| // |
| // Copyright 2019 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_FLAGS_INTERNAL_FLAG_H_ |
| #define ABSL_FLAGS_INTERNAL_FLAG_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <atomic> |
| #include <cstring> |
| #include <memory> |
| #include <string> |
| #include <type_traits> |
| #include <typeinfo> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/call_once.h" |
| #include "absl/base/casts.h" |
| #include "absl/base/config.h" |
| #include "absl/base/optimization.h" |
| #include "absl/base/thread_annotations.h" |
| #include "absl/flags/commandlineflag.h" |
| #include "absl/flags/config.h" |
| #include "absl/flags/internal/commandlineflag.h" |
| #include "absl/flags/internal/registry.h" |
| #include "absl/flags/internal/sequence_lock.h" |
| #include "absl/flags/marshalling.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/synchronization/mutex.h" |
| #include "absl/utility/utility.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Forward declaration of absl::Flag<T> public API. |
| namespace flags_internal { |
| template <typename T> |
| class Flag; |
| } // namespace flags_internal |
| |
| template <typename T> |
| using Flag = flags_internal::Flag<T>; |
| |
| template <typename T> |
| ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag); |
| |
| template <typename T> |
| void SetFlag(absl::Flag<T>* flag, const T& v); |
| |
| template <typename T, typename V> |
| void SetFlag(absl::Flag<T>* flag, const V& v); |
| |
| template <typename U> |
| const CommandLineFlag& GetFlagReflectionHandle(const absl::Flag<U>& f); |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Flag value type operations, eg., parsing, copying, etc. are provided |
| // by function specific to that type with a signature matching FlagOpFn. |
| |
| namespace flags_internal { |
| |
| enum class FlagOp { |
| kAlloc, |
| kDelete, |
| kCopy, |
| kCopyConstruct, |
| kSizeof, |
| kFastTypeId, |
| kRuntimeTypeId, |
| kParse, |
| kUnparse, |
| kValueOffset, |
| }; |
| using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*); |
| |
| // Forward declaration for Flag value specific operations. |
| template <typename T> |
| void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3); |
| |
| // Allocate aligned memory for a flag value. |
| inline void* Alloc(FlagOpFn op) { |
| return op(FlagOp::kAlloc, nullptr, nullptr, nullptr); |
| } |
| // Deletes memory interpreting obj as flag value type pointer. |
| inline void Delete(FlagOpFn op, void* obj) { |
| op(FlagOp::kDelete, nullptr, obj, nullptr); |
| } |
| // Copies src to dst interpreting as flag value type pointers. |
| inline void Copy(FlagOpFn op, const void* src, void* dst) { |
| op(FlagOp::kCopy, src, dst, nullptr); |
| } |
| // Construct a copy of flag value in a location pointed by dst |
| // based on src - pointer to the flag's value. |
| inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) { |
| op(FlagOp::kCopyConstruct, src, dst, nullptr); |
| } |
| // Makes a copy of flag value pointed by obj. |
| inline void* Clone(FlagOpFn op, const void* obj) { |
| void* res = flags_internal::Alloc(op); |
| flags_internal::CopyConstruct(op, obj, res); |
| return res; |
| } |
| // Returns true if parsing of input text is successful. |
| inline bool Parse(FlagOpFn op, absl::string_view text, void* dst, |
| std::string* error) { |
| return op(FlagOp::kParse, &text, dst, error) != nullptr; |
| } |
| // Returns string representing supplied value. |
| inline std::string Unparse(FlagOpFn op, const void* val) { |
| std::string result; |
| op(FlagOp::kUnparse, val, &result, nullptr); |
| return result; |
| } |
| // Returns size of flag value type. |
| inline size_t Sizeof(FlagOpFn op) { |
| // This sequence of casts reverses the sequence from |
| // `flags_internal::FlagOps()` |
| return static_cast<size_t>(reinterpret_cast<intptr_t>( |
| op(FlagOp::kSizeof, nullptr, nullptr, nullptr))); |
| } |
| // Returns fast type id corresponding to the value type. |
| inline FlagFastTypeId FastTypeId(FlagOpFn op) { |
| return reinterpret_cast<FlagFastTypeId>( |
| op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr)); |
| } |
| // Returns fast type id corresponding to the value type. |
| inline const std::type_info* RuntimeTypeId(FlagOpFn op) { |
| return reinterpret_cast<const std::type_info*>( |
| op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr)); |
| } |
| // Returns offset of the field value_ from the field impl_ inside of |
| // absl::Flag<T> data. Given FlagImpl pointer p you can get the |
| // location of the corresponding value as: |
| // reinterpret_cast<char*>(p) + ValueOffset(). |
| inline ptrdiff_t ValueOffset(FlagOpFn op) { |
| // This sequence of casts reverses the sequence from |
| // `flags_internal::FlagOps()` |
| return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>( |
| op(FlagOp::kValueOffset, nullptr, nullptr, nullptr))); |
| } |
| |
| // Returns an address of RTTI's typeid(T). |
| template <typename T> |
| inline const std::type_info* GenRuntimeTypeId() { |
| #ifdef ABSL_INTERNAL_HAS_RTTI |
| return &typeid(T); |
| #else |
| return nullptr; |
| #endif |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Flag help auxiliary structs. |
| |
| // This is help argument for absl::Flag encapsulating the string literal pointer |
| // or pointer to function generating it as well as enum descriminating two |
| // cases. |
| using HelpGenFunc = std::string (*)(); |
| |
| template <size_t N> |
| struct FixedCharArray { |
| char value[N]; |
| |
| template <size_t... I> |
| static constexpr FixedCharArray<N> FromLiteralString( |
| absl::string_view str, absl::index_sequence<I...>) { |
| return (void)str, FixedCharArray<N>({{str[I]..., '\0'}}); |
| } |
| }; |
| |
| template <typename Gen, size_t N = Gen::Value().size()> |
| constexpr FixedCharArray<N + 1> HelpStringAsArray(int) { |
| return FixedCharArray<N + 1>::FromLiteralString( |
| Gen::Value(), absl::make_index_sequence<N>{}); |
| } |
| |
| template <typename Gen> |
| constexpr std::false_type HelpStringAsArray(char) { |
| return std::false_type{}; |
| } |
| |
| union FlagHelpMsg { |
| constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {} |
| constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {} |
| |
| const char* literal; |
| HelpGenFunc gen_func; |
| }; |
| |
| enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 }; |
| |
| struct FlagHelpArg { |
| FlagHelpMsg source; |
| FlagHelpKind kind; |
| }; |
| |
| extern const char kStrippedFlagHelp[]; |
| |
| // These two HelpArg overloads allows us to select at compile time one of two |
| // way to pass Help argument to absl::Flag. We'll be passing |
| // AbslFlagHelpGenFor##name as Gen and integer 0 as a single argument to prefer |
| // first overload if possible. If help message is evaluatable on constexpr |
| // context We'll be able to make FixedCharArray out of it and we'll choose first |
| // overload. In this case the help message expression is immediately evaluated |
| // and is used to construct the absl::Flag. No additional code is generated by |
| // ABSL_FLAG Otherwise SFINAE kicks in and first overload is dropped from the |
| // consideration, in which case the second overload will be used. The second |
| // overload does not attempt to evaluate the help message expression |
| // immediately and instead delays the evaluation by returning the function |
| // pointer (&T::NonConst) generating the help message when necessary. This is |
| // evaluatable in constexpr context, but the cost is an extra function being |
| // generated in the ABSL_FLAG code. |
| template <typename Gen, size_t N> |
| constexpr FlagHelpArg HelpArg(const FixedCharArray<N>& value) { |
| return {FlagHelpMsg(value.value), FlagHelpKind::kLiteral}; |
| } |
| |
| template <typename Gen> |
| constexpr FlagHelpArg HelpArg(std::false_type) { |
| return {FlagHelpMsg(&Gen::NonConst), FlagHelpKind::kGenFunc}; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Flag default value auxiliary structs. |
| |
| // Signature for the function generating the initial flag value (usually |
| // based on default value supplied in flag's definition) |
| using FlagDfltGenFunc = void (*)(void*); |
| |
| union FlagDefaultSrc { |
| constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg) |
| : gen_func(gen_func_arg) {} |
| |
| #define ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE(T, name) \ |
| T name##_value; \ |
| constexpr explicit FlagDefaultSrc(T value) : name##_value(value) {} // NOLINT |
| ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE) |
| #undef ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE |
| |
| void* dynamic_value; |
| FlagDfltGenFunc gen_func; |
| }; |
| |
| enum class FlagDefaultKind : uint8_t { |
| kDynamicValue = 0, |
| kGenFunc = 1, |
| kOneWord = 2 // for default values UP to one word in size |
| }; |
| |
| struct FlagDefaultArg { |
| FlagDefaultSrc source; |
| FlagDefaultKind kind; |
| }; |
| |
| // This struct and corresponding overload to InitDefaultValue are used to |
| // facilitate usage of {} as default value in ABSL_FLAG macro. |
| // TODO(rogeeff): Fix handling types with explicit constructors. |
| struct EmptyBraces {}; |
| |
| template <typename T> |
| constexpr T InitDefaultValue(T t) { |
| return t; |
| } |
| |
| template <typename T> |
| constexpr T InitDefaultValue(EmptyBraces) { |
| return T{}; |
| } |
| |
| template <typename ValueT, typename GenT, |
| typename std::enable_if<std::is_integral<ValueT>::value, int>::type = |
| ((void)GenT{}, 0)> |
| constexpr FlagDefaultArg DefaultArg(int) { |
| return {FlagDefaultSrc(GenT{}.value), FlagDefaultKind::kOneWord}; |
| } |
| |
| template <typename ValueT, typename GenT> |
| constexpr FlagDefaultArg DefaultArg(char) { |
| return {FlagDefaultSrc(&GenT::Gen), FlagDefaultKind::kGenFunc}; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Flag storage selector traits. Each trait indicates what kind of storage kind |
| // to use for the flag value. |
| |
| template <typename T> |
| using FlagUseValueAndInitBitStorage = |
| std::integral_constant<bool, std::is_trivially_copyable<T>::value && |
| std::is_default_constructible<T>::value && |
| (sizeof(T) < 8)>; |
| |
| template <typename T> |
| using FlagUseOneWordStorage = |
| std::integral_constant<bool, std::is_trivially_copyable<T>::value && |
| (sizeof(T) <= 8)>; |
| |
| template <class T> |
| using FlagUseSequenceLockStorage = |
| std::integral_constant<bool, std::is_trivially_copyable<T>::value && |
| (sizeof(T) > 8)>; |
| |
| enum class FlagValueStorageKind : uint8_t { |
| kValueAndInitBit = 0, |
| kOneWordAtomic = 1, |
| kSequenceLocked = 2, |
| kHeapAllocated = 3, |
| }; |
| |
| // This constexpr function returns the storage kind for the given flag value |
| // type. |
| template <typename T> |
| static constexpr FlagValueStorageKind StorageKind() { |
| return FlagUseValueAndInitBitStorage<T>::value |
| ? FlagValueStorageKind::kValueAndInitBit |
| : FlagUseOneWordStorage<T>::value |
| ? FlagValueStorageKind::kOneWordAtomic |
| : FlagUseSequenceLockStorage<T>::value |
| ? FlagValueStorageKind::kSequenceLocked |
| : FlagValueStorageKind::kHeapAllocated; |
| } |
| |
| // This is a base class for the storage classes used by kOneWordAtomic and |
| // kValueAndInitBit storage kinds. It literally just stores the one word value |
| // as an atomic. By default, it is initialized to a magic value that is unlikely |
| // a valid value for the flag value type. |
| struct FlagOneWordValue { |
| constexpr static int64_t Uninitialized() { |
| return static_cast<int64_t>(0xababababababababll); |
| } |
| |
| constexpr FlagOneWordValue() : value(Uninitialized()) {} |
| constexpr explicit FlagOneWordValue(int64_t v) : value(v) {} |
| std::atomic<int64_t> value; |
| }; |
| |
| // This class represents a memory layout used by kValueAndInitBit storage kind. |
| template <typename T> |
| struct alignas(8) FlagValueAndInitBit { |
| T value; |
| // Use an int instead of a bool to guarantee that a non-zero value has |
| // a bit set. |
| uint8_t init; |
| }; |
| |
| // This class implements an aligned pointer with two options stored via masks |
| // in unused bits of the pointer value (due to alignment requirement). |
| // - IsUnprotectedReadCandidate - indicates that the value can be switched to |
| // unprotected read without a lock. |
| // - HasBeenRead - indicates that the value has been read at least once. |
| // - AllowsUnprotectedRead - combination of the two options above and indicates |
| // that the value can now be read without a lock. |
| // Further details of these options and their use is covered in the description |
| // of the FlagValue<T, FlagValueStorageKind::kHeapAllocated> specialization. |
| class MaskedPointer { |
| public: |
| using mask_t = uintptr_t; |
| using ptr_t = void*; |
| |
| static constexpr int RequiredAlignment() { return 4; } |
| |
| constexpr MaskedPointer() : ptr_(nullptr) {} |
| constexpr explicit MaskedPointer(ptr_t rhs) : ptr_(rhs) {} |
| MaskedPointer(ptr_t rhs, bool is_candidate); |
| |
| MaskedPointer(const MaskedPointer& rhs) = default; |
| MaskedPointer& operator=(const MaskedPointer& rhs) = default; |
| |
| void* Ptr() const { |
| return reinterpret_cast<void*>(reinterpret_cast<mask_t>(ptr_) & |
| kPtrValueMask); |
| } |
| bool AllowsUnprotectedRead() const { |
| return (reinterpret_cast<mask_t>(ptr_) & kAllowsUnprotectedRead) == |
| kAllowsUnprotectedRead; |
| } |
| bool IsUnprotectedReadCandidate() const; |
| bool HasBeenRead() const; |
| |
| void Set(FlagOpFn op, const void* src, bool is_candidate); |
| void MarkAsRead(); |
| |
| private: |
| // Masks |
| // Indicates that the flag value either default or originated from command |
| // line. |
| static constexpr mask_t kUnprotectedReadCandidate = 0x1u; |
| // Indicates that flag has been read. |
| static constexpr mask_t kHasBeenRead = 0x2u; |
| static constexpr mask_t kAllowsUnprotectedRead = |
| kUnprotectedReadCandidate | kHasBeenRead; |
| static constexpr mask_t kPtrValueMask = ~kAllowsUnprotectedRead; |
| |
| void ApplyMask(mask_t mask); |
| bool CheckMask(mask_t mask) const; |
| |
| ptr_t ptr_; |
| }; |
| |
| // This class implements a type erased storage of the heap allocated flag value. |
| // It is used as a base class for the storage class for kHeapAllocated storage |
| // kind. The initial_buffer is expected to have an alignment of at least |
| // MaskedPointer::RequiredAlignment(), so that the bits used by the |
| // MaskedPointer to store masks are set to 0. This guarantees that value starts |
| // in an uninitialized state. |
| struct FlagMaskedPointerValue { |
| constexpr explicit FlagMaskedPointerValue(MaskedPointer::ptr_t initial_buffer) |
| : value(MaskedPointer(initial_buffer)) {} |
| |
| std::atomic<MaskedPointer> value; |
| }; |
| |
| // This is the forward declaration for the template that represents a storage |
| // for the flag values. This template is expected to be explicitly specialized |
| // for each storage kind and it does not have a generic default |
| // implementation. |
| template <typename T, |
| FlagValueStorageKind Kind = flags_internal::StorageKind<T>()> |
| struct FlagValue; |
| |
| // This specialization represents the storage of flag values types with the |
| // kValueAndInitBit storage kind. It is based on the FlagOneWordValue class |
| // and relies on memory layout in FlagValueAndInitBit<T> to indicate that the |
| // value has been initialized or not. |
| template <typename T> |
| struct FlagValue<T, FlagValueStorageKind::kValueAndInitBit> : FlagOneWordValue { |
| constexpr FlagValue() : FlagOneWordValue(0) {} |
| bool Get(const SequenceLock&, T& dst) const { |
| int64_t storage = value.load(std::memory_order_acquire); |
| if (ABSL_PREDICT_FALSE(storage == 0)) { |
| // This assert is to ensure that the initialization inside FlagImpl::Init |
| // is able to set init member correctly. |
| static_assert(offsetof(FlagValueAndInitBit<T>, init) == sizeof(T), |
| "Unexpected memory layout of FlagValueAndInitBit"); |
| return false; |
| } |
| dst = absl::bit_cast<FlagValueAndInitBit<T>>(storage).value; |
| return true; |
| } |
| }; |
| |
| // This specialization represents the storage of flag values types with the |
| // kOneWordAtomic storage kind. It is based on the FlagOneWordValue class |
| // and relies on the magic uninitialized state of default constructed instead of |
| // FlagOneWordValue to indicate that the value has been initialized or not. |
| template <typename T> |
| struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue { |
| constexpr FlagValue() : FlagOneWordValue() {} |
| bool Get(const SequenceLock&, T& dst) const { |
| int64_t one_word_val = value.load(std::memory_order_acquire); |
| if (ABSL_PREDICT_FALSE(one_word_val == FlagOneWordValue::Uninitialized())) { |
| return false; |
| } |
| std::memcpy(&dst, static_cast<const void*>(&one_word_val), sizeof(T)); |
| return true; |
| } |
| }; |
| |
| // This specialization represents the storage of flag values types with the |
| // kSequenceLocked storage kind. This storage is used by trivially copyable |
| // types with size greater than 8 bytes. This storage relies on uninitialized |
| // state of the SequenceLock to indicate that the value has been initialized or |
| // not. This storage also provides lock-free read access to the underlying |
| // value once it is initialized. |
| template <typename T> |
| struct FlagValue<T, FlagValueStorageKind::kSequenceLocked> { |
| bool Get(const SequenceLock& lock, T& dst) const { |
| return lock.TryRead(&dst, value_words, sizeof(T)); |
| } |
| |
| static constexpr int kNumWords = |
| flags_internal::AlignUp(sizeof(T), sizeof(uint64_t)) / sizeof(uint64_t); |
| |
| alignas(T) alignas( |
| std::atomic<uint64_t>) std::atomic<uint64_t> value_words[kNumWords]; |
| }; |
| |
| // This specialization represents the storage of flag values types with the |
| // kHeapAllocated storage kind. This is a storage of last resort and is used |
| // if none of other storage kinds are applicable. |
| // |
| // Generally speaking the values with this storage kind can't be accessed |
| // atomically and thus can't be read without holding a lock. If we would ever |
| // want to avoid the lock, we'd need to leak the old value every time new flag |
| // value is being set (since we are in danger of having a race condition |
| // otherwise). |
| // |
| // Instead of doing that, this implementation attempts to cater to some common |
| // use cases by allowing at most 2 values to be leaked - default value and |
| // value set from the command line. |
| // |
| // This specialization provides an initial buffer for the first flag value. This |
| // is where the default value is going to be stored. We attempt to reuse this |
| // buffer if possible, including storing the value set from the command line |
| // there. |
| // |
| // As long as we only read this value, we can access it without a lock (in |
| // practice we still use the lock for the very first read to be able set |
| // "has been read" option on this flag). |
| // |
| // If flag is specified on the command line we store the parsed value either |
| // in the internal buffer (if the default value never been read) or we leak the |
| // default value and allocate the new storage for the parse value. This value is |
| // also a candidate for an unprotected read. If flag is set programmatically |
| // after the command line is parsed, the storage for this value is going to be |
| // leaked. Note that in both scenarios we are not going to have a real leak. |
| // Instead we'll store the leaked value pointers in the internal freelist to |
| // avoid triggering the memory leak checker complains. |
| // |
| // If the flag is ever set programmatically, it stops being the candidate for an |
| // unprotected read, and any follow up access to the flag value requires a lock. |
| // Note that if the value if set programmatically before the command line is |
| // parsed, we can switch back to enabling unprotected reads for that value. |
| template <typename T> |
| struct FlagValue<T, FlagValueStorageKind::kHeapAllocated> |
| : FlagMaskedPointerValue { |
| // We const initialize the value with unmasked pointer to the internal buffer, |
| // making sure it is not a candidate for unprotected read. This way we can |
| // ensure Init is done before any access to the flag value. |
| constexpr FlagValue() : FlagMaskedPointerValue(&buffer[0]) {} |
| |
| bool Get(const SequenceLock&, T& dst) const { |
| MaskedPointer ptr_value = value.load(std::memory_order_acquire); |
| |
| if (ABSL_PREDICT_TRUE(ptr_value.AllowsUnprotectedRead())) { |
| ::new (static_cast<void*>(&dst)) T(*static_cast<T*>(ptr_value.Ptr())); |
| return true; |
| } |
| return false; |
| } |
| |
| alignas(MaskedPointer::RequiredAlignment()) alignas( |
| T) char buffer[sizeof(T)]{}; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Flag callback auxiliary structs. |
| |
| // Signature for the mutation callback used by watched Flags |
| // The callback is noexcept. |
| // TODO(rogeeff): add noexcept after C++17 support is added. |
| using FlagCallbackFunc = void (*)(); |
| |
| struct FlagCallback { |
| FlagCallbackFunc func; |
| absl::Mutex guard; // Guard for concurrent callback invocations. |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Flag implementation, which does not depend on flag value type. |
| // The class encapsulates the Flag's data and access to it. |
| |
| struct DynValueDeleter { |
| explicit DynValueDeleter(FlagOpFn op_arg = nullptr); |
| void operator()(void* ptr) const; |
| |
| FlagOpFn op; |
| }; |
| |
| class FlagState; |
| |
| // These are only used as constexpr global objects. |
| // They do not use a virtual destructor to simplify their implementation. |
| // They are not destroyed except at program exit, so leaks do not matter. |
| #if defined(__GNUC__) && !defined(__clang__) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wnon-virtual-dtor" |
| #endif |
| class FlagImpl final : public CommandLineFlag { |
| public: |
| constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op, |
| FlagHelpArg help, FlagValueStorageKind value_kind, |
| FlagDefaultArg default_arg) |
| : name_(name), |
| filename_(filename), |
| op_(op), |
| help_(help.source), |
| help_source_kind_(static_cast<uint8_t>(help.kind)), |
| value_storage_kind_(static_cast<uint8_t>(value_kind)), |
| def_kind_(static_cast<uint8_t>(default_arg.kind)), |
| modified_(false), |
| on_command_line_(false), |
| callback_(nullptr), |
| default_value_(default_arg.source), |
| data_guard_{} {} |
| |
| // Constant access methods |
| int64_t ReadOneWord() const ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| bool ReadOneBool() const ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| void Read(bool* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) { |
| *value = ReadOneBool(); |
| } |
| template <typename T, |
| absl::enable_if_t<flags_internal::StorageKind<T>() == |
| FlagValueStorageKind::kOneWordAtomic, |
| int> = 0> |
| void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) { |
| int64_t v = ReadOneWord(); |
| std::memcpy(value, static_cast<const void*>(&v), sizeof(T)); |
| } |
| template <typename T, |
| typename std::enable_if<flags_internal::StorageKind<T>() == |
| FlagValueStorageKind::kValueAndInitBit, |
| int>::type = 0> |
| void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) { |
| *value = absl::bit_cast<FlagValueAndInitBit<T>>(ReadOneWord()).value; |
| } |
| |
| // Mutating access methods |
| void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| |
| // Interfaces to operate on callbacks. |
| void SetCallback(const FlagCallbackFunc mutation_callback) |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); |
| |
| // Used in read/write operations to validate source/target has correct type. |
| // For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to |
| // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed |
| // int. To do that we pass the assumed type id (which is deduced from type |
| // int) as an argument `type_id`, which is in turn is validated against the |
| // type id stored in flag object by flag definition statement. |
| void AssertValidType(FlagFastTypeId type_id, |
| const std::type_info* (*gen_rtti)()) const; |
| |
| private: |
| template <typename T> |
| friend class Flag; |
| friend class FlagState; |
| |
| // Ensures that `data_guard_` is initialized and returns it. |
| absl::Mutex* DataGuard() const |
| ABSL_LOCK_RETURNED(reinterpret_cast<absl::Mutex*>(data_guard_)); |
| // Returns heap allocated value of type T initialized with default value. |
| std::unique_ptr<void, DynValueDeleter> MakeInitValue() const |
| ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); |
| // Flag initialization called via absl::call_once. |
| void Init(); |
| |
| // Offset value access methods. One per storage kind. These methods to not |
| // respect const correctness, so be very careful using them. |
| |
| // This is a shared helper routine which encapsulates most of the magic. Since |
| // it is only used inside the three routines below, which are defined in |
| // flag.cc, we can define it in that file as well. |
| template <typename StorageT> |
| StorageT* OffsetValue() const; |
| |
| // The same as above, but used for sequencelock-protected storage. |
| std::atomic<uint64_t>* AtomicBufferValue() const; |
| |
| // This is an accessor for a value stored as one word atomic. Returns a |
| // mutable reference to an atomic value. |
| std::atomic<int64_t>& OneWordValue() const; |
| |
| std::atomic<MaskedPointer>& PtrStorage() const; |
| |
| // Attempts to parse supplied `value` string. If parsing is successful, |
| // returns new value. Otherwise returns nullptr. |
| std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value, |
| std::string& err) const |
| ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); |
| // Stores the flag value based on the pointer to the source. |
| void StoreValue(const void* src, ValueSource source) |
| ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); |
| |
| // Copy the flag data, protected by `seq_lock_` into `dst`. |
| // |
| // REQUIRES: ValueStorageKind() == kSequenceLocked. |
| void ReadSequenceLockedData(void* dst) const |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| |
| FlagHelpKind HelpSourceKind() const { |
| return static_cast<FlagHelpKind>(help_source_kind_); |
| } |
| FlagValueStorageKind ValueStorageKind() const { |
| return static_cast<FlagValueStorageKind>(value_storage_kind_); |
| } |
| FlagDefaultKind DefaultKind() const |
| ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) { |
| return static_cast<FlagDefaultKind>(def_kind_); |
| } |
| |
| // CommandLineFlag interface implementation |
| absl::string_view Name() const override; |
| std::string Filename() const override; |
| std::string Help() const override; |
| FlagFastTypeId TypeId() const override; |
| bool IsSpecifiedOnCommandLine() const override |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| bool ValidateInputValue(absl::string_view value) const override |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| void CheckDefaultValueParsingRoundtrip() const override |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| |
| int64_t ModificationCount() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); |
| |
| // Interfaces to save and restore flags to/from persistent state. |
| // Returns current flag state or nullptr if flag does not support |
| // saving and restoring a state. |
| std::unique_ptr<FlagStateInterface> SaveState() override |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| |
| // Restores the flag state to the supplied state object. If there is |
| // nothing to restore returns false. Otherwise returns true. |
| bool RestoreState(const FlagState& flag_state) |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| |
| bool ParseFrom(absl::string_view value, FlagSettingMode set_mode, |
| ValueSource source, std::string& error) override |
| ABSL_LOCKS_EXCLUDED(*DataGuard()); |
| |
| // Immutable flag's state. |
| |
| // Flags name passed to ABSL_FLAG as second arg. |
| const char* const name_; |
| // The file name where ABSL_FLAG resides. |
| const char* const filename_; |
| // Type-specific operations vtable. |
| const FlagOpFn op_; |
| // Help message literal or function to generate it. |
| const FlagHelpMsg help_; |
| // Indicates if help message was supplied as literal or generator func. |
| const uint8_t help_source_kind_ : 1; |
| // Kind of storage this flag is using for the flag's value. |
| const uint8_t value_storage_kind_ : 2; |
| |
| uint8_t : 0; // The bytes containing the const bitfields must not be |
| // shared with bytes containing the mutable bitfields. |
| |
| // Mutable flag's state (guarded by `data_guard_`). |
| |
| // def_kind_ is not guard by DataGuard() since it is accessed in Init without |
| // locks. |
| uint8_t def_kind_ : 2; |
| // Has this flag's value been modified? |
| bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard()); |
| // Has this flag been specified on command line. |
| bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard()); |
| |
| // Unique tag for absl::call_once call to initialize this flag. |
| absl::once_flag init_control_; |
| |
| // Sequence lock / mutation counter. |
| flags_internal::SequenceLock seq_lock_; |
| |
| // Optional flag's callback and absl::Mutex to guard the invocations. |
| FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard()); |
| // Either a pointer to the function generating the default value based on the |
| // value specified in ABSL_FLAG or pointer to the dynamically set default |
| // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish |
| // these two cases. |
| FlagDefaultSrc default_value_; |
| |
| // This is reserved space for an absl::Mutex to guard flag data. It will be |
| // initialized in FlagImpl::Init via placement new. |
| // We can't use "absl::Mutex data_guard_", since this class is not literal. |
| // We do not want to use "absl::Mutex* data_guard_", since this would require |
| // heap allocation during initialization, which is both slows program startup |
| // and can fail. Using reserved space + placement new allows us to avoid both |
| // problems. |
| alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)]; |
| }; |
| #if defined(__GNUC__) && !defined(__clang__) |
| #pragma GCC diagnostic pop |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // The Flag object parameterized by the flag's value type. This class implements |
| // flag reflection handle interface. |
| |
| template <typename T> |
| class Flag { |
| public: |
| constexpr Flag(const char* name, const char* filename, FlagHelpArg help, |
| const FlagDefaultArg default_arg) |
| : impl_(name, filename, &FlagOps<T>, help, |
| flags_internal::StorageKind<T>(), default_arg), |
| value_() {} |
| |
| // CommandLineFlag interface |
| absl::string_view Name() const { return impl_.Name(); } |
| std::string Filename() const { return impl_.Filename(); } |
| std::string Help() const { return impl_.Help(); } |
| // Do not use. To be removed. |
| bool IsSpecifiedOnCommandLine() const { |
| return impl_.IsSpecifiedOnCommandLine(); |
| } |
| std::string DefaultValue() const { return impl_.DefaultValue(); } |
| std::string CurrentValue() const { return impl_.CurrentValue(); } |
| |
| private: |
| template <typename, bool> |
| friend class FlagRegistrar; |
| friend class FlagImplPeer; |
| |
| T Get() const { |
| // See implementation notes in CommandLineFlag::Get(). |
| union U { |
| T value; |
| U() {} |
| ~U() { value.~T(); } |
| }; |
| U u; |
| |
| #if !defined(NDEBUG) |
| impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>); |
| #endif |
| |
| if (ABSL_PREDICT_FALSE(!value_.Get(impl_.seq_lock_, u.value))) { |
| impl_.Read(&u.value); |
| } |
| return std::move(u.value); |
| } |
| void Set(const T& v) { |
| impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>); |
| impl_.Write(&v); |
| } |
| |
| // Access to the reflection. |
| const CommandLineFlag& Reflect() const { return impl_; } |
| |
| // Flag's data |
| // The implementation depends on value_ field to be placed exactly after the |
| // impl_ field, so that impl_ can figure out the offset to the value and |
| // access it. |
| FlagImpl impl_; |
| FlagValue<T> value_; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Trampoline for friend access |
| |
| class FlagImplPeer { |
| public: |
| template <typename T, typename FlagType> |
| static T InvokeGet(const FlagType& flag) { |
| return flag.Get(); |
| } |
| template <typename FlagType, typename T> |
| static void InvokeSet(FlagType& flag, const T& v) { |
| flag.Set(v); |
| } |
| template <typename FlagType> |
| static const CommandLineFlag& InvokeReflect(const FlagType& f) { |
| return f.Reflect(); |
| } |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Implementation of Flag value specific operations routine. |
| template <typename T> |
| void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) { |
| struct AlignedSpace { |
| alignas(MaskedPointer::RequiredAlignment()) alignas(T) char buf[sizeof(T)]; |
| }; |
| using Allocator = std::allocator<AlignedSpace>; |
| switch (op) { |
| case FlagOp::kAlloc: { |
| Allocator alloc; |
| return std::allocator_traits<Allocator>::allocate(alloc, 1); |
| } |
| case FlagOp::kDelete: { |
| T* p = static_cast<T*>(v2); |
| p->~T(); |
| Allocator alloc; |
| std::allocator_traits<Allocator>::deallocate( |
| alloc, reinterpret_cast<AlignedSpace*>(p), 1); |
| return nullptr; |
| } |
| case FlagOp::kCopy: |
| *static_cast<T*>(v2) = *static_cast<const T*>(v1); |
| return nullptr; |
| case FlagOp::kCopyConstruct: |
| new (v2) T(*static_cast<const T*>(v1)); |
| return nullptr; |
| case FlagOp::kSizeof: |
| return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T))); |
| case FlagOp::kFastTypeId: |
| return const_cast<void*>(base_internal::FastTypeId<T>()); |
| case FlagOp::kRuntimeTypeId: |
| return const_cast<std::type_info*>(GenRuntimeTypeId<T>()); |
| case FlagOp::kParse: { |
| // Initialize the temporary instance of type T based on current value in |
| // destination (which is going to be flag's default value). |
| T temp(*static_cast<T*>(v2)); |
| if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp, |
| static_cast<std::string*>(v3))) { |
| return nullptr; |
| } |
| *static_cast<T*>(v2) = std::move(temp); |
| return v2; |
| } |
| case FlagOp::kUnparse: |
| *static_cast<std::string*>(v2) = |
| absl::UnparseFlag<T>(*static_cast<const T*>(v1)); |
| return nullptr; |
| case FlagOp::kValueOffset: { |
| // Round sizeof(FlagImp) to a multiple of alignof(FlagValue<T>) to get the |
| // offset of the data. |
| size_t round_to = alignof(FlagValue<T>); |
| size_t offset = (sizeof(FlagImpl) + round_to - 1) / round_to * round_to; |
| return reinterpret_cast<void*>(offset); |
| } |
| } |
| return nullptr; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // This class facilitates Flag object registration and tail expression-based |
| // flag definition, for example: |
| // ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher); |
| struct FlagRegistrarEmpty {}; |
| template <typename T, bool do_register> |
| class FlagRegistrar { |
| public: |
| constexpr explicit FlagRegistrar(Flag<T>& flag, const char* filename) |
| : flag_(flag) { |
| if (do_register) |
| flags_internal::RegisterCommandLineFlag(flag_.impl_, filename); |
| } |
| |
| FlagRegistrar OnUpdate(FlagCallbackFunc cb) && { |
| flag_.impl_.SetCallback(cb); |
| return *this; |
| } |
| |
| // Makes the registrar die gracefully as an empty struct on a line where |
| // registration happens. Registrar objects are intended to live only as |
| // temporary. |
| constexpr operator FlagRegistrarEmpty() const { return {}; } // NOLINT |
| |
| private: |
| Flag<T>& flag_; // Flag being registered (not owned). |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Test only API |
| uint64_t NumLeakedFlagValues(); |
| |
| } // namespace flags_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_FLAGS_INTERNAL_FLAG_H_ |