| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: hash.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file defines the Abseil `hash` library and the Abseil hashing |
| // framework. This framework consists of the following: |
| // |
| // * The `absl::Hash` functor, which is used to invoke the hasher within the |
| // Abseil hashing framework. `absl::Hash<T>` supports most basic types and |
| // a number of Abseil types out of the box. |
| // * `AbslHashValue`, an extension point that allows you to extend types to |
| // support Abseil hashing without requiring you to define a hashing |
| // algorithm. |
| // * `HashState`, a type-erased class which implements the manipulation of the |
| // hash state (H) itself; contains member functions `combine()`, |
| // `combine_contiguous()`, and `combine_unordered()`; and which you can use |
| // to contribute to an existing hash state when hashing your types. |
| // |
| // Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework |
| // provides most of its utility by abstracting away the hash algorithm (and its |
| // implementation) entirely. Instead, a type invokes the Abseil hashing |
| // framework by simply combining its state with the state of known, hashable |
| // types. Hashing of that combined state is separately done by `absl::Hash`. |
| // |
| // One should assume that a hash algorithm is chosen randomly at the start of |
| // each process. E.g., `absl::Hash<int>{}(9)` in one process and |
| // `absl::Hash<int>{}(9)` in another process are likely to differ. |
| // |
| // `absl::Hash` may also produce different values from different dynamically |
| // loaded libraries. For this reason, `absl::Hash` values must never cross |
| // boundaries in dynamically loaded libraries (including when used in types like |
| // hash containers.) |
| // |
| // `absl::Hash` is intended to strongly mix input bits with a target of passing |
| // an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect). |
| // |
| // Example: |
| // |
| // // Suppose we have a class `Circle` for which we want to add hashing: |
| // class Circle { |
| // public: |
| // ... |
| // private: |
| // std::pair<int, int> center_; |
| // int radius_; |
| // }; |
| // |
| // // To add hashing support to `Circle`, we simply need to add a free |
| // // (non-member) function `AbslHashValue()`, and return the combined hash |
| // // state of the existing hash state and the class state. You can add such a |
| // // free function using a friend declaration within the body of the class: |
| // class Circle { |
| // public: |
| // ... |
| // template <typename H> |
| // friend H AbslHashValue(H h, const Circle& c) { |
| // return H::combine(std::move(h), c.center_, c.radius_); |
| // } |
| // ... |
| // }; |
| // |
| // For more information, see Adding Type Support to `absl::Hash` below. |
| // |
| #ifndef ABSL_HASH_HASH_H_ |
| #define ABSL_HASH_HASH_H_ |
| |
| #include <tuple> |
| #include <utility> |
| |
| #include "absl/functional/function_ref.h" |
| #include "absl/hash/internal/hash.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // ----------------------------------------------------------------------------- |
| // `absl::Hash` |
| // ----------------------------------------------------------------------------- |
| // |
| // `absl::Hash<T>` is a convenient general-purpose hash functor for any type `T` |
| // satisfying any of the following conditions (in order): |
| // |
| // * T is an arithmetic or pointer type |
| // * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary |
| // hash state `H`. |
| // - T defines a specialization of `std::hash<T>` |
| // |
| // `absl::Hash` intrinsically supports the following types: |
| // |
| // * All integral types (including bool) |
| // * All enum types |
| // * All floating-point types (although hashing them is discouraged) |
| // * All pointer types, including nullptr_t |
| // * std::pair<T1, T2>, if T1 and T2 are hashable |
| // * std::tuple<Ts...>, if all the Ts... are hashable |
| // * std::unique_ptr and std::shared_ptr |
| // * All string-like types including: |
| // * absl::Cord |
| // * std::string (as well as any instance of std::basic_string that |
| // uses one of {char, wchar_t, char16_t, char32_t} and its associated |
| // std::char_traits) |
| // * std::string_view (as well as any instance of std::basic_string_view |
| // that uses one of {char, wchar_t, char16_t, char32_t} and its associated |
| // std::char_traits) |
| // * All the standard sequence containers (provided the elements are hashable) |
| // * All the standard associative containers (provided the elements are |
| // hashable) |
| // * absl types such as the following: |
| // * absl::string_view |
| // * absl::uint128 |
| // * absl::Time, absl::Duration, and absl::TimeZone |
| // * absl containers (provided the elements are hashable) such as the |
| // following: |
| // * absl::flat_hash_set, absl::node_hash_set, absl::btree_set |
| // * absl::flat_hash_map, absl::node_hash_map, absl::btree_map |
| // * absl::btree_multiset, absl::btree_multimap |
| // * absl::InlinedVector |
| // * absl::FixedArray |
| // |
| // When absl::Hash is used to hash an unordered container with a custom hash |
| // functor, the elements are hashed using default absl::Hash semantics, not |
| // the custom hash functor. This is consistent with the behavior of |
| // operator==() on unordered containers, which compares elements pairwise with |
| // operator==() rather than the custom equality functor. It is usually a |
| // mistake to use either operator==() or absl::Hash on unordered collections |
| // that use functors incompatible with operator==() equality. |
| // |
| // Note: the list above is not meant to be exhaustive. Additional type support |
| // may be added, in which case the above list will be updated. |
| // |
| // ----------------------------------------------------------------------------- |
| // absl::Hash Invocation Evaluation |
| // ----------------------------------------------------------------------------- |
| // |
| // When invoked, `absl::Hash<T>` searches for supplied hash functions in the |
| // following order: |
| // |
| // * Natively supported types out of the box (see above) |
| // * Types for which an `AbslHashValue()` overload is provided (such as |
| // user-defined types). See "Adding Type Support to `absl::Hash`" below. |
| // * Types which define a `std::hash<T>` specialization |
| // |
| // The fallback to legacy hash functions exists mainly for backwards |
| // compatibility. If you have a choice, prefer defining an `AbslHashValue` |
| // overload instead of specializing any legacy hash functors. |
| // |
| // ----------------------------------------------------------------------------- |
| // The Hash State Concept, and using `HashState` for Type Erasure |
| // ----------------------------------------------------------------------------- |
| // |
| // The `absl::Hash` framework relies on the Concept of a "hash state." Such a |
| // hash state is used in several places: |
| // |
| // * Within existing implementations of `absl::Hash<T>` to store the hashed |
| // state of an object. Note that it is up to the implementation how it stores |
| // such state. A hash table, for example, may mix the state to produce an |
| // integer value; a testing framework may simply hold a vector of that state. |
| // * Within implementations of `AbslHashValue()` used to extend user-defined |
| // types. (See "Adding Type Support to absl::Hash" below.) |
| // * Inside a `HashState`, providing type erasure for the concept of a hash |
| // state, which you can use to extend the `absl::Hash` framework for types |
| // that are otherwise difficult to extend using `AbslHashValue()`. (See the |
| // `HashState` class below.) |
| // |
| // The "hash state" concept contains three member functions for mixing hash |
| // state: |
| // |
| // * `H::combine(state, values...)` |
| // |
| // Combines an arbitrary number of values into a hash state, returning the |
| // updated state. Note that the existing hash state is move-only and must be |
| // passed by value. |
| // |
| // Each of the value types T must be hashable by H. |
| // |
| // NOTE: |
| // |
| // state = H::combine(std::move(state), value1, value2, value3); |
| // |
| // must be guaranteed to produce the same hash expansion as |
| // |
| // state = H::combine(std::move(state), value1); |
| // state = H::combine(std::move(state), value2); |
| // state = H::combine(std::move(state), value3); |
| // |
| // * `H::combine_contiguous(state, data, size)` |
| // |
| // Combines a contiguous array of `size` elements into a hash state, |
| // returning the updated state. Note that the existing hash state is |
| // move-only and must be passed by value. |
| // |
| // NOTE: |
| // |
| // state = H::combine_contiguous(std::move(state), data, size); |
| // |
| // need NOT be guaranteed to produce the same hash expansion as a loop |
| // (it may perform internal optimizations). If you need this guarantee, use a |
| // loop instead. |
| // |
| // * `H::combine_unordered(state, begin, end)` |
| // |
| // Combines a set of elements denoted by an iterator pair into a hash |
| // state, returning the updated state. Note that the existing hash |
| // state is move-only and must be passed by value. |
| // |
| // Unlike the other two methods, the hashing is order-independent. |
| // This can be used to hash unordered collections. |
| // |
| // ----------------------------------------------------------------------------- |
| // Adding Type Support to `absl::Hash` |
| // ----------------------------------------------------------------------------- |
| // |
| // To add support for your user-defined type, add a proper `AbslHashValue()` |
| // overload as a free (non-member) function. The overload will take an |
| // existing hash state and should combine that state with state from the type. |
| // |
| // Example: |
| // |
| // template <typename H> |
| // H AbslHashValue(H state, const MyType& v) { |
| // return H::combine(std::move(state), v.field1, ..., v.fieldN); |
| // } |
| // |
| // where `(field1, ..., fieldN)` are the members you would use on your |
| // `operator==` to define equality. |
| // |
| // Notice that `AbslHashValue` is not a class member, but an ordinary function. |
| // An `AbslHashValue` overload for a type should only be declared in the same |
| // file and namespace as said type. The proper `AbslHashValue` implementation |
| // for a given type will be discovered via ADL. |
| // |
| // Note: unlike `std::hash', `absl::Hash` should never be specialized. It must |
| // only be extended by adding `AbslHashValue()` overloads. |
| // |
| template <typename T> |
| using Hash = absl::hash_internal::Hash<T>; |
| |
| // HashOf |
| // |
| // absl::HashOf() is a helper that generates a hash from the values of its |
| // arguments. It dispatches to absl::Hash directly, as follows: |
| // * HashOf(t) == absl::Hash<T>{}(t) |
| // * HashOf(a, b, c) == HashOf(std::make_tuple(a, b, c)) |
| // |
| // HashOf(a1, a2, ...) == HashOf(b1, b2, ...) is guaranteed when |
| // * The argument lists have pairwise identical C++ types |
| // * a1 == b1 && a2 == b2 && ... |
| // |
| // The requirement that the arguments match in both type and value is critical. |
| // It means that `a == b` does not necessarily imply `HashOf(a) == HashOf(b)` if |
| // `a` and `b` have different types. For example, `HashOf(2) != HashOf(2.0)`. |
| template <int&... ExplicitArgumentBarrier, typename... Types> |
| size_t HashOf(const Types&... values) { |
| auto tuple = std::tie(values...); |
| return absl::Hash<decltype(tuple)>{}(tuple); |
| } |
| |
| // HashState |
| // |
| // A type erased version of the hash state concept, for use in user-defined |
| // `AbslHashValue` implementations that can't use templates (such as PImpl |
| // classes, virtual functions, etc.). The type erasure adds overhead so it |
| // should be avoided unless necessary. |
| // |
| // Note: This wrapper will only erase calls to |
| // combine_contiguous(H, const unsigned char*, size_t) |
| // RunCombineUnordered(H, CombinerF) |
| // |
| // All other calls will be handled internally and will not invoke overloads |
| // provided by the wrapped class. |
| // |
| // Users of this class should still define a template `AbslHashValue` function, |
| // but can use `absl::HashState::Create(&state)` to erase the type of the hash |
| // state and dispatch to their private hashing logic. |
| // |
| // This state can be used like any other hash state. In particular, you can call |
| // `HashState::combine()` and `HashState::combine_contiguous()` on it. |
| // |
| // Example: |
| // |
| // class Interface { |
| // public: |
| // template <typename H> |
| // friend H AbslHashValue(H state, const Interface& value) { |
| // state = H::combine(std::move(state), std::type_index(typeid(*this))); |
| // value.HashValue(absl::HashState::Create(&state)); |
| // return state; |
| // } |
| // private: |
| // virtual void HashValue(absl::HashState state) const = 0; |
| // }; |
| // |
| // class Impl : Interface { |
| // private: |
| // void HashValue(absl::HashState state) const override { |
| // absl::HashState::combine(std::move(state), v1_, v2_); |
| // } |
| // int v1_; |
| // std::string v2_; |
| // }; |
| class HashState : public hash_internal::HashStateBase<HashState> { |
| public: |
| // HashState::Create() |
| // |
| // Create a new `HashState` instance that wraps `state`. All calls to |
| // `combine()` and `combine_contiguous()` on the new instance will be |
| // redirected to the original `state` object. The `state` object must outlive |
| // the `HashState` instance. |
| template <typename T> |
| static HashState Create(T* state) { |
| HashState s; |
| s.Init(state); |
| return s; |
| } |
| |
| HashState(const HashState&) = delete; |
| HashState& operator=(const HashState&) = delete; |
| HashState(HashState&&) = default; |
| HashState& operator=(HashState&&) = default; |
| |
| // HashState::combine() |
| // |
| // Combines an arbitrary number of values into a hash state, returning the |
| // updated state. |
| using HashState::HashStateBase::combine; |
| |
| // HashState::combine_contiguous() |
| // |
| // Combines a contiguous array of `size` elements into a hash state, returning |
| // the updated state. |
| static HashState combine_contiguous(HashState hash_state, |
| const unsigned char* first, size_t size) { |
| hash_state.combine_contiguous_(hash_state.state_, first, size); |
| return hash_state; |
| } |
| using HashState::HashStateBase::combine_contiguous; |
| |
| private: |
| HashState() = default; |
| |
| friend class HashState::HashStateBase; |
| |
| template <typename T> |
| static void CombineContiguousImpl(void* p, const unsigned char* first, |
| size_t size) { |
| T& state = *static_cast<T*>(p); |
| state = T::combine_contiguous(std::move(state), first, size); |
| } |
| |
| template <typename T> |
| void Init(T* state) { |
| state_ = state; |
| combine_contiguous_ = &CombineContiguousImpl<T>; |
| run_combine_unordered_ = &RunCombineUnorderedImpl<T>; |
| } |
| |
| template <typename HS> |
| struct CombineUnorderedInvoker { |
| template <typename T, typename ConsumerT> |
| void operator()(T inner_state, ConsumerT inner_cb) { |
| f(HashState::Create(&inner_state), |
| [&](HashState& inner_erased) { inner_cb(inner_erased.Real<T>()); }); |
| } |
| |
| absl::FunctionRef<void(HS, absl::FunctionRef<void(HS&)>)> f; |
| }; |
| |
| template <typename T> |
| static HashState RunCombineUnorderedImpl( |
| HashState state, |
| absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)> |
| f) { |
| // Note that this implementation assumes that inner_state and outer_state |
| // are the same type. This isn't true in the SpyHash case, but SpyHash |
| // types are move-convertible to each other, so this still works. |
| T& real_state = state.Real<T>(); |
| real_state = T::RunCombineUnordered( |
| std::move(real_state), CombineUnorderedInvoker<HashState>{f}); |
| return state; |
| } |
| |
| template <typename CombinerT> |
| static HashState RunCombineUnordered(HashState state, CombinerT combiner) { |
| auto* run = state.run_combine_unordered_; |
| return run(std::move(state), std::ref(combiner)); |
| } |
| |
| // Do not erase an already erased state. |
| void Init(HashState* state) { |
| state_ = state->state_; |
| combine_contiguous_ = state->combine_contiguous_; |
| run_combine_unordered_ = state->run_combine_unordered_; |
| } |
| |
| template <typename T> |
| T& Real() { |
| return *static_cast<T*>(state_); |
| } |
| |
| void* state_; |
| void (*combine_contiguous_)(void*, const unsigned char*, size_t); |
| HashState (*run_combine_unordered_)( |
| HashState state, |
| absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>); |
| }; |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_HASH_HASH_H_ |