| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
| #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
| |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <memory> |
| #include <new> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/config.h" |
| #include "absl/memory/memory.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/utility/utility.h" |
| |
| #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
| #include <sanitizer/asan_interface.h> |
| #endif |
| |
| #ifdef ABSL_HAVE_MEMORY_SANITIZER |
| #include <sanitizer/msan_interface.h> |
| #endif |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| |
| template <size_t Alignment> |
| struct alignas(Alignment) AlignedType {}; |
| |
| // Allocates at least n bytes aligned to the specified alignment. |
| // Alignment must be a power of 2. It must be positive. |
| // |
| // Note that many allocators don't honor alignment requirements above certain |
| // threshold (usually either alignof(std::max_align_t) or alignof(void*)). |
| // Allocate() doesn't apply alignment corrections. If the underlying allocator |
| // returns insufficiently alignment pointer, that's what you are going to get. |
| template <size_t Alignment, class Alloc> |
| void* Allocate(Alloc* alloc, size_t n) { |
| static_assert(Alignment > 0, ""); |
| assert(n && "n must be positive"); |
| using M = AlignedType<Alignment>; |
| using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
| using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
| // On macOS, "mem_alloc" is a #define with one argument defined in |
| // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it |
| // with the "foo(bar)" syntax. |
| A my_mem_alloc(*alloc); |
| void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); |
| assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && |
| "allocator does not respect alignment"); |
| return p; |
| } |
| |
| // Returns true if the destruction of the value with given Allocator will be |
| // trivial. |
| template <class Allocator, class ValueType> |
| constexpr auto IsDestructionTrivial() { |
| constexpr bool result = |
| std::is_trivially_destructible<ValueType>::value && |
| std::is_same<typename absl::allocator_traits< |
| Allocator>::template rebind_alloc<char>, |
| std::allocator<char>>::value; |
| return std::integral_constant<bool, result>(); |
| } |
| |
| // The pointer must have been previously obtained by calling |
| // Allocate<Alignment>(alloc, n). |
| template <size_t Alignment, class Alloc> |
| void Deallocate(Alloc* alloc, void* p, size_t n) { |
| static_assert(Alignment > 0, ""); |
| assert(n && "n must be positive"); |
| using M = AlignedType<Alignment>; |
| using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
| using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
| // On macOS, "mem_alloc" is a #define with one argument defined in |
| // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it |
| // with the "foo(bar)" syntax. |
| A my_mem_alloc(*alloc); |
| AT::deallocate(my_mem_alloc, static_cast<M*>(p), |
| (n + sizeof(M) - 1) / sizeof(M)); |
| } |
| |
| namespace memory_internal { |
| |
| // Constructs T into uninitialized storage pointed by `ptr` using the args |
| // specified in the tuple. |
| template <class Alloc, class T, class Tuple, size_t... I> |
| void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t, |
| absl::index_sequence<I...>) { |
| absl::allocator_traits<Alloc>::construct( |
| *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...); |
| } |
| |
| template <class T, class F> |
| struct WithConstructedImplF { |
| template <class... Args> |
| decltype(std::declval<F>()(std::declval<T>())) operator()( |
| Args&&... args) const { |
| return std::forward<F>(f)(T(std::forward<Args>(args)...)); |
| } |
| F&& f; |
| }; |
| |
| template <class T, class Tuple, size_t... Is, class F> |
| decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl( |
| Tuple&& t, absl::index_sequence<Is...>, F&& f) { |
| return WithConstructedImplF<T, F>{std::forward<F>(f)}( |
| std::get<Is>(std::forward<Tuple>(t))...); |
| } |
| |
| template <class T, size_t... Is> |
| auto TupleRefImpl(T&& t, absl::index_sequence<Is...>) |
| -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) { |
| return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...); |
| } |
| |
| // Returns a tuple of references to the elements of the input tuple. T must be a |
| // tuple. |
| template <class T> |
| auto TupleRef(T&& t) -> decltype(TupleRefImpl( |
| std::forward<T>(t), |
| absl::make_index_sequence< |
| std::tuple_size<typename std::decay<T>::type>::value>())) { |
| return TupleRefImpl( |
| std::forward<T>(t), |
| absl::make_index_sequence< |
| std::tuple_size<typename std::decay<T>::type>::value>()); |
| } |
| |
| template <class F, class K, class V> |
| decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct, |
| std::declval<std::tuple<K>>(), std::declval<V>())) |
| DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) { |
| const auto& key = std::get<0>(p.first); |
| return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), |
| std::move(p.second)); |
| } |
| |
| } // namespace memory_internal |
| |
| // Constructs T into uninitialized storage pointed by `ptr` using the args |
| // specified in the tuple. |
| template <class Alloc, class T, class Tuple> |
| void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) { |
| memory_internal::ConstructFromTupleImpl( |
| alloc, ptr, std::forward<Tuple>(t), |
| absl::make_index_sequence< |
| std::tuple_size<typename std::decay<Tuple>::type>::value>()); |
| } |
| |
| // Constructs T using the args specified in the tuple and calls F with the |
| // constructed value. |
| template <class T, class Tuple, class F> |
| decltype(std::declval<F>()(std::declval<T>())) WithConstructed(Tuple&& t, |
| F&& f) { |
| return memory_internal::WithConstructedImpl<T>( |
| std::forward<Tuple>(t), |
| absl::make_index_sequence< |
| std::tuple_size<typename std::decay<Tuple>::type>::value>(), |
| std::forward<F>(f)); |
| } |
| |
| // Given arguments of an std::pair's constructor, PairArgs() returns a pair of |
| // tuples with references to the passed arguments. The tuples contain |
| // constructor arguments for the first and the second elements of the pair. |
| // |
| // The following two snippets are equivalent. |
| // |
| // 1. std::pair<F, S> p(args...); |
| // |
| // 2. auto a = PairArgs(args...); |
| // std::pair<F, S> p(std::piecewise_construct, |
| // std::move(a.first), std::move(a.second)); |
| inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; } |
| template <class F, class S> |
| std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) { |
| return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)), |
| std::forward_as_tuple(std::forward<S>(s))}; |
| } |
| template <class F, class S> |
| std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs( |
| const std::pair<F, S>& p) { |
| return PairArgs(p.first, p.second); |
| } |
| template <class F, class S> |
| std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) { |
| return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second)); |
| } |
| template <class F, class S> |
| auto PairArgs(std::piecewise_construct_t, F&& f, S&& s) |
| -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
| memory_internal::TupleRef(std::forward<S>(s)))) { |
| return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
| memory_internal::TupleRef(std::forward<S>(s))); |
| } |
| |
| // A helper function for implementing apply() in map policies. |
| template <class F, class... Args> |
| auto DecomposePair(F&& f, Args&&... args) |
| -> decltype(memory_internal::DecomposePairImpl( |
| std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) { |
| return memory_internal::DecomposePairImpl( |
| std::forward<F>(f), PairArgs(std::forward<Args>(args)...)); |
| } |
| |
| // A helper function for implementing apply() in set policies. |
| template <class F, class Arg> |
| decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>())) |
| DecomposeValue(F&& f, Arg&& arg) { |
| const auto& key = arg; |
| return std::forward<F>(f)(key, std::forward<Arg>(arg)); |
| } |
| |
| // Helper functions for asan and msan. |
| inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { |
| #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
| ASAN_POISON_MEMORY_REGION(m, s); |
| #endif |
| #ifdef ABSL_HAVE_MEMORY_SANITIZER |
| __msan_poison(m, s); |
| #endif |
| (void)m; |
| (void)s; |
| } |
| |
| inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { |
| #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
| ASAN_UNPOISON_MEMORY_REGION(m, s); |
| #endif |
| #ifdef ABSL_HAVE_MEMORY_SANITIZER |
| __msan_unpoison(m, s); |
| #endif |
| (void)m; |
| (void)s; |
| } |
| |
| template <typename T> |
| inline void SanitizerPoisonObject(const T* object) { |
| SanitizerPoisonMemoryRegion(object, sizeof(T)); |
| } |
| |
| template <typename T> |
| inline void SanitizerUnpoisonObject(const T* object) { |
| SanitizerUnpoisonMemoryRegion(object, sizeof(T)); |
| } |
| |
| namespace memory_internal { |
| |
| // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and |
| // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and |
| // offsetof(Pair, second) respectively. Otherwise they are -1. |
| // |
| // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout |
| // type, which is non-portable. |
| template <class Pair, class = std::true_type> |
| struct OffsetOf { |
| static constexpr size_t kFirst = static_cast<size_t>(-1); |
| static constexpr size_t kSecond = static_cast<size_t>(-1); |
| }; |
| |
| template <class Pair> |
| struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> { |
| static constexpr size_t kFirst = offsetof(Pair, first); |
| static constexpr size_t kSecond = offsetof(Pair, second); |
| }; |
| |
| template <class K, class V> |
| struct IsLayoutCompatible { |
| private: |
| struct Pair { |
| K first; |
| V second; |
| }; |
| |
| // Is P layout-compatible with Pair? |
| template <class P> |
| static constexpr bool LayoutCompatible() { |
| return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) && |
| alignof(P) == alignof(Pair) && |
| memory_internal::OffsetOf<P>::kFirst == |
| memory_internal::OffsetOf<Pair>::kFirst && |
| memory_internal::OffsetOf<P>::kSecond == |
| memory_internal::OffsetOf<Pair>::kSecond; |
| } |
| |
| public: |
| // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are, |
| // then it is safe to store them in a union and read from either. |
| static constexpr bool value = std::is_standard_layout<K>() && |
| std::is_standard_layout<Pair>() && |
| memory_internal::OffsetOf<Pair>::kFirst == 0 && |
| LayoutCompatible<std::pair<K, V>>() && |
| LayoutCompatible<std::pair<const K, V>>(); |
| }; |
| |
| } // namespace memory_internal |
| |
| // The internal storage type for key-value containers like flat_hash_map. |
| // |
| // It is convenient for the value_type of a flat_hash_map<K, V> to be |
| // pair<const K, V>; the "const K" prevents accidental modification of the key |
| // when dealing with the reference returned from find() and similar methods. |
| // However, this creates other problems; we want to be able to emplace(K, V) |
| // efficiently with move operations, and similarly be able to move a |
| // pair<K, V> in insert(). |
| // |
| // The solution is this union, which aliases the const and non-const versions |
| // of the pair. This also allows flat_hash_map<const K, V> to work, even though |
| // that has the same efficiency issues with move in emplace() and insert() - |
| // but people do it anyway. |
| // |
| // If kMutableKeys is false, only the value member can be accessed. |
| // |
| // If kMutableKeys is true, key can be accessed through all slots while value |
| // and mutable_value must be accessed only via INITIALIZED slots. Slots are |
| // created and destroyed via mutable_value so that the key can be moved later. |
| // |
| // Accessing one of the union fields while the other is active is safe as |
| // long as they are layout-compatible, which is guaranteed by the definition of |
| // kMutableKeys. For C++11, the relevant section of the standard is |
| // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19) |
| template <class K, class V> |
| union map_slot_type { |
| map_slot_type() {} |
| ~map_slot_type() = delete; |
| using value_type = std::pair<const K, V>; |
| using mutable_value_type = |
| std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>; |
| |
| value_type value; |
| mutable_value_type mutable_value; |
| absl::remove_const_t<K> key; |
| }; |
| |
| template <class K, class V> |
| struct map_slot_policy { |
| using slot_type = map_slot_type<K, V>; |
| using value_type = std::pair<const K, V>; |
| using mutable_value_type = |
| std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>; |
| |
| private: |
| static void emplace(slot_type* slot) { |
| // The construction of union doesn't do anything at runtime but it allows us |
| // to access its members without violating aliasing rules. |
| new (slot) slot_type; |
| } |
| // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one |
| // or the other via slot_type. We are also free to access the key via |
| // slot_type::key in this case. |
| using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>; |
| |
| public: |
| static value_type& element(slot_type* slot) { return slot->value; } |
| static const value_type& element(const slot_type* slot) { |
| return slot->value; |
| } |
| |
| // When C++17 is available, we can use std::launder to provide mutable |
| // access to the key for use in node handle. |
| #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 |
| static K& mutable_key(slot_type* slot) { |
| // Still check for kMutableKeys so that we can avoid calling std::launder |
| // unless necessary because it can interfere with optimizations. |
| return kMutableKeys::value ? slot->key |
| : *std::launder(const_cast<K*>( |
| std::addressof(slot->value.first))); |
| } |
| #else // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606) |
| static const K& mutable_key(slot_type* slot) { return key(slot); } |
| #endif |
| |
| static const K& key(const slot_type* slot) { |
| return kMutableKeys::value ? slot->key : slot->value.first; |
| } |
| |
| template <class Allocator, class... Args> |
| static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
| emplace(slot); |
| if (kMutableKeys::value) { |
| absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value, |
| std::forward<Args>(args)...); |
| } else { |
| absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
| std::forward<Args>(args)...); |
| } |
| } |
| |
| // Construct this slot by moving from another slot. |
| template <class Allocator> |
| static void construct(Allocator* alloc, slot_type* slot, slot_type* other) { |
| emplace(slot); |
| if (kMutableKeys::value) { |
| absl::allocator_traits<Allocator>::construct( |
| *alloc, &slot->mutable_value, std::move(other->mutable_value)); |
| } else { |
| absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
| std::move(other->value)); |
| } |
| } |
| |
| // Construct this slot by copying from another slot. |
| template <class Allocator> |
| static void construct(Allocator* alloc, slot_type* slot, |
| const slot_type* other) { |
| emplace(slot); |
| absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
| other->value); |
| } |
| |
| template <class Allocator> |
| static auto destroy(Allocator* alloc, slot_type* slot) { |
| if (kMutableKeys::value) { |
| absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value); |
| } else { |
| absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value); |
| } |
| return IsDestructionTrivial<Allocator, value_type>(); |
| } |
| |
| template <class Allocator> |
| static auto transfer(Allocator* alloc, slot_type* new_slot, |
| slot_type* old_slot) { |
| auto is_relocatable = |
| typename absl::is_trivially_relocatable<value_type>::type(); |
| |
| emplace(new_slot); |
| #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 |
| if (is_relocatable) { |
| // TODO(b/247130232,b/251814870): remove casts after fixing warnings. |
| std::memcpy(static_cast<void*>(std::launder(&new_slot->value)), |
| static_cast<const void*>(&old_slot->value), |
| sizeof(value_type)); |
| return is_relocatable; |
| } |
| #endif |
| |
| if (kMutableKeys::value) { |
| absl::allocator_traits<Allocator>::construct( |
| *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value)); |
| } else { |
| absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value, |
| std::move(old_slot->value)); |
| } |
| destroy(alloc, old_slot); |
| return is_relocatable; |
| } |
| }; |
| |
| // Type erased function for computing hash of the slot. |
| using HashSlotFn = size_t (*)(const void* hash_fn, void* slot); |
| |
| // Type erased function to apply `Fn` to data inside of the `slot`. |
| // The data is expected to have type `T`. |
| template <class Fn, class T> |
| size_t TypeErasedApplyToSlotFn(const void* fn, void* slot) { |
| const auto* f = static_cast<const Fn*>(fn); |
| return (*f)(*static_cast<const T*>(slot)); |
| } |
| |
| // Type erased function to apply `Fn` to data inside of the `*slot_ptr`. |
| // The data is expected to have type `T`. |
| template <class Fn, class T> |
| size_t TypeErasedDerefAndApplyToSlotFn(const void* fn, void* slot_ptr) { |
| const auto* f = static_cast<const Fn*>(fn); |
| const T* slot = *static_cast<const T**>(slot_ptr); |
| return (*f)(*slot); |
| } |
| |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |