| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ |
| #define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ |
| |
| // absl::gaussian_distribution implements the Ziggurat algorithm |
| // for generating random gaussian numbers. |
| // |
| // Implementation based on "The Ziggurat Method for Generating Random Variables" |
| // by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/ |
| // |
| |
| #include <cmath> |
| #include <cstdint> |
| #include <istream> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "absl/base/config.h" |
| #include "absl/random/internal/fast_uniform_bits.h" |
| #include "absl/random/internal/generate_real.h" |
| #include "absl/random/internal/iostream_state_saver.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace random_internal { |
| |
| // absl::gaussian_distribution_base implements the underlying ziggurat algorithm |
| // using the ziggurat tables generated by the gaussian_distribution_gentables |
| // binary. |
| // |
| // The specific algorithm has some of the improvements suggested by the |
| // 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples", |
| // Jurgen A Doornik. (https://www.doornik.com/research/ziggurat.pdf) |
| class ABSL_DLL gaussian_distribution_base { |
| public: |
| template <typename URBG> |
| inline double zignor(URBG& g); // NOLINT(runtime/references) |
| |
| private: |
| friend class TableGenerator; |
| |
| template <typename URBG> |
| inline double zignor_fallback(URBG& g, // NOLINT(runtime/references) |
| bool neg); |
| |
| // Constants used for the gaussian distribution. |
| static constexpr double kR = 3.442619855899; // Start of the tail. |
| static constexpr double kRInv = 0.29047645161474317; // ~= (1.0 / kR) . |
| static constexpr double kV = 9.91256303526217e-3; |
| static constexpr uint64_t kMask = 0x07f; |
| |
| // The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area |
| // points on one-half of the normal distribution, where the pdf function, |
| // pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1. |
| // |
| // These tables are just over 2kb in size; larger tables might improve the |
| // distributions, but also lead to more cache pollution. |
| // |
| // x = {3.71308, 3.44261, 3.22308, ..., 0} |
| // f = {0.00101, 0.00266, 0.00554, ..., 1} |
| struct Tables { |
| double x[kMask + 2]; |
| double f[kMask + 2]; |
| }; |
| static const Tables zg_; |
| random_internal::FastUniformBits<uint64_t> fast_u64_; |
| }; |
| |
| } // namespace random_internal |
| |
| // absl::gaussian_distribution: |
| // Generates a number conforming to a Gaussian distribution. |
| template <typename RealType = double> |
| class gaussian_distribution : random_internal::gaussian_distribution_base { |
| public: |
| using result_type = RealType; |
| |
| class param_type { |
| public: |
| using distribution_type = gaussian_distribution; |
| |
| explicit param_type(result_type mean = 0, result_type stddev = 1) |
| : mean_(mean), stddev_(stddev) {} |
| |
| // Returns the mean distribution parameter. The mean specifies the location |
| // of the peak. The default value is 0.0. |
| result_type mean() const { return mean_; } |
| |
| // Returns the deviation distribution parameter. The default value is 1.0. |
| result_type stddev() const { return stddev_; } |
| |
| friend bool operator==(const param_type& a, const param_type& b) { |
| return a.mean_ == b.mean_ && a.stddev_ == b.stddev_; |
| } |
| |
| friend bool operator!=(const param_type& a, const param_type& b) { |
| return !(a == b); |
| } |
| |
| private: |
| result_type mean_; |
| result_type stddev_; |
| |
| static_assert( |
| std::is_floating_point<RealType>::value, |
| "Class-template absl::gaussian_distribution<> must be parameterized " |
| "using a floating-point type."); |
| }; |
| |
| gaussian_distribution() : gaussian_distribution(0) {} |
| |
| explicit gaussian_distribution(result_type mean, result_type stddev = 1) |
| : param_(mean, stddev) {} |
| |
| explicit gaussian_distribution(const param_type& p) : param_(p) {} |
| |
| void reset() {} |
| |
| // Generating functions |
| template <typename URBG> |
| result_type operator()(URBG& g) { // NOLINT(runtime/references) |
| return (*this)(g, param_); |
| } |
| |
| template <typename URBG> |
| result_type operator()(URBG& g, // NOLINT(runtime/references) |
| const param_type& p); |
| |
| param_type param() const { return param_; } |
| void param(const param_type& p) { param_ = p; } |
| |
| result_type(min)() const { |
| return -std::numeric_limits<result_type>::infinity(); |
| } |
| result_type(max)() const { |
| return std::numeric_limits<result_type>::infinity(); |
| } |
| |
| result_type mean() const { return param_.mean(); } |
| result_type stddev() const { return param_.stddev(); } |
| |
| friend bool operator==(const gaussian_distribution& a, |
| const gaussian_distribution& b) { |
| return a.param_ == b.param_; |
| } |
| friend bool operator!=(const gaussian_distribution& a, |
| const gaussian_distribution& b) { |
| return a.param_ != b.param_; |
| } |
| |
| private: |
| param_type param_; |
| }; |
| |
| // -------------------------------------------------------------------------- |
| // Implementation details only below |
| // -------------------------------------------------------------------------- |
| |
| template <typename RealType> |
| template <typename URBG> |
| typename gaussian_distribution<RealType>::result_type |
| gaussian_distribution<RealType>::operator()( |
| URBG& g, // NOLINT(runtime/references) |
| const param_type& p) { |
| return p.mean() + p.stddev() * static_cast<result_type>(zignor(g)); |
| } |
| |
| template <typename CharT, typename Traits, typename RealType> |
| std::basic_ostream<CharT, Traits>& operator<<( |
| std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
| const gaussian_distribution<RealType>& x) { |
| auto saver = random_internal::make_ostream_state_saver(os); |
| os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); |
| os << x.mean() << os.fill() << x.stddev(); |
| return os; |
| } |
| |
| template <typename CharT, typename Traits, typename RealType> |
| std::basic_istream<CharT, Traits>& operator>>( |
| std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
| gaussian_distribution<RealType>& x) { // NOLINT(runtime/references) |
| using result_type = typename gaussian_distribution<RealType>::result_type; |
| using param_type = typename gaussian_distribution<RealType>::param_type; |
| |
| auto saver = random_internal::make_istream_state_saver(is); |
| auto mean = random_internal::read_floating_point<result_type>(is); |
| if (is.fail()) return is; |
| auto stddev = random_internal::read_floating_point<result_type>(is); |
| if (!is.fail()) { |
| x.param(param_type(mean, stddev)); |
| } |
| return is; |
| } |
| |
| namespace random_internal { |
| |
| template <typename URBG> |
| inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) { |
| using random_internal::GeneratePositiveTag; |
| using random_internal::GenerateRealFromBits; |
| |
| // This fallback path happens approximately 0.05% of the time. |
| double x, y; |
| do { |
| // kRInv = 1/r, U(0, 1) |
| x = kRInv * |
| std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>( |
| fast_u64_(g))); |
| y = -std::log( |
| GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g))); |
| } while ((y + y) < (x * x)); |
| return neg ? (x - kR) : (kR - x); |
| } |
| |
| template <typename URBG> |
| inline double gaussian_distribution_base::zignor( |
| URBG& g) { // NOLINT(runtime/references) |
| using random_internal::GeneratePositiveTag; |
| using random_internal::GenerateRealFromBits; |
| using random_internal::GenerateSignedTag; |
| |
| while (true) { |
| // We use a single uint64_t to generate both a double and a strip. |
| // These bits are unused when the generated double is > 1/2^5. |
| // This may introduce some bias from the duplicated low bits of small |
| // values (those smaller than 1/2^5, which all end up on the left tail). |
| uint64_t bits = fast_u64_(g); |
| int i = static_cast<int>(bits & kMask); // pick a random strip |
| double j = GenerateRealFromBits<double, GenerateSignedTag, false>( |
| bits); // U(-1, 1) |
| const double x = j * zg_.x[i]; |
| |
| // Retangular box. Handles >97% of all cases. |
| // For any given box, this handles between 75% and 99% of values. |
| // Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5% |
| if (std::abs(x) < zg_.x[i + 1]) { |
| return x; |
| } |
| |
| // i == 0: Base box. Sample using a ratio of uniforms. |
| if (i == 0) { |
| // This path happens about 0.05% of the time. |
| return zignor_fallback(g, j < 0); |
| } |
| |
| // i > 0: Wedge samples using precomputed values. |
| double v = GenerateRealFromBits<double, GeneratePositiveTag, false>( |
| fast_u64_(g)); // U(0, 1) |
| if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) < |
| std::exp(-0.5 * x * x)) { |
| return x; |
| } |
| |
| // The wedge was missed; reject the value and try again. |
| } |
| } |
| |
| } // namespace random_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ |