| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: uniform_int_distribution.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header defines a class for representing a uniform integer distribution |
| // over the closed (inclusive) interval [a,b]. You use this distribution in |
| // combination with an Abseil random bit generator to produce random values |
| // according to the rules of the distribution. |
| // |
| // `absl::uniform_int_distribution` is a drop-in replacement for the C++11 |
| // `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably |
| // faster than the libstdc++ implementation. |
| |
| #ifndef ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_ |
| #define ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_ |
| |
| #include <cassert> |
| #include <istream> |
| #include <limits> |
| #include <type_traits> |
| |
| #include "absl/base/optimization.h" |
| #include "absl/random/internal/fast_uniform_bits.h" |
| #include "absl/random/internal/iostream_state_saver.h" |
| #include "absl/random/internal/traits.h" |
| #include "absl/random/internal/wide_multiply.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // absl::uniform_int_distribution<T> |
| // |
| // This distribution produces random integer values uniformly distributed in the |
| // closed (inclusive) interval [a, b]. |
| // |
| // Example: |
| // |
| // absl::BitGen gen; |
| // |
| // // Use the distribution to produce a value between 1 and 6, inclusive. |
| // int die_roll = absl::uniform_int_distribution<int>(1, 6)(gen); |
| // |
| template <typename IntType = int> |
| class uniform_int_distribution { |
| private: |
| using unsigned_type = |
| typename random_internal::make_unsigned_bits<IntType>::type; |
| |
| public: |
| using result_type = IntType; |
| |
| class param_type { |
| public: |
| using distribution_type = uniform_int_distribution; |
| |
| explicit param_type( |
| result_type lo = 0, |
| result_type hi = (std::numeric_limits<result_type>::max)()) |
| : lo_(lo), |
| range_(static_cast<unsigned_type>(hi) - |
| static_cast<unsigned_type>(lo)) { |
| // [rand.dist.uni.int] precondition 2 |
| assert(lo <= hi); |
| } |
| |
| result_type a() const { return lo_; } |
| result_type b() const { |
| return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_); |
| } |
| |
| friend bool operator==(const param_type& a, const param_type& b) { |
| return a.lo_ == b.lo_ && a.range_ == b.range_; |
| } |
| |
| friend bool operator!=(const param_type& a, const param_type& b) { |
| return !(a == b); |
| } |
| |
| private: |
| friend class uniform_int_distribution; |
| unsigned_type range() const { return range_; } |
| |
| result_type lo_; |
| unsigned_type range_; |
| |
| static_assert(random_internal::IsIntegral<result_type>::value, |
| "Class-template absl::uniform_int_distribution<> must be " |
| "parameterized using an integral type."); |
| }; // param_type |
| |
| uniform_int_distribution() : uniform_int_distribution(0) {} |
| |
| explicit uniform_int_distribution( |
| result_type lo, |
| result_type hi = (std::numeric_limits<result_type>::max)()) |
| : param_(lo, hi) {} |
| |
| explicit uniform_int_distribution(const param_type& param) : param_(param) {} |
| |
| // uniform_int_distribution<T>::reset() |
| // |
| // Resets the uniform int distribution. Note that this function has no effect |
| // because the distribution already produces independent values. |
| void reset() {} |
| |
| template <typename URBG> |
| result_type operator()(URBG& gen) { // NOLINT(runtime/references) |
| return (*this)(gen, param()); |
| } |
| |
| template <typename URBG> |
| result_type operator()( |
| URBG& gen, const param_type& param) { // NOLINT(runtime/references) |
| return static_cast<result_type>(param.a() + Generate(gen, param.range())); |
| } |
| |
| result_type a() const { return param_.a(); } |
| result_type b() const { return param_.b(); } |
| |
| param_type param() const { return param_; } |
| void param(const param_type& params) { param_ = params; } |
| |
| result_type(min)() const { return a(); } |
| result_type(max)() const { return b(); } |
| |
| friend bool operator==(const uniform_int_distribution& a, |
| const uniform_int_distribution& b) { |
| return a.param_ == b.param_; |
| } |
| friend bool operator!=(const uniform_int_distribution& a, |
| const uniform_int_distribution& b) { |
| return !(a == b); |
| } |
| |
| private: |
| // Generates a value in the *closed* interval [0, R] |
| template <typename URBG> |
| unsigned_type Generate(URBG& g, // NOLINT(runtime/references) |
| unsigned_type R); |
| param_type param_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation details follow |
| // ----------------------------------------------------------------------------- |
| template <typename CharT, typename Traits, typename IntType> |
| std::basic_ostream<CharT, Traits>& operator<<( |
| std::basic_ostream<CharT, Traits>& os, |
| const uniform_int_distribution<IntType>& x) { |
| using stream_type = |
| typename random_internal::stream_format_type<IntType>::type; |
| auto saver = random_internal::make_ostream_state_saver(os); |
| os << static_cast<stream_type>(x.a()) << os.fill() |
| << static_cast<stream_type>(x.b()); |
| return os; |
| } |
| |
| template <typename CharT, typename Traits, typename IntType> |
| std::basic_istream<CharT, Traits>& operator>>( |
| std::basic_istream<CharT, Traits>& is, |
| uniform_int_distribution<IntType>& x) { |
| using param_type = typename uniform_int_distribution<IntType>::param_type; |
| using result_type = typename uniform_int_distribution<IntType>::result_type; |
| using stream_type = |
| typename random_internal::stream_format_type<IntType>::type; |
| |
| stream_type a; |
| stream_type b; |
| |
| auto saver = random_internal::make_istream_state_saver(is); |
| is >> a >> b; |
| if (!is.fail()) { |
| x.param( |
| param_type(static_cast<result_type>(a), static_cast<result_type>(b))); |
| } |
| return is; |
| } |
| |
| template <typename IntType> |
| template <typename URBG> |
| typename random_internal::make_unsigned_bits<IntType>::type |
| uniform_int_distribution<IntType>::Generate( |
| URBG& g, // NOLINT(runtime/references) |
| typename random_internal::make_unsigned_bits<IntType>::type R) { |
| random_internal::FastUniformBits<unsigned_type> fast_bits; |
| unsigned_type bits = fast_bits(g); |
| const unsigned_type Lim = R + 1; |
| if ((R & Lim) == 0) { |
| // If the interval's length is a power of two range, just take the low bits. |
| return bits & R; |
| } |
| |
| // Generates a uniform variate on [0, Lim) using fixed-point multiplication. |
| // The above fast-path guarantees that Lim is representable in unsigned_type. |
| // |
| // Algorithm adapted from |
| // http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added |
| // explanation. |
| // |
| // The algorithm creates a uniform variate `bits` in the interval [0, 2^N), |
| // and treats it as the fractional part of a fixed-point real value in [0, 1), |
| // multiplied by 2^N. For example, 0.25 would be represented as 2^(N - 2), |
| // because 2^N * 0.25 == 2^(N - 2). |
| // |
| // Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the |
| // value into the range [0, Lim). The integral part (the high word of the |
| // multiplication result) is then very nearly the desired result. However, |
| // this is not quite accurate; viewing the multiplication result as one |
| // double-width integer, the resulting values for the sample are mapped as |
| // follows: |
| // |
| // If the result lies in this interval: Return this value: |
| // [0, 2^N) 0 |
| // [2^N, 2 * 2^N) 1 |
| // ... ... |
| // [K * 2^N, (K + 1) * 2^N) K |
| // ... ... |
| // [(Lim - 1) * 2^N, Lim * 2^N) Lim - 1 |
| // |
| // While all of these intervals have the same size, the result of `bits * Lim` |
| // must be a multiple of `Lim`, and not all of these intervals contain the |
| // same number of multiples of `Lim`. In particular, some contain |
| // `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`. This |
| // difference produces a small nonuniformity, which is corrected by applying |
| // rejection sampling to one of the values in the "larger intervals" (i.e., |
| // the intervals containing `F + 1` multiples of `Lim`. |
| // |
| // An interval contains `F + 1` multiples of `Lim` if and only if its smallest |
| // value modulo 2^N is less than `2^N % Lim`. The unique value satisfying |
| // this property is used as the one for rejection. That is, a value of |
| // `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`. |
| |
| using helper = random_internal::wide_multiply<unsigned_type>; |
| auto product = helper::multiply(bits, Lim); |
| |
| // Two optimizations here: |
| // * Rejection occurs with some probability less than 1/2, and for reasonable |
| // ranges considerably less (in particular, less than 1/(F+1)), so |
| // ABSL_PREDICT_FALSE is apt. |
| // * `Lim` is an overestimate of `threshold`, and doesn't require a divide. |
| if (ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) { |
| // This quantity is exactly equal to `2^N % Lim`, but does not require high |
| // precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`. |
| // Ideally this could be expressed simply as `-X` rather than `2^N - X`, but |
| // for types smaller than int, this calculation is incorrect due to integer |
| // promotion rules. |
| const unsigned_type threshold = |
| ((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim; |
| while (helper::lo(product) < threshold) { |
| bits = fast_bits(g); |
| product = helper::multiply(bits, Lim); |
| } |
| } |
| |
| return helper::hi(product); |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_ |