| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: memory.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file contains utility functions for managing the creation and |
| // conversion of smart pointers. This file is an extension to the C++ |
| // standard <memory> library header file. |
| |
| #ifndef ABSL_MEMORY_MEMORY_H_ |
| #define ABSL_MEMORY_MEMORY_H_ |
| |
| #include <cstddef> |
| #include <limits> |
| #include <memory> |
| #include <new> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/macros.h" |
| #include "absl/meta/type_traits.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // ----------------------------------------------------------------------------- |
| // Function Template: WrapUnique() |
| // ----------------------------------------------------------------------------- |
| // |
| // Adopts ownership from a raw pointer and transfers it to the returned |
| // `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not* |
| // specify the template type `T` when calling `WrapUnique`. |
| // |
| // Example: |
| // X* NewX(int, int); |
| // auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>. |
| // |
| // Do not call WrapUnique with an explicit type, as in |
| // `WrapUnique<X>(NewX(1, 2))`. The purpose of WrapUnique is to automatically |
| // deduce the pointer type. If you wish to make the type explicit, just use |
| // `std::unique_ptr` directly. |
| // |
| // auto x = std::unique_ptr<X>(NewX(1, 2)); |
| // - or - |
| // std::unique_ptr<X> x(NewX(1, 2)); |
| // |
| // While `absl::WrapUnique` is useful for capturing the output of a raw |
| // pointer factory, prefer 'absl::make_unique<T>(args...)' over |
| // 'absl::WrapUnique(new T(args...))'. |
| // |
| // auto x = WrapUnique(new X(1, 2)); // works, but nonideal. |
| // auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'. |
| // |
| // Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid |
| // expression. In particular, `absl::WrapUnique()` cannot wrap pointers to |
| // arrays, functions or void, and it must not be used to capture pointers |
| // obtained from array-new expressions (even though that would compile!). |
| template <typename T> |
| std::unique_ptr<T> WrapUnique(T* ptr) { |
| static_assert(!std::is_array<T>::value, "array types are unsupported"); |
| static_assert(std::is_object<T>::value, "non-object types are unsupported"); |
| return std::unique_ptr<T>(ptr); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Function Template: make_unique<T>() |
| // ----------------------------------------------------------------------------- |
| // |
| // Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries |
| // during the construction process. `absl::make_unique<>` also avoids redundant |
| // type declarations, by avoiding the need to explicitly use the `new` operator. |
| // |
| // https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique |
| // |
| // For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic, |
| // see Herb Sutter's explanation on |
| // (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/]. |
| // (In general, reviewers should treat `new T(a,b)` with scrutiny.) |
| // |
| // Historical note: Abseil once provided a C++11 compatible implementation of |
| // the C++14's `std::make_unique`. Now that C++11 support has been sunsetted, |
| // `absl::make_unique` simply uses the STL-provided implementation. New code |
| // should use `std::make_unique`. |
| using std::make_unique; |
| |
| // ----------------------------------------------------------------------------- |
| // Function Template: RawPtr() |
| // ----------------------------------------------------------------------------- |
| // |
| // Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is |
| // useful within templates that need to handle a complement of raw pointers, |
| // `std::nullptr_t`, and smart pointers. |
| template <typename T> |
| auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) { |
| // ptr is a forwarding reference to support Ts with non-const operators. |
| return (ptr != nullptr) ? std::addressof(*ptr) : nullptr; |
| } |
| inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; } |
| |
| // ----------------------------------------------------------------------------- |
| // Function Template: ShareUniquePtr() |
| // ----------------------------------------------------------------------------- |
| // |
| // Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced |
| // type. Ownership (if any) of the held value is transferred to the returned |
| // shared pointer. |
| // |
| // Example: |
| // |
| // auto up = absl::make_unique<int>(10); |
| // auto sp = absl::ShareUniquePtr(std::move(up)); // shared_ptr<int> |
| // CHECK_EQ(*sp, 10); |
| // CHECK(up == nullptr); |
| // |
| // Note that this conversion is correct even when T is an array type, and more |
| // generally it works for *any* deleter of the `unique_ptr` (single-object |
| // deleter, array deleter, or any custom deleter), since the deleter is adopted |
| // by the shared pointer as well. The deleter is copied (unless it is a |
| // reference). |
| // |
| // Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a |
| // null shared pointer does not attempt to call the deleter. |
| template <typename T, typename D> |
| std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) { |
| return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>(); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Function Template: WeakenPtr() |
| // ----------------------------------------------------------------------------- |
| // |
| // Creates a weak pointer associated with a given shared pointer. The returned |
| // value is a `std::weak_ptr` of deduced type. |
| // |
| // Example: |
| // |
| // auto sp = std::make_shared<int>(10); |
| // auto wp = absl::WeakenPtr(sp); |
| // CHECK_EQ(sp.get(), wp.lock().get()); |
| // sp.reset(); |
| // CHECK(wp.lock() == nullptr); |
| // |
| template <typename T> |
| std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) { |
| return std::weak_ptr<T>(ptr); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Class Template: pointer_traits |
| // ----------------------------------------------------------------------------- |
| // |
| // Historical note: Abseil once provided an implementation of |
| // `std::pointer_traits` for platforms that had not yet provided it. Those |
| // platforms are no longer supported. New code should simply use |
| // `std::pointer_traits`. |
| using std::pointer_traits; |
| |
| // ----------------------------------------------------------------------------- |
| // Class Template: allocator_traits |
| // ----------------------------------------------------------------------------- |
| // |
| // Historical note: Abseil once provided an implementation of |
| // `std::allocator_traits` for platforms that had not yet provided it. Those |
| // platforms are no longer supported. New code should simply use |
| // `std::allocator_traits`. |
| using std::allocator_traits; |
| |
| namespace memory_internal { |
| |
| // ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D. |
| template <template <typename> class Extract, typename Obj, typename Default, |
| typename> |
| struct ExtractOr { |
| using type = Default; |
| }; |
| |
| template <template <typename> class Extract, typename Obj, typename Default> |
| struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> { |
| using type = Extract<Obj>; |
| }; |
| |
| template <template <typename> class Extract, typename Obj, typename Default> |
| using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type; |
| |
| // This template alias transforms Alloc::is_nothrow into a metafunction with |
| // Alloc as a parameter so it can be used with ExtractOrT<>. |
| template <typename Alloc> |
| using GetIsNothrow = typename Alloc::is_nothrow; |
| |
| } // namespace memory_internal |
| |
| // ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to |
| // specify whether the default allocation function can throw or never throws. |
| // If the allocation function never throws, user should define it to a non-zero |
| // value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`). |
| // If the allocation function can throw, user should leave it undefined or |
| // define it to zero. |
| // |
| // allocator_is_nothrow<Alloc> is a traits class that derives from |
| // Alloc::is_nothrow if present, otherwise std::false_type. It's specialized |
| // for Alloc = std::allocator<T> for any type T according to the state of |
| // ABSL_ALLOCATOR_NOTHROW. |
| // |
| // default_allocator_is_nothrow is a class that derives from std::true_type |
| // when the default allocator (global operator new) never throws, and |
| // std::false_type when it can throw. It is a convenience shorthand for writing |
| // allocator_is_nothrow<std::allocator<T>> (T can be any type). |
| // NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from |
| // the same type for all T, because users should specialize neither |
| // allocator_is_nothrow nor std::allocator. |
| template <typename Alloc> |
| struct allocator_is_nothrow |
| : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc, |
| std::false_type> {}; |
| |
| #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW |
| template <typename T> |
| struct allocator_is_nothrow<std::allocator<T>> : std::true_type {}; |
| struct default_allocator_is_nothrow : std::true_type {}; |
| #else |
| struct default_allocator_is_nothrow : std::false_type {}; |
| #endif |
| |
| namespace memory_internal { |
| template <typename Allocator, typename Iterator, typename... Args> |
| void ConstructRange(Allocator& alloc, Iterator first, Iterator last, |
| const Args&... args) { |
| for (Iterator cur = first; cur != last; ++cur) { |
| ABSL_INTERNAL_TRY { |
| std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
| args...); |
| } |
| ABSL_INTERNAL_CATCH_ANY { |
| while (cur != first) { |
| --cur; |
| std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
| } |
| ABSL_INTERNAL_RETHROW; |
| } |
| } |
| } |
| |
| template <typename Allocator, typename Iterator, typename InputIterator> |
| void CopyRange(Allocator& alloc, Iterator destination, InputIterator first, |
| InputIterator last) { |
| for (Iterator cur = destination; first != last; |
| static_cast<void>(++cur), static_cast<void>(++first)) { |
| ABSL_INTERNAL_TRY { |
| std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
| *first); |
| } |
| ABSL_INTERNAL_CATCH_ANY { |
| while (cur != destination) { |
| --cur; |
| std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
| } |
| ABSL_INTERNAL_RETHROW; |
| } |
| } |
| } |
| } // namespace memory_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_MEMORY_MEMORY_H_ |