blob: 08915e202525762effacfb6e66aa9762dd086229 [file] [log] [blame]
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/flat_hash_map.h"
#include <cstddef>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/container/internal/hash_generator_testing.h"
#include "absl/container/internal/hash_policy_testing.h"
#include "absl/container/internal/test_allocator.h"
#include "absl/container/internal/unordered_map_constructor_test.h"
#include "absl/container/internal/unordered_map_lookup_test.h"
#include "absl/container/internal/unordered_map_members_test.h"
#include "absl/container/internal/unordered_map_modifiers_test.h"
#include "absl/log/check.h"
#include "absl/meta/type_traits.h"
#include "absl/types/any.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
namespace {
using ::absl::container_internal::hash_internal::Enum;
using ::absl::container_internal::hash_internal::EnumClass;
using ::testing::_;
using ::testing::IsEmpty;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
using ::testing::UnorderedElementsAreArray;
// Check that absl::flat_hash_map works in a global constructor.
struct BeforeMain {
BeforeMain() {
absl::flat_hash_map<int, int> x;
x.insert({1, 1});
CHECK(x.find(0) == x.end()) << "x should not contain 0";
auto it = x.find(1);
CHECK(it != x.end()) << "x should contain 1";
CHECK(it->second) << "1 should map to 1";
}
};
const BeforeMain before_main;
template <class K, class V>
using Map = flat_hash_map<K, V, StatefulTestingHash, StatefulTestingEqual,
Alloc<std::pair<const K, V>>>;
static_assert(!std::is_standard_layout<NonStandardLayout>(), "");
using MapTypes =
::testing::Types<Map<int, int>, Map<std::string, int>,
Map<Enum, std::string>, Map<EnumClass, int>,
Map<int, NonStandardLayout>, Map<NonStandardLayout, int>>;
INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, ConstructorTest, MapTypes);
INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, LookupTest, MapTypes);
INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, MembersTest, MapTypes);
INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, ModifiersTest, MapTypes);
using UniquePtrMapTypes = ::testing::Types<Map<int, std::unique_ptr<int>>>;
INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashMap, UniquePtrModifiersTest,
UniquePtrMapTypes);
TEST(FlatHashMap, StandardLayout) {
struct Int {
explicit Int(size_t value) : value(value) {}
Int() : value(0) { ADD_FAILURE(); }
Int(const Int& other) : value(other.value) { ADD_FAILURE(); }
Int(Int&&) = default;
bool operator==(const Int& other) const { return value == other.value; }
size_t value;
};
static_assert(std::is_standard_layout<Int>(), "");
struct Hash {
size_t operator()(const Int& obj) const { return obj.value; }
};
// Verify that neither the key nor the value get default-constructed or
// copy-constructed.
{
flat_hash_map<Int, Int, Hash> m;
m.try_emplace(Int(1), Int(2));
m.try_emplace(Int(3), Int(4));
m.erase(Int(1));
m.rehash(2 * m.bucket_count());
}
{
flat_hash_map<Int, Int, Hash> m;
m.try_emplace(Int(1), Int(2));
m.try_emplace(Int(3), Int(4));
m.erase(Int(1));
m.clear();
}
}
TEST(FlatHashMap, Relocatability) {
static_assert(absl::is_trivially_relocatable<int>::value, "");
static_assert(
absl::is_trivially_relocatable<std::pair<const int, int>>::value, "");
static_assert(
std::is_same<decltype(absl::container_internal::FlatHashMapPolicy<
int, int>::transfer<std::allocator<char>>(nullptr,
nullptr,
nullptr)),
std::true_type>::value,
"");
struct NonRelocatable {
NonRelocatable() = default;
NonRelocatable(NonRelocatable&&) {}
NonRelocatable& operator=(NonRelocatable&&) { return *this; }
void* self = nullptr;
};
EXPECT_FALSE(absl::is_trivially_relocatable<NonRelocatable>::value);
EXPECT_TRUE(
(std::is_same<decltype(absl::container_internal::FlatHashMapPolicy<
int, NonRelocatable>::
transfer<std::allocator<char>>(nullptr, nullptr,
nullptr)),
std::false_type>::value));
}
// gcc becomes unhappy if this is inside the method, so pull it out here.
struct balast {};
TEST(FlatHashMap, IteratesMsan) {
// Because SwissTable randomizes on pointer addresses, we keep old tables
// around to ensure we don't reuse old memory.
std::vector<absl::flat_hash_map<int, balast>> garbage;
for (int i = 0; i < 100; ++i) {
absl::flat_hash_map<int, balast> t;
for (int j = 0; j < 100; ++j) {
t[j];
for (const auto& p : t) EXPECT_THAT(p, Pair(_, _));
}
garbage.push_back(std::move(t));
}
}
// Demonstration of the "Lazy Key" pattern. This uses heterogeneous insert to
// avoid creating expensive key elements when the item is already present in the
// map.
struct LazyInt {
explicit LazyInt(size_t value, int* tracker)
: value(value), tracker(tracker) {}
explicit operator size_t() const {
++*tracker;
return value;
}
size_t value;
int* tracker;
};
struct Hash {
using is_transparent = void;
int* tracker;
size_t operator()(size_t obj) const {
++*tracker;
return obj;
}
size_t operator()(const LazyInt& obj) const {
++*tracker;
return obj.value;
}
};
struct Eq {
using is_transparent = void;
bool operator()(size_t lhs, size_t rhs) const { return lhs == rhs; }
bool operator()(size_t lhs, const LazyInt& rhs) const {
return lhs == rhs.value;
}
};
TEST(FlatHashMap, LazyKeyPattern) {
// hashes are only guaranteed in opt mode, we use assertions to track internal
// state that can cause extra calls to hash.
int conversions = 0;
int hashes = 0;
flat_hash_map<size_t, size_t, Hash, Eq> m(0, Hash{&hashes});
m.reserve(3);
m[LazyInt(1, &conversions)] = 1;
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 1)));
EXPECT_EQ(conversions, 1);
#ifdef NDEBUG
EXPECT_EQ(hashes, 1);
#endif
m[LazyInt(1, &conversions)] = 2;
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2)));
EXPECT_EQ(conversions, 1);
#ifdef NDEBUG
EXPECT_EQ(hashes, 2);
#endif
m.try_emplace(LazyInt(2, &conversions), 3);
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
EXPECT_EQ(conversions, 2);
#ifdef NDEBUG
EXPECT_EQ(hashes, 3);
#endif
m.try_emplace(LazyInt(2, &conversions), 4);
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 2), Pair(2, 3)));
EXPECT_EQ(conversions, 2);
#ifdef NDEBUG
EXPECT_EQ(hashes, 4);
#endif
}
TEST(FlatHashMap, BitfieldArgument) {
union {
int n : 1;
};
n = 0;
flat_hash_map<int, int> m;
m.erase(n);
m.count(n);
m.prefetch(n);
m.find(n);
m.contains(n);
m.equal_range(n);
m.insert_or_assign(n, n);
m.insert_or_assign(m.end(), n, n);
m.try_emplace(n);
m.try_emplace(m.end(), n);
m.at(n);
m[n];
}
TEST(FlatHashMap, MergeExtractInsert) {
// We can't test mutable keys, or non-copyable keys with flat_hash_map.
// Test that the nodes have the proper API.
absl::flat_hash_map<int, int> m = {{1, 7}, {2, 9}};
auto node = m.extract(1);
EXPECT_TRUE(node);
EXPECT_EQ(node.key(), 1);
EXPECT_EQ(node.mapped(), 7);
EXPECT_THAT(m, UnorderedElementsAre(Pair(2, 9)));
node.mapped() = 17;
m.insert(std::move(node));
EXPECT_THAT(m, UnorderedElementsAre(Pair(1, 17), Pair(2, 9)));
}
bool FirstIsEven(std::pair<const int, int> p) { return p.first % 2 == 0; }
TEST(FlatHashMap, EraseIf) {
// Erase all elements.
{
flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}};
EXPECT_EQ(erase_if(s, [](std::pair<const int, int>) { return true; }), 5);
EXPECT_THAT(s, IsEmpty());
}
// Erase no elements.
{
flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}};
EXPECT_EQ(erase_if(s, [](std::pair<const int, int>) { return false; }), 0);
EXPECT_THAT(s, UnorderedElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3),
Pair(4, 4), Pair(5, 5)));
}
// Erase specific elements.
{
flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}};
EXPECT_EQ(erase_if(s,
[](std::pair<const int, int> kvp) {
return kvp.first % 2 == 1;
}),
3);
EXPECT_THAT(s, UnorderedElementsAre(Pair(2, 2), Pair(4, 4)));
}
// Predicate is function reference.
{
flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}};
EXPECT_EQ(erase_if(s, FirstIsEven), 2);
EXPECT_THAT(s, UnorderedElementsAre(Pair(1, 1), Pair(3, 3), Pair(5, 5)));
}
// Predicate is function pointer.
{
flat_hash_map<int, int> s = {{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}};
EXPECT_EQ(erase_if(s, &FirstIsEven), 2);
EXPECT_THAT(s, UnorderedElementsAre(Pair(1, 1), Pair(3, 3), Pair(5, 5)));
}
}
TEST(FlatHashMap, CForEach) {
flat_hash_map<int, int> m;
std::vector<std::pair<int, int>> expected;
for (int i = 0; i < 100; ++i) {
{
SCOPED_TRACE("mutable object iteration");
std::vector<std::pair<int, int>> v;
absl::container_internal::c_for_each_fast(
m, [&v](std::pair<const int, int>& p) { v.push_back(p); });
EXPECT_THAT(v, UnorderedElementsAreArray(expected));
}
{
SCOPED_TRACE("const object iteration");
std::vector<std::pair<int, int>> v;
const flat_hash_map<int, int>& cm = m;
absl::container_internal::c_for_each_fast(
cm, [&v](const std::pair<const int, int>& p) { v.push_back(p); });
EXPECT_THAT(v, UnorderedElementsAreArray(expected));
}
{
SCOPED_TRACE("const object iteration");
std::vector<std::pair<int, int>> v;
absl::container_internal::c_for_each_fast(
flat_hash_map<int, int>(m),
[&v](std::pair<const int, int>& p) { v.push_back(p); });
EXPECT_THAT(v, UnorderedElementsAreArray(expected));
}
m[i] = i;
expected.emplace_back(i, i);
}
}
TEST(FlatHashMap, CForEachMutate) {
flat_hash_map<int, int> s;
std::vector<std::pair<int, int>> expected;
for (int i = 0; i < 100; ++i) {
std::vector<std::pair<int, int>> v;
absl::container_internal::c_for_each_fast(
s, [&v](std::pair<const int, int>& p) {
v.push_back(p);
p.second++;
});
EXPECT_THAT(v, UnorderedElementsAreArray(expected));
for (auto& p : expected) {
p.second++;
}
EXPECT_THAT(s, UnorderedElementsAreArray(expected));
s[i] = i;
expected.emplace_back(i, i);
}
}
// This test requires std::launder for mutable key access in node handles.
#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606
TEST(FlatHashMap, NodeHandleMutableKeyAccess) {
flat_hash_map<std::string, std::string> map;
map["key1"] = "mapped";
auto nh = map.extract(map.begin());
nh.key().resize(3);
map.insert(std::move(nh));
EXPECT_THAT(map, testing::ElementsAre(Pair("key", "mapped")));
}
#endif
TEST(FlatHashMap, Reserve) {
// Verify that if we reserve(size() + n) then we can perform n insertions
// without a rehash, i.e., without invalidating any references.
for (size_t trial = 0; trial < 20; ++trial) {
for (size_t initial = 3; initial < 100; ++initial) {
// Fill in `initial` entries, then erase 2 of them, then reserve space for
// two inserts and check for reference stability while doing the inserts.
flat_hash_map<size_t, size_t> map;
for (size_t i = 0; i < initial; ++i) {
map[i] = i;
}
map.erase(0);
map.erase(1);
map.reserve(map.size() + 2);
size_t& a2 = map[2];
// In the event of a failure, asan will complain in one of these two
// assignments.
map[initial] = a2;
map[initial + 1] = a2;
// Fail even when not under asan:
size_t& a2new = map[2];
EXPECT_EQ(&a2, &a2new);
}
}
}
TEST(FlatHashMap, RecursiveTypeCompiles) {
struct RecursiveType {
flat_hash_map<int, RecursiveType> m;
};
RecursiveType t;
t.m[0] = RecursiveType{};
}
TEST(FlatHashMap, FlatHashMapPolicyDestroyReturnsTrue) {
EXPECT_TRUE(
(decltype(FlatHashMapPolicy<int, char>::destroy<std::allocator<char>>(
nullptr, nullptr))()));
EXPECT_FALSE(
(decltype(FlatHashMapPolicy<int, char>::destroy<CountingAllocator<char>>(
nullptr, nullptr))()));
EXPECT_FALSE((decltype(FlatHashMapPolicy<int, std::unique_ptr<int>>::destroy<
std::allocator<char>>(nullptr, nullptr))()));
}
struct InconsistentHashEqType {
InconsistentHashEqType(int v1, int v2) : v1(v1), v2(v2) {}
template <typename H>
friend H AbslHashValue(H h, InconsistentHashEqType t) {
return H::combine(std::move(h), t.v1);
}
bool operator==(InconsistentHashEqType t) const { return v2 == t.v2; }
int v1, v2;
};
TEST(Iterator, InconsistentHashEqFunctorsValidation) {
if (!IsAssertEnabled()) GTEST_SKIP() << "Assertions not enabled.";
absl::flat_hash_map<InconsistentHashEqType, int> m;
for (int i = 0; i < 10; ++i) m[{i, i}] = 1;
// We need to insert multiple times to guarantee that we get the assertion
// because it's possible for the hash to collide with the inserted element
// that has v2==0. In those cases, the new element won't be inserted.
auto insert_conflicting_elems = [&] {
for (int i = 100; i < 20000; ++i) {
EXPECT_EQ((m[{i, 0}]), 1);
}
};
const char* crash_message = "hash/eq functors are inconsistent.";
#if defined(__arm__) || defined(__aarch64__)
// On ARM, the crash message is garbled so don't expect a specific message.
crash_message = "";
#endif
EXPECT_DEATH_IF_SUPPORTED(insert_conflicting_elems(), crash_message);
}
} // namespace
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl