| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/discrete_distribution.h" |
| |
| #include <cassert> |
| #include <cmath> |
| #include <cstddef> |
| #include <iterator> |
| #include <numeric> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/base/config.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace random_internal { |
| |
| // Initializes the distribution table for Walker's Aliasing algorithm, described |
| // in Knuth, Vol 2. as well as in https://en.wikipedia.org/wiki/Alias_method |
| std::vector<std::pair<double, size_t>> InitDiscreteDistribution( |
| std::vector<double>* probabilities) { |
| // The empty-case should already be handled by the constructor. |
| assert(probabilities); |
| assert(!probabilities->empty()); |
| |
| // Step 1. Normalize the input probabilities to 1.0. |
| double sum = std::accumulate(std::begin(*probabilities), |
| std::end(*probabilities), 0.0); |
| if (std::fabs(sum - 1.0) > 1e-6) { |
| // Scale `probabilities` only when the sum is too far from 1.0. Scaling |
| // unconditionally will alter the probabilities slightly. |
| for (double& item : *probabilities) { |
| item = item / sum; |
| } |
| } |
| |
| // Step 2. At this point `probabilities` is set to the conditional |
| // probabilities of each element which sum to 1.0, to within reasonable error. |
| // These values are used to construct the proportional probability tables for |
| // the selection phases of Walker's Aliasing algorithm. |
| // |
| // To construct the table, pick an element which is under-full (i.e., an |
| // element for which `(*probabilities)[i] < 1.0/n`), and pair it with an |
| // element which is over-full (i.e., an element for which |
| // `(*probabilities)[i] > 1.0/n`). The smaller value can always be retired. |
| // The larger may still be greater than 1.0/n, or may now be less than 1.0/n, |
| // and put back onto the appropriate collection. |
| const size_t n = probabilities->size(); |
| std::vector<std::pair<double, size_t>> q; |
| q.reserve(n); |
| |
| std::vector<size_t> over; |
| std::vector<size_t> under; |
| size_t idx = 0; |
| for (const double item : *probabilities) { |
| assert(item >= 0); |
| const double v = item * n; |
| q.emplace_back(v, 0); |
| if (v < 1.0) { |
| under.push_back(idx++); |
| } else { |
| over.push_back(idx++); |
| } |
| } |
| while (!over.empty() && !under.empty()) { |
| auto lo = under.back(); |
| under.pop_back(); |
| auto hi = over.back(); |
| over.pop_back(); |
| |
| q[lo].second = hi; |
| const double r = q[hi].first - (1.0 - q[lo].first); |
| q[hi].first = r; |
| if (r < 1.0) { |
| under.push_back(hi); |
| } else { |
| over.push_back(hi); |
| } |
| } |
| |
| // Due to rounding errors, there may be un-paired elements in either |
| // collection; these should all be values near 1.0. For these values, set `q` |
| // to 1.0 and set the alternate to the identity. |
| for (auto i : over) { |
| q[i] = {1.0, i}; |
| } |
| for (auto i : under) { |
| q[i] = {1.0, i}; |
| } |
| return q; |
| } |
| |
| } // namespace random_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |