() const { return false; } |
| result_type(max)() const { return true; } |
| |
| friend bool operator==(const bernoulli_distribution& d1, |
| const bernoulli_distribution& d2) { |
| return d1.param_ == d2.param_; |
| } |
| |
| friend bool operator!=(const bernoulli_distribution& d1, |
| const bernoulli_distribution& d2) { |
| return d1.param_ != d2.param_; |
| } |
| |
| private: |
| static constexpr uint64_t kP32 = static_cast<uint64_t>(1) << 32; |
| |
| template <typename URBG> |
| static bool Generate(double p, URBG& g); // NOLINT(runtime/references) |
| |
| param_type param_; |
| }; |
| |
| template <typename CharT, typename Traits> |
| std::basic_ostream<CharT, Traits>& operator<<( |
| std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| const bernoulli_distribution& x) { |
| auto saver = random_internal::make_ostream_state_saver(os); |
| os.precision(random_internal::stream_precision_helper<double>::kPrecision); |
| os << x.p(); |
| return os; |
| } |
| |
| template <typename CharT, typename Traits> |
| std::basic_istream<CharT, Traits>& operator>>( |
| std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| bernoulli_distribution& x) { // NOLINT(runtime/references) |
| auto saver = random_internal::make_istream_state_saver(is); |
| auto p = random_internal::read_floating_point<double>(is); |
| if (!is.fail()) { |
| x.param(bernoulli_distribution::param_type(p)); |
| } |
| return is; |
| } |
| |
| template <typename URBG> |
| bool bernoulli_distribution::Generate(double p, |
| URBG& g) { // NOLINT(runtime/references) |
| random_internal::FastUniformBits<uint32_t> fast_u32; |
| |
| while (true) { |
| // There are two aspects of the definition of `c` below that are worth |
| // commenting on. First, because `p` is in the range [0, 1], `c` is in the |
| // range [0, 2^32] which does not fit in a uint32_t and therefore requires |
| // 64 bits. |
| // |
| // Second, `c` is constructed by first casting explicitly to a signed |
| // integer and then casting explicitly to an unsigned integer of the same |
| // size. This is done because the hardware conversion instructions produce |
| // signed integers from double; if taken as a uint64_t the conversion would |
| // be wrong for doubles greater than 2^63 (not relevant in this use-case). |
| // If converted directly to an unsigned integer, the compiler would end up |
| // emitting code to handle such large values that are not relevant due to |
| // the known bounds on `c`. To avoid these extra instructions this |
| // implementation converts first to the signed type and then convert to |
| // unsigned (which is a no-op). |
| const uint64_t c = static_cast<uint64_t>(static_cast<int64_t>(p * kP32)); |
| const uint32_t v = fast_u32(g); |
| // FAST PATH: this path fails with probability 1/2^32. Note that simply |
| // returning v <= c would approximate P very well (up to an absolute error |
| // of 1/2^32); the slow path (taken in that range of possible error, in the |
| // case of equality) eliminates the remaining error. |
| if (ABSL_PREDICT_TRUE(v != c)) return v < c; |
| |
| // It is guaranteed that `q` is strictly less than 1, because if `q` were |
| // greater than or equal to 1, the same would be true for `p`. Certainly `p` |
| // cannot be greater than 1, and if `p == 1`, then the fast path would |
| // necessary have been taken already. |
| const double q = static_cast<double>(c) / kP32; |
| |
| // The probability of acceptance on the fast path is `q` and so the |
| // probability of acceptance here should be `p - q`. |
| // |
| // Note that `q` is obtained from `p` via some shifts and conversions, the |
| // upshot of which is that `q` is simply `p` with some of the |
| // least-significant bits of its mantissa set to zero. This means that the |
| // difference `p - q` will not have any rounding errors. To see why, pretend |
| // that double has 10 bits of resolution and q is obtained from `p` in such |
| // a way that the 4 least-significant bits of its mantissa are set to zero. |
| // For example: |
| // p = 1.1100111011 * 2^-1 |
| // q = 1.1100110000 * 2^-1 |
| // p - q = 1.011 * 2^-8 |
| // The difference `p - q` has exactly the nonzero mantissa bits that were |
| // "lost" in `q` producing a number which is certainly representable in a |
| // double. |
| const double left = p - q; |
| |
| // By construction, the probability of being on this slow path is 1/2^32, so |
| // P(accept in slow path) = P(accept| in slow path) * P(slow path), |
| // which means the probability of acceptance here is `1 / (left * kP32)`: |
| const double here = left * kP32; |
| |
| // The simplest way to compute the result of this trial is to repeat the |
| // whole algorithm with the new probability. This terminates because even |
| // given arbitrarily unfriendly "random" bits, each iteration either |
| // multiplies a tiny probability by 2^32 (if c == 0) or strips off some |
| // number of nonzero mantissa bits. That process is bounded. |
| if (here == 0) return false; |
| p = here; |
| } |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_BERNOULLI_DISTRIBUTION_H_ |