| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/synchronization/internal/graphcycles.h" |
| |
| #include <map> |
| #include <random> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/macros.h" |
| |
| namespace absl { |
| inline namespace lts_2018_06_20 { |
| namespace synchronization_internal { |
| |
| // We emulate a GraphCycles object with a node vector and an edge vector. |
| // We then compare the two implementations. |
| |
| using Nodes = std::vector<int>; |
| struct Edge { |
| int from; |
| int to; |
| }; |
| using Edges = std::vector<Edge>; |
| using RandomEngine = std::mt19937_64; |
| |
| // Mapping from integer index to GraphId. |
| typedef std::map<int, GraphId> IdMap; |
| static GraphId Get(const IdMap& id, int num) { |
| auto iter = id.find(num); |
| return (iter == id.end()) ? InvalidGraphId() : iter->second; |
| } |
| |
| // Return whether "to" is reachable from "from". |
| static bool IsReachable(Edges *edges, int from, int to, |
| std::unordered_set<int> *seen) { |
| seen->insert(from); // we are investigating "from"; don't do it again |
| if (from == to) return true; |
| for (const auto &edge : *edges) { |
| if (edge.from == from) { |
| if (edge.to == to) { // success via edge directly |
| return true; |
| } else if (seen->find(edge.to) == seen->end() && // success via edge |
| IsReachable(edges, edge.to, to, seen)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| static void PrintEdges(Edges *edges) { |
| ABSL_RAW_LOG(INFO, "EDGES (%zu)", edges->size()); |
| for (const auto &edge : *edges) { |
| int a = edge.from; |
| int b = edge.to; |
| ABSL_RAW_LOG(INFO, "%d %d", a, b); |
| } |
| ABSL_RAW_LOG(INFO, "---"); |
| } |
| |
| static void PrintGCEdges(Nodes *nodes, const IdMap &id, GraphCycles *gc) { |
| ABSL_RAW_LOG(INFO, "GC EDGES"); |
| for (int a : *nodes) { |
| for (int b : *nodes) { |
| if (gc->HasEdge(Get(id, a), Get(id, b))) { |
| ABSL_RAW_LOG(INFO, "%d %d", a, b); |
| } |
| } |
| } |
| ABSL_RAW_LOG(INFO, "---"); |
| } |
| |
| static void PrintTransitiveClosure(Nodes *nodes, Edges *edges) { |
| ABSL_RAW_LOG(INFO, "Transitive closure"); |
| for (int a : *nodes) { |
| for (int b : *nodes) { |
| std::unordered_set<int> seen; |
| if (IsReachable(edges, a, b, &seen)) { |
| ABSL_RAW_LOG(INFO, "%d %d", a, b); |
| } |
| } |
| } |
| ABSL_RAW_LOG(INFO, "---"); |
| } |
| |
| static void PrintGCTransitiveClosure(Nodes *nodes, const IdMap &id, |
| GraphCycles *gc) { |
| ABSL_RAW_LOG(INFO, "GC Transitive closure"); |
| for (int a : *nodes) { |
| for (int b : *nodes) { |
| if (gc->IsReachable(Get(id, a), Get(id, b))) { |
| ABSL_RAW_LOG(INFO, "%d %d", a, b); |
| } |
| } |
| } |
| ABSL_RAW_LOG(INFO, "---"); |
| } |
| |
| static void CheckTransitiveClosure(Nodes *nodes, Edges *edges, const IdMap &id, |
| GraphCycles *gc) { |
| std::unordered_set<int> seen; |
| for (const auto &a : *nodes) { |
| for (const auto &b : *nodes) { |
| seen.clear(); |
| bool gc_reachable = gc->IsReachable(Get(id, a), Get(id, b)); |
| bool reachable = IsReachable(edges, a, b, &seen); |
| if (gc_reachable != reachable) { |
| PrintEdges(edges); |
| PrintGCEdges(nodes, id, gc); |
| PrintTransitiveClosure(nodes, edges); |
| PrintGCTransitiveClosure(nodes, id, gc); |
| ABSL_RAW_LOG(FATAL, "gc_reachable %s reachable %s a %d b %d", |
| gc_reachable ? "true" : "false", |
| reachable ? "true" : "false", a, b); |
| } |
| } |
| } |
| } |
| |
| static void CheckEdges(Nodes *nodes, Edges *edges, const IdMap &id, |
| GraphCycles *gc) { |
| int count = 0; |
| for (const auto &edge : *edges) { |
| int a = edge.from; |
| int b = edge.to; |
| if (!gc->HasEdge(Get(id, a), Get(id, b))) { |
| PrintEdges(edges); |
| PrintGCEdges(nodes, id, gc); |
| ABSL_RAW_LOG(FATAL, "!gc->HasEdge(%d, %d)", a, b); |
| } |
| } |
| for (const auto &a : *nodes) { |
| for (const auto &b : *nodes) { |
| if (gc->HasEdge(Get(id, a), Get(id, b))) { |
| count++; |
| } |
| } |
| } |
| if (count != edges->size()) { |
| PrintEdges(edges); |
| PrintGCEdges(nodes, id, gc); |
| ABSL_RAW_LOG(FATAL, "edges->size() %zu count %d", edges->size(), count); |
| } |
| } |
| |
| static void CheckInvariants(const GraphCycles &gc) { |
| if (ABSL_PREDICT_FALSE(!gc.CheckInvariants())) |
| ABSL_RAW_LOG(FATAL, "CheckInvariants"); |
| } |
| |
| // Returns the index of a randomly chosen node in *nodes. |
| // Requires *nodes be non-empty. |
| static int RandomNode(RandomEngine* rng, Nodes *nodes) { |
| std::uniform_int_distribution<int> uniform(0, nodes->size()-1); |
| return uniform(*rng); |
| } |
| |
| // Returns the index of a randomly chosen edge in *edges. |
| // Requires *edges be non-empty. |
| static int RandomEdge(RandomEngine* rng, Edges *edges) { |
| std::uniform_int_distribution<int> uniform(0, edges->size()-1); |
| return uniform(*rng); |
| } |
| |
| // Returns the index of edge (from, to) in *edges or -1 if it is not in *edges. |
| static int EdgeIndex(Edges *edges, int from, int to) { |
| int i = 0; |
| while (i != edges->size() && |
| ((*edges)[i].from != from || (*edges)[i].to != to)) { |
| i++; |
| } |
| return i == edges->size()? -1 : i; |
| } |
| |
| TEST(GraphCycles, RandomizedTest) { |
| int next_node = 0; |
| Nodes nodes; |
| Edges edges; // from, to |
| IdMap id; |
| GraphCycles graph_cycles; |
| static const int kMaxNodes = 7; // use <= 7 nodes to keep test short |
| static const int kDataOffset = 17; // an offset to the node-specific data |
| int n = 100000; |
| int op = 0; |
| RandomEngine rng(testing::UnitTest::GetInstance()->random_seed()); |
| std::uniform_int_distribution<int> uniform(0, 5); |
| |
| auto ptr = [](intptr_t i) { |
| return reinterpret_cast<void*>(i + kDataOffset); |
| }; |
| |
| for (int iter = 0; iter != n; iter++) { |
| for (const auto &node : nodes) { |
| ASSERT_EQ(graph_cycles.Ptr(Get(id, node)), ptr(node)) << " node " << node; |
| } |
| CheckEdges(&nodes, &edges, id, &graph_cycles); |
| CheckTransitiveClosure(&nodes, &edges, id, &graph_cycles); |
| op = uniform(rng); |
| switch (op) { |
| case 0: // Add a node |
| if (nodes.size() < kMaxNodes) { |
| int new_node = next_node++; |
| GraphId new_gnode = graph_cycles.GetId(ptr(new_node)); |
| ASSERT_NE(new_gnode, InvalidGraphId()); |
| id[new_node] = new_gnode; |
| ASSERT_EQ(ptr(new_node), graph_cycles.Ptr(new_gnode)); |
| nodes.push_back(new_node); |
| } |
| break; |
| |
| case 1: // Remove a node |
| if (nodes.size() > 0) { |
| int node_index = RandomNode(&rng, &nodes); |
| int node = nodes[node_index]; |
| nodes[node_index] = nodes.back(); |
| nodes.pop_back(); |
| graph_cycles.RemoveNode(ptr(node)); |
| ASSERT_EQ(graph_cycles.Ptr(Get(id, node)), nullptr); |
| id.erase(node); |
| int i = 0; |
| while (i != edges.size()) { |
| if (edges[i].from == node || edges[i].to == node) { |
| edges[i] = edges.back(); |
| edges.pop_back(); |
| } else { |
| i++; |
| } |
| } |
| } |
| break; |
| |
| case 2: // Add an edge |
| if (nodes.size() > 0) { |
| int from = RandomNode(&rng, &nodes); |
| int to = RandomNode(&rng, &nodes); |
| if (EdgeIndex(&edges, nodes[from], nodes[to]) == -1) { |
| if (graph_cycles.InsertEdge(id[nodes[from]], id[nodes[to]])) { |
| Edge new_edge; |
| new_edge.from = nodes[from]; |
| new_edge.to = nodes[to]; |
| edges.push_back(new_edge); |
| } else { |
| std::unordered_set<int> seen; |
| ASSERT_TRUE(IsReachable(&edges, nodes[to], nodes[from], &seen)) |
| << "Edge " << nodes[to] << "->" << nodes[from]; |
| } |
| } |
| } |
| break; |
| |
| case 3: // Remove an edge |
| if (edges.size() > 0) { |
| int i = RandomEdge(&rng, &edges); |
| int from = edges[i].from; |
| int to = edges[i].to; |
| ASSERT_EQ(i, EdgeIndex(&edges, from, to)); |
| edges[i] = edges.back(); |
| edges.pop_back(); |
| ASSERT_EQ(-1, EdgeIndex(&edges, from, to)); |
| graph_cycles.RemoveEdge(id[from], id[to]); |
| } |
| break; |
| |
| case 4: // Check a path |
| if (nodes.size() > 0) { |
| int from = RandomNode(&rng, &nodes); |
| int to = RandomNode(&rng, &nodes); |
| GraphId path[2*kMaxNodes]; |
| int path_len = graph_cycles.FindPath(id[nodes[from]], id[nodes[to]], |
| ABSL_ARRAYSIZE(path), path); |
| std::unordered_set<int> seen; |
| bool reachable = IsReachable(&edges, nodes[from], nodes[to], &seen); |
| bool gc_reachable = |
| graph_cycles.IsReachable(Get(id, nodes[from]), Get(id, nodes[to])); |
| ASSERT_EQ(path_len != 0, reachable); |
| ASSERT_EQ(path_len != 0, gc_reachable); |
| // In the following line, we add one because a node can appear |
| // twice, if the path is from that node to itself, perhaps via |
| // every other node. |
| ASSERT_LE(path_len, kMaxNodes + 1); |
| if (path_len != 0) { |
| ASSERT_EQ(id[nodes[from]], path[0]); |
| ASSERT_EQ(id[nodes[to]], path[path_len-1]); |
| for (int i = 1; i < path_len; i++) { |
| ASSERT_TRUE(graph_cycles.HasEdge(path[i-1], path[i])); |
| } |
| } |
| } |
| break; |
| |
| case 5: // Check invariants |
| CheckInvariants(graph_cycles); |
| break; |
| |
| default: |
| ABSL_RAW_LOG(FATAL, "op %d", op); |
| } |
| |
| // Very rarely, test graph expansion by adding then removing many nodes. |
| std::bernoulli_distribution one_in_1024(1.0 / 1024); |
| if (one_in_1024(rng)) { |
| CheckEdges(&nodes, &edges, id, &graph_cycles); |
| CheckTransitiveClosure(&nodes, &edges, id, &graph_cycles); |
| for (int i = 0; i != 256; i++) { |
| int new_node = next_node++; |
| GraphId new_gnode = graph_cycles.GetId(ptr(new_node)); |
| ASSERT_NE(InvalidGraphId(), new_gnode); |
| id[new_node] = new_gnode; |
| ASSERT_EQ(ptr(new_node), graph_cycles.Ptr(new_gnode)); |
| for (const auto &node : nodes) { |
| ASSERT_NE(node, new_node); |
| } |
| nodes.push_back(new_node); |
| } |
| for (int i = 0; i != 256; i++) { |
| ASSERT_GT(nodes.size(), 0); |
| int node_index = RandomNode(&rng, &nodes); |
| int node = nodes[node_index]; |
| nodes[node_index] = nodes.back(); |
| nodes.pop_back(); |
| graph_cycles.RemoveNode(ptr(node)); |
| id.erase(node); |
| int j = 0; |
| while (j != edges.size()) { |
| if (edges[j].from == node || edges[j].to == node) { |
| edges[j] = edges.back(); |
| edges.pop_back(); |
| } else { |
| j++; |
| } |
| } |
| } |
| CheckInvariants(graph_cycles); |
| } |
| } |
| } |
| |
| class GraphCyclesTest : public ::testing::Test { |
| public: |
| IdMap id_; |
| GraphCycles g_; |
| |
| static void* Ptr(int i) { |
| return reinterpret_cast<void*>(static_cast<uintptr_t>(i)); |
| } |
| |
| static int Num(void* ptr) { |
| return static_cast<int>(reinterpret_cast<uintptr_t>(ptr)); |
| } |
| |
| // Test relies on ith NewNode() call returning Node numbered i |
| GraphCyclesTest() { |
| for (int i = 0; i < 100; i++) { |
| id_[i] = g_.GetId(Ptr(i)); |
| } |
| CheckInvariants(g_); |
| } |
| |
| bool AddEdge(int x, int y) { |
| return g_.InsertEdge(Get(id_, x), Get(id_, y)); |
| } |
| |
| void AddMultiples() { |
| // For every node x > 0: add edge to 2*x, 3*x |
| for (int x = 1; x < 25; x++) { |
| EXPECT_TRUE(AddEdge(x, 2*x)) << x; |
| EXPECT_TRUE(AddEdge(x, 3*x)) << x; |
| } |
| CheckInvariants(g_); |
| } |
| |
| std::string Path(int x, int y) { |
| GraphId path[5]; |
| int np = g_.FindPath(Get(id_, x), Get(id_, y), ABSL_ARRAYSIZE(path), path); |
| std::string result; |
| for (int i = 0; i < np; i++) { |
| if (i >= ABSL_ARRAYSIZE(path)) { |
| result += " ..."; |
| break; |
| } |
| if (!result.empty()) result.push_back(' '); |
| char buf[20]; |
| snprintf(buf, sizeof(buf), "%d", Num(g_.Ptr(path[i]))); |
| result += buf; |
| } |
| return result; |
| } |
| }; |
| |
| TEST_F(GraphCyclesTest, NoCycle) { |
| AddMultiples(); |
| CheckInvariants(g_); |
| } |
| |
| TEST_F(GraphCyclesTest, SimpleCycle) { |
| AddMultiples(); |
| EXPECT_FALSE(AddEdge(8, 4)); |
| EXPECT_EQ("4 8", Path(4, 8)); |
| CheckInvariants(g_); |
| } |
| |
| TEST_F(GraphCyclesTest, IndirectCycle) { |
| AddMultiples(); |
| EXPECT_TRUE(AddEdge(16, 9)); |
| CheckInvariants(g_); |
| EXPECT_FALSE(AddEdge(9, 2)); |
| EXPECT_EQ("2 4 8 16 9", Path(2, 9)); |
| CheckInvariants(g_); |
| } |
| |
| TEST_F(GraphCyclesTest, LongPath) { |
| ASSERT_TRUE(AddEdge(2, 4)); |
| ASSERT_TRUE(AddEdge(4, 6)); |
| ASSERT_TRUE(AddEdge(6, 8)); |
| ASSERT_TRUE(AddEdge(8, 10)); |
| ASSERT_TRUE(AddEdge(10, 12)); |
| ASSERT_FALSE(AddEdge(12, 2)); |
| EXPECT_EQ("2 4 6 8 10 ...", Path(2, 12)); |
| CheckInvariants(g_); |
| } |
| |
| TEST_F(GraphCyclesTest, RemoveNode) { |
| ASSERT_TRUE(AddEdge(1, 2)); |
| ASSERT_TRUE(AddEdge(2, 3)); |
| ASSERT_TRUE(AddEdge(3, 4)); |
| ASSERT_TRUE(AddEdge(4, 5)); |
| g_.RemoveNode(g_.Ptr(id_[3])); |
| id_.erase(3); |
| ASSERT_TRUE(AddEdge(5, 1)); |
| } |
| |
| TEST_F(GraphCyclesTest, ManyEdges) { |
| const int N = 50; |
| for (int i = 0; i < N; i++) { |
| for (int j = 1; j < N; j++) { |
| ASSERT_TRUE(AddEdge(i, i+j)); |
| } |
| } |
| CheckInvariants(g_); |
| ASSERT_TRUE(AddEdge(2*N-1, 0)); |
| CheckInvariants(g_); |
| ASSERT_FALSE(AddEdge(10, 9)); |
| CheckInvariants(g_); |
| } |
| |
| } // namespace synchronization_internal |
| } // inline namespace lts_2018_06_20 |
| } // namespace absl |