| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // Produce stack trace |
| |
| #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |
| #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |
| |
| #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) |
| #include <ucontext.h> // for ucontext_t |
| #endif |
| |
| #if !defined(_WIN32) |
| #include <unistd.h> |
| #endif |
| |
| #include <cassert> |
| #include <cstdint> |
| #include <limits> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/port.h" |
| #include "absl/debugging/internal/address_is_readable.h" |
| #include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems |
| #include "absl/debugging/stacktrace.h" |
| |
| using absl::debugging_internal::AddressIsReadable; |
| |
| #if defined(__linux__) && defined(__i386__) |
| // Count "push %reg" instructions in VDSO __kernel_vsyscall(), |
| // preceding "syscall" or "sysenter". |
| // If __kernel_vsyscall uses frame pointer, answer 0. |
| // |
| // kMaxBytes tells how many instruction bytes of __kernel_vsyscall |
| // to analyze before giving up. Up to kMaxBytes+1 bytes of |
| // instructions could be accessed. |
| // |
| // Here are known __kernel_vsyscall instruction sequences: |
| // |
| // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). |
| // Used on Intel. |
| // 0xffffe400 <__kernel_vsyscall+0>: push %ecx |
| // 0xffffe401 <__kernel_vsyscall+1>: push %edx |
| // 0xffffe402 <__kernel_vsyscall+2>: push %ebp |
| // 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp |
| // 0xffffe405 <__kernel_vsyscall+5>: sysenter |
| // |
| // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). |
| // Used on AMD. |
| // 0xffffe400 <__kernel_vsyscall+0>: push %ebp |
| // 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp |
| // 0xffffe403 <__kernel_vsyscall+3>: syscall |
| // |
| |
| // The sequence below isn't actually expected in Google fleet, |
| // here only for completeness. Remove this comment from OSS release. |
| |
| // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) |
| // 0xffffe400 <__kernel_vsyscall+0>: int $0x80 |
| // 0xffffe401 <__kernel_vsyscall+1>: ret |
| // |
| static const int kMaxBytes = 10; |
| |
| // We use assert()s instead of DCHECK()s -- this is too low level |
| // for DCHECK(). |
| |
| static int CountPushInstructions(const unsigned char *const addr) { |
| int result = 0; |
| for (int i = 0; i < kMaxBytes; ++i) { |
| if (addr[i] == 0x89) { |
| // "mov reg,reg" |
| if (addr[i + 1] == 0xE5) { |
| // Found "mov %esp,%ebp". |
| return 0; |
| } |
| ++i; // Skip register encoding byte. |
| } else if (addr[i] == 0x0F && |
| (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { |
| // Found "sysenter" or "syscall". |
| return result; |
| } else if ((addr[i] & 0xF0) == 0x50) { |
| // Found "push %reg". |
| ++result; |
| } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { |
| // Found "int $0x80" |
| assert(result == 0); |
| return 0; |
| } else { |
| // Unexpected instruction. |
| assert(false && "unexpected instruction in __kernel_vsyscall"); |
| return 0; |
| } |
| } |
| // Unexpected: didn't find SYSENTER or SYSCALL in |
| // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. |
| assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); |
| return 0; |
| } |
| #endif |
| |
| // Assume stack frames larger than 100,000 bytes are bogus. |
| static const int kMaxFrameBytes = 100000; |
| // Stack end to use when we don't know the actual stack end |
| // (effectively just the end of address space). |
| constexpr uintptr_t kUnknownStackEnd = |
| std::numeric_limits<size_t>::max() - sizeof(void *); |
| |
| // Returns the stack frame pointer from signal context, 0 if unknown. |
| // vuc is a ucontext_t *. We use void* to avoid the use |
| // of ucontext_t on non-POSIX systems. |
| static uintptr_t GetFP(const void *vuc) { |
| #if !defined(__linux__) |
| static_cast<void>(vuc); // Avoid an unused argument compiler warning. |
| #else |
| if (vuc != nullptr) { |
| auto *uc = reinterpret_cast<const ucontext_t *>(vuc); |
| #if defined(__i386__) |
| const auto bp = uc->uc_mcontext.gregs[REG_EBP]; |
| const auto sp = uc->uc_mcontext.gregs[REG_ESP]; |
| #elif defined(__x86_64__) |
| const auto bp = uc->uc_mcontext.gregs[REG_RBP]; |
| const auto sp = uc->uc_mcontext.gregs[REG_RSP]; |
| #else |
| const uintptr_t bp = 0; |
| const uintptr_t sp = 0; |
| #endif |
| // Sanity-check that the base pointer is valid. It's possible that some |
| // code in the process is compiled with --copt=-fomit-frame-pointer or |
| // --copt=-momit-leaf-frame-pointer. |
| // |
| // TODO(bcmills): -momit-leaf-frame-pointer is currently the default |
| // behavior when building with clang. Talk to the C++ toolchain team about |
| // fixing that. |
| if (bp >= sp && bp - sp <= kMaxFrameBytes) |
| return static_cast<uintptr_t>(bp); |
| |
| // If bp isn't a plausible frame pointer, return the stack pointer instead. |
| // If we're lucky, it points to the start of a stack frame; otherwise, we'll |
| // get one frame of garbage in the stack trace and fail the sanity check on |
| // the next iteration. |
| return static_cast<uintptr_t>(sp); |
| } |
| #endif |
| return 0; |
| } |
| |
| // Given a pointer to a stack frame, locate and return the calling |
| // stackframe, or return null if no stackframe can be found. Perform sanity |
| // checks (the strictness of which is controlled by the boolean parameter |
| // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. |
| template <bool STRICT_UNWINDING, bool WITH_CONTEXT> |
| ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
| ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
| static void **NextStackFrame(void **old_fp, const void *uc, |
| size_t stack_low, size_t stack_high) { |
| void **new_fp = (void **)*old_fp; |
| |
| #if defined(__linux__) && defined(__i386__) |
| if (WITH_CONTEXT && uc != nullptr) { |
| // How many "push %reg" instructions are there at __kernel_vsyscall? |
| // This is constant for a given kernel and processor, so compute |
| // it only once. |
| static int num_push_instructions = -1; // Sentinel: not computed yet. |
| // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly |
| // be there. |
| static const unsigned char *kernel_rt_sigreturn_address = nullptr; |
| static const unsigned char *kernel_vsyscall_address = nullptr; |
| if (num_push_instructions == -1) { |
| #ifdef ABSL_HAVE_VDSO_SUPPORT |
| absl::debugging_internal::VDSOSupport vdso; |
| if (vdso.IsPresent()) { |
| absl::debugging_internal::VDSOSupport::SymbolInfo |
| rt_sigreturn_symbol_info; |
| absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; |
| if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, |
| &rt_sigreturn_symbol_info) || |
| !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, |
| &vsyscall_symbol_info) || |
| rt_sigreturn_symbol_info.address == nullptr || |
| vsyscall_symbol_info.address == nullptr) { |
| // Unexpected: 32-bit VDSO is present, yet one of the expected |
| // symbols is missing or null. |
| assert(false && "VDSO is present, but doesn't have expected symbols"); |
| num_push_instructions = 0; |
| } else { |
| kernel_rt_sigreturn_address = |
| reinterpret_cast<const unsigned char *>( |
| rt_sigreturn_symbol_info.address); |
| kernel_vsyscall_address = |
| reinterpret_cast<const unsigned char *>( |
| vsyscall_symbol_info.address); |
| num_push_instructions = |
| CountPushInstructions(kernel_vsyscall_address); |
| } |
| } else { |
| num_push_instructions = 0; |
| } |
| #else // ABSL_HAVE_VDSO_SUPPORT |
| num_push_instructions = 0; |
| #endif // ABSL_HAVE_VDSO_SUPPORT |
| } |
| if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && |
| old_fp[1] == kernel_rt_sigreturn_address) { |
| const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); |
| // This kernel does not use frame pointer in its VDSO code, |
| // and so %ebp is not suitable for unwinding. |
| void **const reg_ebp = |
| reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); |
| const unsigned char *const reg_eip = |
| reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); |
| if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && |
| reg_eip - kernel_vsyscall_address < kMaxBytes) { |
| // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. |
| // Restore from 'ucv' instead. |
| void **const reg_esp = |
| reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); |
| // Check that alleged %esp is not null and is reasonably aligned. |
| if (reg_esp && |
| ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { |
| // Check that alleged %esp is actually readable. This is to prevent |
| // "double fault" in case we hit the first fault due to e.g. stack |
| // corruption. |
| void *const reg_esp2 = reg_esp[num_push_instructions - 1]; |
| if (AddressIsReadable(reg_esp2)) { |
| // Alleged %esp is readable, use it for further unwinding. |
| new_fp = reinterpret_cast<void **>(reg_esp2); |
| } |
| } |
| } |
| } |
| } |
| #endif |
| |
| const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp); |
| const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp); |
| |
| // Check that the transition from frame pointer old_fp to frame |
| // pointer new_fp isn't clearly bogus. Skip the checks if new_fp |
| // matches the signal context, so that we don't skip out early when |
| // using an alternate signal stack. |
| // |
| // TODO(bcmills): The GetFP call should be completely unnecessary when |
| // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's |
| // stack by this point), but it is empirically still needed (e.g. when the |
| // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some |
| // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what |
| // it's supposed to. |
| if (STRICT_UNWINDING && |
| (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { |
| // With the stack growing downwards, older stack frame must be |
| // at a greater address that the current one. |
| if (new_fp_u <= old_fp_u) return nullptr; |
| |
| // If we get a very large frame size, it may be an indication that we |
| // guessed frame pointers incorrectly and now risk a paging fault |
| // dereferencing a wrong frame pointer. Or maybe not because large frames |
| // are possible as well. The main stack is assumed to be readable, |
| // so we assume the large frame is legit if we know the real stack bounds |
| // and are within the stack. |
| if (new_fp_u - old_fp_u > kMaxFrameBytes) { |
| if (stack_high < kUnknownStackEnd && |
| static_cast<size_t>(getpagesize()) < stack_low) { |
| // Stack bounds are known. |
| if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { |
| // new_fp_u is not within the known stack. |
| return nullptr; |
| } |
| } else { |
| // Stack bounds are unknown, prefer truncated stack to possible crash. |
| return nullptr; |
| } |
| } |
| if (stack_low < old_fp_u && old_fp_u <= stack_high) { |
| // Old BP was in the expected stack region... |
| if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { |
| // ... but new BP is outside of expected stack region. |
| // It is most likely bogus. |
| return nullptr; |
| } |
| } else { |
| // We may be here if we are executing in a co-routine with a |
| // separate stack. We can't do safety checks in this case. |
| } |
| } else { |
| if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below |
| // In the non-strict mode, allow discontiguous stack frames. |
| // (alternate-signal-stacks for example). |
| if (new_fp == old_fp) return nullptr; |
| } |
| |
| if (new_fp_u & (sizeof(void *) - 1)) return nullptr; |
| #ifdef __i386__ |
| // On 32-bit machines, the stack pointer can be very close to |
| // 0xffffffff, so we explicitly check for a pointer into the |
| // last two pages in the address space |
| if (new_fp_u >= 0xffffe000) return nullptr; |
| #endif |
| #if !defined(_WIN32) |
| if (!STRICT_UNWINDING) { |
| // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test |
| // on AMD-based machines with VDSO-enabled kernels. |
| // Make an extra sanity check to insure new_fp is readable. |
| // Note: NextStackFrame<false>() is only called while the program |
| // is already on its last leg, so it's ok to be slow here. |
| |
| if (!AddressIsReadable(new_fp)) { |
| return nullptr; |
| } |
| } |
| #endif |
| return new_fp; |
| } |
| |
| template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> |
| ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
| ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
| ABSL_ATTRIBUTE_NOINLINE |
| static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, |
| const void *ucp, int *min_dropped_frames) { |
| int n = 0; |
| void **fp = reinterpret_cast<void **>(__builtin_frame_address(0)); |
| |
| // Assume that the first page is not stack. |
| size_t stack_low = static_cast<size_t>(getpagesize()); |
| size_t stack_high = kUnknownStackEnd; |
| |
| while (fp && n < max_depth) { |
| if (*(fp + 1) == reinterpret_cast<void *>(0)) { |
| // In 64-bit code, we often see a frame that |
| // points to itself and has a return address of 0. |
| break; |
| } |
| void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>( |
| fp, ucp, stack_low, stack_high); |
| if (skip_count > 0) { |
| skip_count--; |
| } else { |
| result[n] = *(fp + 1); |
| if (IS_STACK_FRAMES) { |
| if (next_fp > fp) { |
| sizes[n] = static_cast<int>( |
| reinterpret_cast<uintptr_t>(next_fp) - |
| reinterpret_cast<uintptr_t>(fp)); |
| } else { |
| // A frame-size of 0 is used to indicate unknown frame size. |
| sizes[n] = 0; |
| } |
| } |
| n++; |
| } |
| fp = next_fp; |
| } |
| if (min_dropped_frames != nullptr) { |
| // Implementation detail: we clamp the max of frames we are willing to |
| // count, so as not to spend too much time in the loop below. |
| const int kMaxUnwind = 1000; |
| int num_dropped_frames = 0; |
| for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) { |
| if (skip_count > 0) { |
| skip_count--; |
| } else { |
| num_dropped_frames++; |
| } |
| fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low, |
| stack_high); |
| } |
| *min_dropped_frames = num_dropped_frames; |
| } |
| return n; |
| } |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace debugging_internal { |
| bool StackTraceWorksForTest() { |
| return true; |
| } |
| } // namespace debugging_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |