blob: 58505267f029e7c59234b58e1bce7335bf82cd5f [file] [log] [blame]
//
// Copyright 2022 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/log/internal/log_message.h"
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <algorithm>
#include <array>
#include <atomic>
#include <memory>
#include <ostream>
#include <string>
#include <tuple>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/strerror.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/base/log_severity.h"
#include "absl/container/inlined_vector.h"
#include "absl/debugging/internal/examine_stack.h"
#include "absl/log/globals.h"
#include "absl/log/internal/append_truncated.h"
#include "absl/log/internal/globals.h"
#include "absl/log/internal/log_format.h"
#include "absl/log/internal/log_sink_set.h"
#include "absl/log/internal/proto.h"
#include "absl/log/log_entry.h"
#include "absl/log/log_sink.h"
#include "absl/log/log_sink_registry.h"
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "absl/types/span.h"
extern "C" ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(
AbslInternalOnFatalLogMessage)(const absl::LogEntry&) {
// Default - Do nothing
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
namespace {
// message `logging.proto.Event`
enum EventTag : uint8_t {
kValue = 7,
};
// message `logging.proto.Value`
enum ValueTag : uint8_t {
kString = 1,
kStringLiteral = 6,
};
// Decodes a `logging.proto.Value` from `buf` and writes a string representation
// into `dst`. The string representation will be truncated if `dst` is not
// large enough to hold it. Returns false if `dst` has size zero or one (i.e.
// sufficient only for a nul-terminator) and no decoded data could be written.
// This function may or may not write a nul-terminator into `dst`, and it may or
// may not truncate the data it writes in order to do make space for that nul
// terminator. In any case, `dst` will be advanced to point at the byte where
// subsequent writes should begin.
bool PrintValue(absl::Span<char>& dst, absl::Span<const char> buf) {
if (dst.size() <= 1) return false;
ProtoField field;
while (field.DecodeFrom(&buf)) {
switch (field.tag()) {
case ValueTag::kString:
case ValueTag::kStringLiteral:
if (field.type() == WireType::kLengthDelimited)
if (log_internal::AppendTruncated(field.string_value(), dst) <
field.string_value().size())
return false;
}
}
return true;
}
absl::string_view Basename(absl::string_view filepath) {
#ifdef _WIN32
size_t path = filepath.find_last_of("/\\");
#else
size_t path = filepath.find_last_of('/');
#endif
if (path != filepath.npos) filepath.remove_prefix(path + 1);
return filepath;
}
void WriteToString(const char* data, void* str) {
reinterpret_cast<std::string*>(str)->append(data);
}
void WriteToStream(const char* data, void* os) {
auto* cast_os = static_cast<std::ostream*>(os);
*cast_os << data;
}
} // namespace
struct LogMessage::LogMessageData final {
LogMessageData(const char* file, int line, absl::LogSeverity severity,
absl::Time timestamp);
LogMessageData(const LogMessageData&) = delete;
LogMessageData& operator=(const LogMessageData&) = delete;
// `LogEntry` sent to `LogSink`s; contains metadata.
absl::LogEntry entry;
// true => this was first fatal msg
bool first_fatal;
// true => all failures should be quiet
bool fail_quietly;
// true => PLOG was requested
bool is_perror;
// Extra `LogSink`s to log to, in addition to `global_sinks`.
absl::InlinedVector<absl::LogSink*, 16> extra_sinks;
// If true, log to `extra_sinks` but not to `global_sinks` or hardcoded
// non-sink targets (e.g. stderr, log files).
bool extra_sinks_only;
std::ostream manipulated; // ostream with IO manipulators applied
// A `logging.proto.Event` proto message is built into `encoded_buf`.
std::array<char, kLogMessageBufferSize> encoded_buf;
// `encoded_remaining` is the suffix of `encoded_buf` that has not been filled
// yet. If a datum to be encoded does not fit into `encoded_remaining` and
// cannot be truncated to fit, the size of `encoded_remaining` will be zeroed
// to prevent encoding of any further data. Note that in this case its data()
// pointer will not point past the end of `encoded_buf`.
absl::Span<char> encoded_remaining;
// A formatted string message is built in `string_buf`.
std::array<char, kLogMessageBufferSize> string_buf;
void FinalizeEncodingAndFormat();
};
LogMessage::LogMessageData::LogMessageData(const char* file, int line,
absl::LogSeverity severity,
absl::Time timestamp)
: extra_sinks_only(false),
manipulated(nullptr),
// This `absl::MakeSpan` silences spurious -Wuninitialized from GCC:
encoded_remaining(absl::MakeSpan(encoded_buf)) {
// Legacy defaults for LOG's ostream:
manipulated.setf(std::ios_base::showbase | std::ios_base::boolalpha);
entry.full_filename_ = file;
entry.base_filename_ = Basename(file);
entry.line_ = line;
entry.prefix_ = absl::ShouldPrependLogPrefix();
entry.severity_ = absl::NormalizeLogSeverity(severity);
entry.verbose_level_ = absl::LogEntry::kNoVerbosityLevel;
entry.timestamp_ = timestamp;
entry.tid_ = absl::base_internal::GetCachedTID();
}
void LogMessage::LogMessageData::FinalizeEncodingAndFormat() {
// Note that `encoded_remaining` may have zero size without pointing past the
// end of `encoded_buf`, so the difference between `data()` pointers is used
// to compute the size of `encoded_data`.
absl::Span<const char> encoded_data(
encoded_buf.data(),
static_cast<size_t>(encoded_remaining.data() - encoded_buf.data()));
// `string_remaining` is the suffix of `string_buf` that has not been filled
// yet.
absl::Span<char> string_remaining(string_buf);
// We may need to write a newline and nul-terminator at the end of the decoded
// string data. Rather than worry about whether those should overwrite the
// end of the string (if the buffer is full) or be appended, we avoid writing
// into the last two bytes so we always have space to append.
string_remaining.remove_suffix(2);
entry.prefix_len_ =
entry.prefix() ? log_internal::FormatLogPrefix(
entry.log_severity(), entry.timestamp(), entry.tid(),
entry.source_basename(), entry.source_line(),
log_internal::ThreadIsLoggingToLogSink()
? PrefixFormat::kRaw
: PrefixFormat::kNotRaw,
string_remaining)
: 0;
// Decode data from `encoded_buf` until we run out of data or we run out of
// `string_remaining`.
ProtoField field;
while (field.DecodeFrom(&encoded_data)) {
switch (field.tag()) {
case EventTag::kValue:
if (field.type() != WireType::kLengthDelimited) continue;
if (PrintValue(string_remaining, field.bytes_value())) continue;
break;
}
break;
}
auto chars_written =
static_cast<size_t>(string_remaining.data() - string_buf.data());
string_buf[chars_written++] = '\n';
string_buf[chars_written++] = '\0';
entry.text_message_with_prefix_and_newline_and_nul_ =
absl::MakeSpan(string_buf).subspan(0, chars_written);
}
LogMessage::LogMessage(const char* file, int line, absl::LogSeverity severity)
: data_(absl::make_unique<LogMessageData>(file, line, severity,
absl::Now())) {
data_->first_fatal = false;
data_->is_perror = false;
data_->fail_quietly = false;
// This logs a backtrace even if the location is subsequently changed using
// AtLocation. This quirk, and the behavior when AtLocation is called twice,
// are fixable but probably not worth fixing.
LogBacktraceIfNeeded();
}
LogMessage::LogMessage(const char* file, int line, InfoTag)
: LogMessage(file, line, absl::LogSeverity::kInfo) {}
LogMessage::LogMessage(const char* file, int line, WarningTag)
: LogMessage(file, line, absl::LogSeverity::kWarning) {}
LogMessage::LogMessage(const char* file, int line, ErrorTag)
: LogMessage(file, line, absl::LogSeverity::kError) {}
LogMessage::~LogMessage() {
#ifdef ABSL_MIN_LOG_LEVEL
if (data_->entry.log_severity() <
static_cast<absl::LogSeverity>(ABSL_MIN_LOG_LEVEL) &&
data_->entry.log_severity() < absl::LogSeverity::kFatal) {
return;
}
#endif
Flush();
}
LogMessage& LogMessage::AtLocation(absl::string_view file, int line) {
data_->entry.full_filename_ = file;
data_->entry.base_filename_ = Basename(file);
data_->entry.line_ = line;
LogBacktraceIfNeeded();
return *this;
}
LogMessage& LogMessage::NoPrefix() {
data_->entry.prefix_ = false;
return *this;
}
LogMessage& LogMessage::WithVerbosity(int verbose_level) {
if (verbose_level == absl::LogEntry::kNoVerbosityLevel) {
data_->entry.verbose_level_ = absl::LogEntry::kNoVerbosityLevel;
} else {
data_->entry.verbose_level_ = std::max(0, verbose_level);
}
return *this;
}
LogMessage& LogMessage::WithTimestamp(absl::Time timestamp) {
data_->entry.timestamp_ = timestamp;
return *this;
}
LogMessage& LogMessage::WithThreadID(absl::LogEntry::tid_t tid) {
data_->entry.tid_ = tid;
return *this;
}
LogMessage& LogMessage::WithMetadataFrom(const absl::LogEntry& entry) {
data_->entry.full_filename_ = entry.full_filename_;
data_->entry.base_filename_ = entry.base_filename_;
data_->entry.line_ = entry.line_;
data_->entry.prefix_ = entry.prefix_;
data_->entry.severity_ = entry.severity_;
data_->entry.verbose_level_ = entry.verbose_level_;
data_->entry.timestamp_ = entry.timestamp_;
data_->entry.tid_ = entry.tid_;
return *this;
}
LogMessage& LogMessage::WithPerror() {
data_->is_perror = true;
return *this;
}
LogMessage& LogMessage::ToSinkAlso(absl::LogSink* sink) {
ABSL_INTERNAL_CHECK(sink, "null LogSink*");
data_->extra_sinks.push_back(sink);
return *this;
}
LogMessage& LogMessage::ToSinkOnly(absl::LogSink* sink) {
ABSL_INTERNAL_CHECK(sink, "null LogSink*");
data_->extra_sinks.clear();
data_->extra_sinks.push_back(sink);
data_->extra_sinks_only = true;
return *this;
}
#ifdef __ELF__
extern "C" void __gcov_dump() ABSL_ATTRIBUTE_WEAK;
extern "C" void __gcov_flush() ABSL_ATTRIBUTE_WEAK;
#endif
void LogMessage::FailWithoutStackTrace() {
// Now suppress repeated trace logging:
log_internal::SetSuppressSigabortTrace(true);
#if defined _DEBUG && defined COMPILER_MSVC
// When debugging on windows, avoid the obnoxious dialog.
__debugbreak();
#endif
#ifdef __ELF__
// For b/8737634, flush coverage if we are in coverage mode.
if (&__gcov_dump != nullptr) {
__gcov_dump();
} else if (&__gcov_flush != nullptr) {
__gcov_flush();
}
#endif
abort();
}
void LogMessage::FailQuietly() {
// _exit. Calling abort() would trigger all sorts of death signal handlers
// and a detailed stack trace. Calling exit() would trigger the onexit
// handlers, including the heap-leak checker, which is guaranteed to fail in
// this case: we probably just new'ed the std::string that we logged.
// Anyway, if you're calling Fail or FailQuietly, you're trying to bail out
// of the program quickly, and it doesn't make much sense for FailQuietly to
// offer different guarantees about exit behavior than Fail does. (And as a
// consequence for QCHECK and CHECK to offer different exit behaviors)
_exit(1);
}
LogMessage& LogMessage::operator<<(const std::string& v) {
CopyToEncodedBuffer<StringType::kNotLiteral>(v);
return *this;
}
LogMessage& LogMessage::operator<<(absl::string_view v) {
CopyToEncodedBuffer<StringType::kNotLiteral>(v);
return *this;
}
LogMessage& LogMessage::operator<<(std::ostream& (*m)(std::ostream& os)) {
OstreamView view(*data_);
data_->manipulated << m;
return *this;
}
LogMessage& LogMessage::operator<<(std::ios_base& (*m)(std::ios_base& os)) {
OstreamView view(*data_);
data_->manipulated << m;
return *this;
}
template LogMessage& LogMessage::operator<<(const char& v);
template LogMessage& LogMessage::operator<<(const signed char& v);
template LogMessage& LogMessage::operator<<(const unsigned char& v);
template LogMessage& LogMessage::operator<<(const short& v); // NOLINT
template LogMessage& LogMessage::operator<<(const unsigned short& v); // NOLINT
template LogMessage& LogMessage::operator<<(const int& v);
template LogMessage& LogMessage::operator<<(const unsigned int& v);
template LogMessage& LogMessage::operator<<(const long& v); // NOLINT
template LogMessage& LogMessage::operator<<(const unsigned long& v); // NOLINT
template LogMessage& LogMessage::operator<<(const long long& v); // NOLINT
template LogMessage& LogMessage::operator<<(
const unsigned long long& v); // NOLINT
template LogMessage& LogMessage::operator<<(void* const& v);
template LogMessage& LogMessage::operator<<(const void* const& v);
template LogMessage& LogMessage::operator<<(const float& v);
template LogMessage& LogMessage::operator<<(const double& v);
template LogMessage& LogMessage::operator<<(const bool& v);
void LogMessage::Flush() {
if (data_->entry.log_severity() < absl::MinLogLevel()) return;
if (data_->is_perror) {
InternalStream() << ": " << absl::base_internal::StrError(errno_saver_())
<< " [" << errno_saver_() << "]";
}
// Have we already seen a fatal message?
ABSL_CONST_INIT static std::atomic<bool> seen_fatal(false);
if (data_->entry.log_severity() == absl::LogSeverity::kFatal &&
absl::log_internal::ExitOnDFatal()) {
// Exactly one LOG(FATAL) message is responsible for aborting the process,
// even if multiple threads LOG(FATAL) concurrently.
bool expected_seen_fatal = false;
if (seen_fatal.compare_exchange_strong(expected_seen_fatal, true,
std::memory_order_relaxed)) {
data_->first_fatal = true;
}
}
data_->FinalizeEncodingAndFormat();
data_->entry.encoding_ =
absl::string_view(data_->encoded_buf.data(),
static_cast<size_t>(data_->encoded_remaining.data() -
data_->encoded_buf.data()));
SendToLog();
}
void LogMessage::SetFailQuietly() { data_->fail_quietly = true; }
LogMessage::OstreamView::OstreamView(LogMessageData& message_data)
: data_(message_data), encoded_remaining_copy_(data_.encoded_remaining) {
// This constructor sets the `streambuf` up so that streaming into an attached
// ostream encodes string data in-place. To do that, we write appropriate
// headers into the buffer using a copy of the buffer view so that we can
// decide not to keep them later if nothing is ever streamed in. We don't
// know how much data we'll get, but we can use the size of the remaining
// buffer as an upper bound and fill in the right size once we know it.
message_start_ =
EncodeMessageStart(EventTag::kValue, encoded_remaining_copy_.size(),
&encoded_remaining_copy_);
string_start_ =
EncodeMessageStart(ValueTag::kString, encoded_remaining_copy_.size(),
&encoded_remaining_copy_);
setp(encoded_remaining_copy_.data(),
encoded_remaining_copy_.data() + encoded_remaining_copy_.size());
data_.manipulated.rdbuf(this);
}
LogMessage::OstreamView::~OstreamView() {
data_.manipulated.rdbuf(nullptr);
if (!string_start_.data()) {
// The second field header didn't fit. Whether the first one did or not, we
// shouldn't commit `encoded_remaining_copy_`, and we also need to zero the
// size of `data_->encoded_remaining` so that no more data are encoded.
data_.encoded_remaining.remove_suffix(data_.encoded_remaining.size());
return;
}
const absl::Span<const char> contents(pbase(),
static_cast<size_t>(pptr() - pbase()));
if (contents.empty()) return;
encoded_remaining_copy_.remove_prefix(contents.size());
EncodeMessageLength(string_start_, &encoded_remaining_copy_);
EncodeMessageLength(message_start_, &encoded_remaining_copy_);
data_.encoded_remaining = encoded_remaining_copy_;
}
std::ostream& LogMessage::OstreamView::stream() { return data_.manipulated; }
bool LogMessage::IsFatal() const {
return data_->entry.log_severity() == absl::LogSeverity::kFatal &&
absl::log_internal::ExitOnDFatal();
}
void LogMessage::PrepareToDie() {
// If we log a FATAL message, flush all the log destinations, then toss
// a signal for others to catch. We leave the logs in a state that
// someone else can use them (as long as they flush afterwards)
if (data_->first_fatal) {
// Notify observers about the upcoming fatal error.
ABSL_INTERNAL_C_SYMBOL(AbslInternalOnFatalLogMessage)(data_->entry);
}
if (!data_->fail_quietly) {
// Log the message first before we start collecting stack trace.
log_internal::LogToSinks(data_->entry, absl::MakeSpan(data_->extra_sinks),
data_->extra_sinks_only);
// `DumpStackTrace` generates an empty string under MSVC.
// Adding the constant prefix here simplifies testing.
data_->entry.stacktrace_ = "*** Check failure stack trace: ***\n";
debugging_internal::DumpStackTrace(
0, log_internal::MaxFramesInLogStackTrace(),
log_internal::ShouldSymbolizeLogStackTrace(), WriteToString,
&data_->entry.stacktrace_);
}
}
void LogMessage::Die() {
absl::FlushLogSinks();
if (data_->fail_quietly) {
FailQuietly();
} else {
FailWithoutStackTrace();
}
}
void LogMessage::SendToLog() {
if (IsFatal()) PrepareToDie();
// Also log to all registered sinks, even if OnlyLogToStderr() is set.
log_internal::LogToSinks(data_->entry, absl::MakeSpan(data_->extra_sinks),
data_->extra_sinks_only);
if (IsFatal()) Die();
}
void LogMessage::LogBacktraceIfNeeded() {
if (!absl::log_internal::IsInitialized()) return;
if (!absl::log_internal::ShouldLogBacktraceAt(data_->entry.source_basename(),
data_->entry.source_line()))
return;
OstreamView view(*data_);
view.stream() << " (stacktrace:\n";
debugging_internal::DumpStackTrace(
1, log_internal::MaxFramesInLogStackTrace(),
log_internal::ShouldSymbolizeLogStackTrace(), WriteToStream,
&view.stream());
view.stream() << ") ";
}
// Encodes into `data_->encoded_remaining` a partial `logging.proto.Event`
// containing the specified string data using a `Value` field appropriate to
// `str_type`. Truncates `str` if necessary, but emits nothing and marks the
// buffer full if even the field headers do not fit.
template <LogMessage::StringType str_type>
void LogMessage::CopyToEncodedBuffer(absl::string_view str) {
auto encoded_remaining_copy = data_->encoded_remaining;
auto start = EncodeMessageStart(
EventTag::kValue, BufferSizeFor(WireType::kLengthDelimited) + str.size(),
&encoded_remaining_copy);
// If the `logging.proto.Event.value` field header did not fit,
// `EncodeMessageStart` will have zeroed `encoded_remaining_copy`'s size and
// `EncodeStringTruncate` will fail too.
if (EncodeStringTruncate(str_type == StringType::kLiteral
? ValueTag::kStringLiteral
: ValueTag::kString,
str, &encoded_remaining_copy)) {
// The string may have been truncated, but the field header fit.
EncodeMessageLength(start, &encoded_remaining_copy);
data_->encoded_remaining = encoded_remaining_copy;
} else {
// The field header(s) did not fit; zero `encoded_remaining` so we don't
// write anything else later.
data_->encoded_remaining.remove_suffix(data_->encoded_remaining.size());
}
}
template void LogMessage::CopyToEncodedBuffer<LogMessage::StringType::kLiteral>(
absl::string_view str);
template void LogMessage::CopyToEncodedBuffer<
LogMessage::StringType::kNotLiteral>(absl::string_view str);
template <LogMessage::StringType str_type>
void LogMessage::CopyToEncodedBuffer(char ch, size_t num) {
auto encoded_remaining_copy = data_->encoded_remaining;
auto value_start = EncodeMessageStart(
EventTag::kValue, BufferSizeFor(WireType::kLengthDelimited) + num,
&encoded_remaining_copy);
auto str_start = EncodeMessageStart(str_type == StringType::kLiteral
? ValueTag::kStringLiteral
: ValueTag::kString,
num, &encoded_remaining_copy);
if (str_start.data()) {
// The field headers fit.
log_internal::AppendTruncated(ch, num, encoded_remaining_copy);
EncodeMessageLength(str_start, &encoded_remaining_copy);
EncodeMessageLength(value_start, &encoded_remaining_copy);
data_->encoded_remaining = encoded_remaining_copy;
} else {
// The field header(s) did not fit; zero `encoded_remaining` so we don't
// write anything else later.
data_->encoded_remaining.remove_suffix(data_->encoded_remaining.size());
}
}
template void LogMessage::CopyToEncodedBuffer<LogMessage::StringType::kLiteral>(
char ch, size_t num);
template void LogMessage::CopyToEncodedBuffer<
LogMessage::StringType::kNotLiteral>(char ch, size_t num);
// We intentionally don't return from these destructors. Disable MSVC's warning
// about the destructor never returning as we do so intentionally here.
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 4722)
#endif
LogMessageFatal::LogMessageFatal(const char* file, int line)
: LogMessage(file, line, absl::LogSeverity::kFatal) {}
LogMessageFatal::LogMessageFatal(const char* file, int line,
absl::string_view failure_msg)
: LogMessage(file, line, absl::LogSeverity::kFatal) {
*this << "Check failed: " << failure_msg << " ";
}
LogMessageFatal::~LogMessageFatal() {
Flush();
FailWithoutStackTrace();
}
LogMessageDebugFatal::LogMessageDebugFatal(const char* file, int line)
: LogMessage(file, line, absl::LogSeverity::kFatal) {}
LogMessageDebugFatal::~LogMessageDebugFatal() {
Flush();
FailWithoutStackTrace();
}
LogMessageQuietlyDebugFatal::LogMessageQuietlyDebugFatal(const char* file,
int line)
: LogMessage(file, line, absl::LogSeverity::kFatal) {
SetFailQuietly();
}
LogMessageQuietlyDebugFatal::~LogMessageQuietlyDebugFatal() {
Flush();
FailQuietly();
}
LogMessageQuietlyFatal::LogMessageQuietlyFatal(const char* file, int line)
: LogMessage(file, line, absl::LogSeverity::kFatal) {
SetFailQuietly();
}
LogMessageQuietlyFatal::LogMessageQuietlyFatal(const char* file, int line,
absl::string_view failure_msg)
: LogMessageQuietlyFatal(file, line) {
*this << "Check failed: " << failure_msg << " ";
}
LogMessageQuietlyFatal::~LogMessageQuietlyFatal() {
Flush();
FailQuietly();
}
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif
} // namespace log_internal
ABSL_NAMESPACE_END
} // namespace absl