| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // mutex.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file defines a `Mutex` -- a mutually exclusive lock -- and the |
| // most common type of synchronization primitive for facilitating locks on |
| // shared resources. A mutex is used to prevent multiple threads from accessing |
| // and/or writing to a shared resource concurrently. |
| // |
| // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional |
| // features: |
| // * Conditional predicates intrinsic to the `Mutex` object |
| // * Shared/reader locks, in addition to standard exclusive/writer locks |
| // * Deadlock detection and debug support. |
| // |
| // The following helper classes are also defined within this file: |
| // |
| // MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/ |
| // write access within the current scope. |
| // |
| // ReaderMutexLock |
| // - An RAII wrapper to acquire and release a `Mutex` for shared/read |
| // access within the current scope. |
| // |
| // WriterMutexLock |
| // - Effectively an alias for `MutexLock` above, designed for use in |
| // distinguishing reader and writer locks within code. |
| // |
| // In addition to simple mutex locks, this file also defines ways to perform |
| // locking under certain conditions. |
| // |
| // Condition - (Preferred) Used to wait for a particular predicate that |
| // depends on state protected by the `Mutex` to become true. |
| // CondVar - A lower-level variant of `Condition` that relies on |
| // application code to explicitly signal the `CondVar` when |
| // a condition has been met. |
| // |
| // See below for more information on using `Condition` or `CondVar`. |
| // |
| // Mutexes and mutex behavior can be quite complicated. The information within |
| // this header file is limited, as a result. Please consult the Mutex guide for |
| // more complete information and examples. |
| |
| #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_ |
| #define ABSL_SYNCHRONIZATION_MUTEX_H_ |
| |
| #include <atomic> |
| #include <cstdint> |
| #include <cstring> |
| #include <iterator> |
| #include <string> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/const_init.h" |
| #include "absl/base/internal/identity.h" |
| #include "absl/base/internal/low_level_alloc.h" |
| #include "absl/base/internal/thread_identity.h" |
| #include "absl/base/internal/tsan_mutex_interface.h" |
| #include "absl/base/port.h" |
| #include "absl/base/thread_annotations.h" |
| #include "absl/synchronization/internal/kernel_timeout.h" |
| #include "absl/synchronization/internal/per_thread_sem.h" |
| #include "absl/time/time.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| class Condition; |
| struct SynchWaitParams; |
| |
| // ----------------------------------------------------------------------------- |
| // Mutex |
| // ----------------------------------------------------------------------------- |
| // |
| // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock |
| // on some resource, typically a variable or data structure with associated |
| // invariants. Proper usage of mutexes prevents concurrent access by different |
| // threads to the same resource. |
| // |
| // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`. |
| // The `Lock()` operation *acquires* a `Mutex` (in a state known as an |
| // *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a |
| // Mutex. During the span of time between the Lock() and Unlock() operations, |
| // a mutex is said to be *held*. By design, all mutexes support exclusive/write |
| // locks, as this is the most common way to use a mutex. |
| // |
| // Mutex operations are only allowed under certain conditions; otherwise an |
| // operation is "invalid", and disallowed by the API. The conditions concern |
| // both the current state of the mutex and the identity of the threads that |
| // are performing the operations. |
| // |
| // The `Mutex` state machine for basic lock/unlock operations is quite simple: |
| // |
| // | | Lock() | Unlock() | |
| // |----------------+------------------------+----------| |
| // | Free | Exclusive | invalid | |
| // | Exclusive | blocks, then exclusive | Free | |
| // |
| // The full conditions are as follows. |
| // |
| // * Calls to `Unlock()` require that the mutex be held, and must be made in the |
| // same thread that performed the corresponding `Lock()` operation which |
| // acquired the mutex; otherwise the call is invalid. |
| // |
| // * The mutex being non-reentrant (or non-recursive) means that a call to |
| // `Lock()` or `TryLock()` must not be made in a thread that already holds the |
| // mutex; such a call is invalid. |
| // |
| // * In other words, the state of being "held" has both a temporal component |
| // (from `Lock()` until `Unlock()`) as well as a thread identity component: |
| // the mutex is held *by a particular thread*. |
| // |
| // An "invalid" operation has undefined behavior. The `Mutex` implementation |
| // is allowed to do anything on an invalid call, including, but not limited to, |
| // crashing with a useful error message, silently succeeding, or corrupting |
| // data structures. In debug mode, the implementation may crash with a useful |
| // error message. |
| // |
| // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it |
| // is, however, approximately fair over long periods, and starvation-free for |
| // threads at the same priority. |
| // |
| // The lock/unlock primitives are now annotated with lock annotations |
| // defined in (base/thread_annotations.h). When writing multi-threaded code, |
| // you should use lock annotations whenever possible to document your lock |
| // synchronization policy. Besides acting as documentation, these annotations |
| // also help compilers or static analysis tools to identify and warn about |
| // issues that could potentially result in race conditions and deadlocks. |
| // |
| // For more information about the lock annotations, please see |
| // [Thread Safety |
| // Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang |
| // documentation. |
| // |
| // See also `MutexLock`, below, for scoped `Mutex` acquisition. |
| |
| class ABSL_LOCKABLE ABSL_ATTRIBUTE_WARN_UNUSED Mutex { |
| public: |
| // Creates a `Mutex` that is not held by anyone. This constructor is |
| // typically used for Mutexes allocated on the heap or the stack. |
| // |
| // To create `Mutex` instances with static storage duration |
| // (e.g. a namespace-scoped or global variable), see |
| // `Mutex::Mutex(absl::kConstInit)` below instead. |
| Mutex(); |
| |
| // Creates a mutex with static storage duration. A global variable |
| // constructed this way avoids the lifetime issues that can occur on program |
| // startup and shutdown. (See absl/base/const_init.h.) |
| // |
| // For Mutexes allocated on the heap and stack, instead use the default |
| // constructor, which can interact more fully with the thread sanitizer. |
| // |
| // Example usage: |
| // namespace foo { |
| // ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit); |
| // } |
| explicit constexpr Mutex(absl::ConstInitType); |
| |
| ~Mutex(); |
| |
| // Mutex::Lock() |
| // |
| // Blocks the calling thread, if necessary, until this `Mutex` is free, and |
| // then acquires it exclusively. (This lock is also known as a "write lock.") |
| void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION(); |
| |
| // Mutex::Unlock() |
| // |
| // Releases this `Mutex` and returns it from the exclusive/write state to the |
| // free state. Calling thread must hold the `Mutex` exclusively. |
| void Unlock() ABSL_UNLOCK_FUNCTION(); |
| |
| // Mutex::TryLock() |
| // |
| // If the mutex can be acquired without blocking, does so exclusively and |
| // returns `true`. Otherwise, returns `false`. Returns `true` with high |
| // probability if the `Mutex` was free. |
| ABSL_MUST_USE_RESULT bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true); |
| |
| // Mutex::AssertHeld() |
| // |
| // Require that the mutex be held exclusively (write mode) by this thread. |
| // |
| // If the mutex is not currently held by this thread, this function may report |
| // an error (typically by crashing with a diagnostic) or it may do nothing. |
| // This function is intended only as a tool to assist debugging; it doesn't |
| // guarantee correctness. |
| void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK(); |
| |
| // --------------------------------------------------------------------------- |
| // Reader-Writer Locking |
| // --------------------------------------------------------------------------- |
| |
| // A Mutex can also be used as a starvation-free reader-writer lock. |
| // Neither read-locks nor write-locks are reentrant/recursive to avoid |
| // potential client programming errors. |
| // |
| // The Mutex API provides `Writer*()` aliases for the existing `Lock()`, |
| // `Unlock()` and `TryLock()` methods for use within applications mixing |
| // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this |
| // manner can make locking behavior clearer when mixing read and write modes. |
| // |
| // Introducing reader locks necessarily complicates the `Mutex` state |
| // machine somewhat. The table below illustrates the allowed state transitions |
| // of a mutex in such cases. Note that ReaderLock() may block even if the lock |
| // is held in shared mode; this occurs when another thread is blocked on a |
| // call to WriterLock(). |
| // |
| // --------------------------------------------------------------------------- |
| // Operation: WriterLock() Unlock() ReaderLock() ReaderUnlock() |
| // --------------------------------------------------------------------------- |
| // State |
| // --------------------------------------------------------------------------- |
| // Free Exclusive invalid Shared(1) invalid |
| // Shared(1) blocks invalid Shared(2) or blocks Free |
| // Shared(n) n>1 blocks invalid Shared(n+1) or blocks Shared(n-1) |
| // Exclusive blocks Free blocks invalid |
| // --------------------------------------------------------------------------- |
| // |
| // In comments below, "shared" refers to a state of Shared(n) for any n > 0. |
| |
| // Mutex::ReaderLock() |
| // |
| // Blocks the calling thread, if necessary, until this `Mutex` is either free, |
| // or in shared mode, and then acquires a share of it. Note that |
| // `ReaderLock()` will block if some other thread has an exclusive/writer lock |
| // on the mutex. |
| |
| void ReaderLock() ABSL_SHARED_LOCK_FUNCTION(); |
| |
| // Mutex::ReaderUnlock() |
| // |
| // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to |
| // the free state if this thread holds the last reader lock on the mutex. Note |
| // that you cannot call `ReaderUnlock()` on a mutex held in write mode. |
| void ReaderUnlock() ABSL_UNLOCK_FUNCTION(); |
| |
| // Mutex::ReaderTryLock() |
| // |
| // If the mutex can be acquired without blocking, acquires this mutex for |
| // shared access and returns `true`. Otherwise, returns `false`. Returns |
| // `true` with high probability if the `Mutex` was free or shared. |
| ABSL_MUST_USE_RESULT bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true); |
| |
| // Mutex::AssertReaderHeld() |
| // |
| // Require that the mutex be held at least in shared mode (read mode) by this |
| // thread. |
| // |
| // If the mutex is not currently held by this thread, this function may report |
| // an error (typically by crashing with a diagnostic) or it may do nothing. |
| // This function is intended only as a tool to assist debugging; it doesn't |
| // guarantee correctness. |
| void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK(); |
| |
| // Mutex::WriterLock() |
| // Mutex::WriterUnlock() |
| // Mutex::WriterTryLock() |
| // |
| // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`. |
| // |
| // These methods may be used (along with the complementary `Reader*()` |
| // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`, |
| // etc.) from reader/writer lock usage. |
| void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); } |
| |
| void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); } |
| |
| ABSL_MUST_USE_RESULT bool WriterTryLock() |
| ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) { |
| return this->TryLock(); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Conditional Critical Regions |
| // --------------------------------------------------------------------------- |
| |
| // Conditional usage of a `Mutex` can occur using two distinct paradigms: |
| // |
| // * Use of `Mutex` member functions with `Condition` objects. |
| // * Use of the separate `CondVar` abstraction. |
| // |
| // In general, prefer use of `Condition` and the `Mutex` member functions |
| // listed below over `CondVar`. When there are multiple threads waiting on |
| // distinctly different conditions, however, a battery of `CondVar`s may be |
| // more efficient. This section discusses use of `Condition` objects. |
| // |
| // `Mutex` contains member functions for performing lock operations only under |
| // certain conditions, of class `Condition`. For correctness, the `Condition` |
| // must return a boolean that is a pure function, only of state protected by |
| // the `Mutex`. The condition must be invariant w.r.t. environmental state |
| // such as thread, cpu id, or time, and must be `noexcept`. The condition will |
| // always be invoked with the mutex held in at least read mode, so you should |
| // not block it for long periods or sleep it on a timer. |
| // |
| // Since a condition must not depend directly on the current time, use |
| // `*WithTimeout()` member function variants to make your condition |
| // effectively true after a given duration, or `*WithDeadline()` variants to |
| // make your condition effectively true after a given time. |
| // |
| // The condition function should have no side-effects aside from debug |
| // logging; as a special exception, the function may acquire other mutexes |
| // provided it releases all those that it acquires. (This exception was |
| // required to allow logging.) |
| |
| // Mutex::Await() |
| // |
| // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true` |
| // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the |
| // same mode in which it was previously held. If the condition is initially |
| // `true`, `Await()` *may* skip the release/re-acquire step. |
| // |
| // `Await()` requires that this thread holds this `Mutex` in some mode. |
| void Await(const Condition& cond) { |
| AwaitCommon(cond, synchronization_internal::KernelTimeout::Never()); |
| } |
| |
| // Mutex::LockWhen() |
| // Mutex::ReaderLockWhen() |
| // Mutex::WriterLockWhen() |
| // |
| // Blocks until simultaneously both `cond` is `true` and this `Mutex` can |
| // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is |
| // logically equivalent to `*Lock(); Await();` though they may have different |
| // performance characteristics. |
| void LockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(), |
| true); |
| } |
| |
| void ReaderLockWhen(const Condition& cond) ABSL_SHARED_LOCK_FUNCTION() { |
| LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(), |
| false); |
| } |
| |
| void WriterLockWhen(const Condition& cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| this->LockWhen(cond); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Mutex Variants with Timeouts/Deadlines |
| // --------------------------------------------------------------------------- |
| |
| // Mutex::AwaitWithTimeout() |
| // Mutex::AwaitWithDeadline() |
| // |
| // Unlocks this `Mutex` and blocks until simultaneously: |
| // - either `cond` is true or the {timeout has expired, deadline has passed} |
| // and |
| // - this `Mutex` can be reacquired, |
| // then reacquire this `Mutex` in the same mode in which it was previously |
| // held, returning `true` iff `cond` is `true` on return. |
| // |
| // If the condition is initially `true`, the implementation *may* skip the |
| // release/re-acquire step and return immediately. |
| // |
| // Deadlines in the past are equivalent to an immediate deadline. |
| // Negative timeouts are equivalent to a zero timeout. |
| // |
| // This method requires that this thread holds this `Mutex` in some mode. |
| bool AwaitWithTimeout(const Condition& cond, absl::Duration timeout) { |
| return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout}); |
| } |
| |
| bool AwaitWithDeadline(const Condition& cond, absl::Time deadline) { |
| return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline}); |
| } |
| |
| // Mutex::LockWhenWithTimeout() |
| // Mutex::ReaderLockWhenWithTimeout() |
| // Mutex::WriterLockWhenWithTimeout() |
| // |
| // Blocks until simultaneously both: |
| // - either `cond` is `true` or the timeout has expired, and |
| // - this `Mutex` can be acquired, |
| // then atomically acquires this `Mutex`, returning `true` iff `cond` is |
| // `true` on return. |
| // |
| // Negative timeouts are equivalent to a zero timeout. |
| bool LockWhenWithTimeout(const Condition& cond, absl::Duration timeout) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| return LockWhenCommon( |
| cond, synchronization_internal::KernelTimeout{timeout}, true); |
| } |
| bool ReaderLockWhenWithTimeout(const Condition& cond, absl::Duration timeout) |
| ABSL_SHARED_LOCK_FUNCTION() { |
| return LockWhenCommon( |
| cond, synchronization_internal::KernelTimeout{timeout}, false); |
| } |
| bool WriterLockWhenWithTimeout(const Condition& cond, absl::Duration timeout) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| return this->LockWhenWithTimeout(cond, timeout); |
| } |
| |
| // Mutex::LockWhenWithDeadline() |
| // Mutex::ReaderLockWhenWithDeadline() |
| // Mutex::WriterLockWhenWithDeadline() |
| // |
| // Blocks until simultaneously both: |
| // - either `cond` is `true` or the deadline has been passed, and |
| // - this `Mutex` can be acquired, |
| // then atomically acquires this Mutex, returning `true` iff `cond` is `true` |
| // on return. |
| // |
| // Deadlines in the past are equivalent to an immediate deadline. |
| bool LockWhenWithDeadline(const Condition& cond, absl::Time deadline) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| return LockWhenCommon( |
| cond, synchronization_internal::KernelTimeout{deadline}, true); |
| } |
| bool ReaderLockWhenWithDeadline(const Condition& cond, absl::Time deadline) |
| ABSL_SHARED_LOCK_FUNCTION() { |
| return LockWhenCommon( |
| cond, synchronization_internal::KernelTimeout{deadline}, false); |
| } |
| bool WriterLockWhenWithDeadline(const Condition& cond, absl::Time deadline) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION() { |
| return this->LockWhenWithDeadline(cond, deadline); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // Debug Support: Invariant Checking, Deadlock Detection, Logging. |
| // --------------------------------------------------------------------------- |
| |
| // Mutex::EnableInvariantDebugging() |
| // |
| // If `invariant`!=null and if invariant debugging has been enabled globally, |
| // cause `(*invariant)(arg)` to be called at moments when the invariant for |
| // this `Mutex` should hold (for example: just after acquire, just before |
| // release). |
| // |
| // The routine `invariant` should have no side-effects since it is not |
| // guaranteed how many times it will be called; it should check the invariant |
| // and crash if it does not hold. Enabling global invariant debugging may |
| // substantially reduce `Mutex` performance; it should be set only for |
| // non-production runs. Optimization options may also disable invariant |
| // checks. |
| void EnableInvariantDebugging(void (*invariant)(void*), void* arg); |
| |
| // Mutex::EnableDebugLog() |
| // |
| // Cause all subsequent uses of this `Mutex` to be logged via |
| // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous |
| // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made. |
| // |
| // Note: This method substantially reduces `Mutex` performance. |
| void EnableDebugLog(const char* name); |
| |
| // Deadlock detection |
| |
| // Mutex::ForgetDeadlockInfo() |
| // |
| // Forget any deadlock-detection information previously gathered |
| // about this `Mutex`. Call this method in debug mode when the lock ordering |
| // of a `Mutex` changes. |
| void ForgetDeadlockInfo(); |
| |
| // Mutex::AssertNotHeld() |
| // |
| // Return immediately if this thread does not hold this `Mutex` in any |
| // mode; otherwise, may report an error (typically by crashing with a |
| // diagnostic), or may return immediately. |
| // |
| // Currently this check is performed only if all of: |
| // - in debug mode |
| // - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort |
| // - number of locks concurrently held by this thread is not large. |
| // are true. |
| void AssertNotHeld() const; |
| |
| // Special cases. |
| |
| // A `MuHow` is a constant that indicates how a lock should be acquired. |
| // Internal implementation detail. Clients should ignore. |
| typedef const struct MuHowS* MuHow; |
| |
| // Mutex::InternalAttemptToUseMutexInFatalSignalHandler() |
| // |
| // Causes the `Mutex` implementation to prepare itself for re-entry caused by |
| // future use of `Mutex` within a fatal signal handler. This method is |
| // intended for use only for last-ditch attempts to log crash information. |
| // It does not guarantee that attempts to use Mutexes within the handler will |
| // not deadlock; it merely makes other faults less likely. |
| // |
| // WARNING: This routine must be invoked from a signal handler, and the |
| // signal handler must either loop forever or terminate the process. |
| // Attempts to return from (or `longjmp` out of) the signal handler once this |
| // call has been made may cause arbitrary program behaviour including |
| // crashes and deadlocks. |
| static void InternalAttemptToUseMutexInFatalSignalHandler(); |
| |
| private: |
| std::atomic<intptr_t> mu_; // The Mutex state. |
| |
| // Post()/Wait() versus associated PerThreadSem; in class for required |
| // friendship with PerThreadSem. |
| static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w); |
| static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w, |
| synchronization_internal::KernelTimeout t); |
| |
| // slow path acquire |
| void LockSlowLoop(SynchWaitParams* waitp, int flags); |
| // wrappers around LockSlowLoop() |
| bool LockSlowWithDeadline(MuHow how, const Condition* cond, |
| synchronization_internal::KernelTimeout t, |
| int flags); |
| void LockSlow(MuHow how, const Condition* cond, |
| int flags) ABSL_ATTRIBUTE_COLD; |
| // slow path release |
| void UnlockSlow(SynchWaitParams* waitp) ABSL_ATTRIBUTE_COLD; |
| // TryLock slow path. |
| bool TryLockSlow(); |
| // ReaderTryLock slow path. |
| bool ReaderTryLockSlow(); |
| // Common code between Await() and AwaitWithTimeout/Deadline() |
| bool AwaitCommon(const Condition& cond, |
| synchronization_internal::KernelTimeout t); |
| bool LockWhenCommon(const Condition& cond, |
| synchronization_internal::KernelTimeout t, bool write); |
| // Attempt to remove thread s from queue. |
| void TryRemove(base_internal::PerThreadSynch* s); |
| // Block a thread on mutex. |
| void Block(base_internal::PerThreadSynch* s); |
| // Wake a thread; return successor. |
| base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w); |
| void Dtor(); |
| |
| friend class CondVar; // for access to Trans()/Fer(). |
| void Trans(MuHow how); // used for CondVar->Mutex transfer |
| void Fer( |
| base_internal::PerThreadSynch* w); // used for CondVar->Mutex transfer |
| |
| // Catch the error of writing Mutex when intending MutexLock. |
| explicit Mutex(const volatile Mutex* /*ignored*/) {} |
| |
| Mutex(const Mutex&) = delete; |
| Mutex& operator=(const Mutex&) = delete; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Mutex RAII Wrappers |
| // ----------------------------------------------------------------------------- |
| |
| // MutexLock |
| // |
| // `MutexLock` is a helper class, which acquires and releases a `Mutex` via |
| // RAII. |
| // |
| // Example: |
| // |
| // Class Foo { |
| // public: |
| // Foo::Bar* Baz() { |
| // MutexLock lock(&mu_); |
| // ... |
| // return bar; |
| // } |
| // |
| // private: |
| // Mutex mu_; |
| // }; |
| class ABSL_SCOPED_LOCKABLE MutexLock { |
| public: |
| // Constructors |
| |
| // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is |
| // guaranteed to be locked when this object is constructed. Requires that |
| // `mu` be dereferenceable. |
| explicit MutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { |
| this->mu_->Lock(); |
| } |
| |
| // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to |
| // the above, the condition given by `cond` is also guaranteed to hold when |
| // this object is constructed. |
| explicit MutexLock(Mutex* mu, const Condition& cond) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| this->mu_->LockWhen(cond); |
| } |
| |
| MutexLock(const MutexLock&) = delete; // NOLINT(runtime/mutex) |
| MutexLock(MutexLock&&) = delete; // NOLINT(runtime/mutex) |
| MutexLock& operator=(const MutexLock&) = delete; |
| MutexLock& operator=(MutexLock&&) = delete; |
| |
| ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); } |
| |
| private: |
| Mutex* const mu_; |
| }; |
| |
| // ReaderMutexLock |
| // |
| // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and |
| // releases a shared lock on a `Mutex` via RAII. |
| class ABSL_SCOPED_LOCKABLE ReaderMutexLock { |
| public: |
| explicit ReaderMutexLock(Mutex* mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) { |
| mu->ReaderLock(); |
| } |
| |
| explicit ReaderMutexLock(Mutex* mu, const Condition& cond) |
| ABSL_SHARED_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| mu->ReaderLockWhen(cond); |
| } |
| |
| ReaderMutexLock(const ReaderMutexLock&) = delete; |
| ReaderMutexLock(ReaderMutexLock&&) = delete; |
| ReaderMutexLock& operator=(const ReaderMutexLock&) = delete; |
| ReaderMutexLock& operator=(ReaderMutexLock&&) = delete; |
| |
| ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); } |
| |
| private: |
| Mutex* const mu_; |
| }; |
| |
| // WriterMutexLock |
| // |
| // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and |
| // releases a write (exclusive) lock on a `Mutex` via RAII. |
| class ABSL_SCOPED_LOCKABLE WriterMutexLock { |
| public: |
| explicit WriterMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| mu->WriterLock(); |
| } |
| |
| explicit WriterMutexLock(Mutex* mu, const Condition& cond) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| mu->WriterLockWhen(cond); |
| } |
| |
| WriterMutexLock(const WriterMutexLock&) = delete; |
| WriterMutexLock(WriterMutexLock&&) = delete; |
| WriterMutexLock& operator=(const WriterMutexLock&) = delete; |
| WriterMutexLock& operator=(WriterMutexLock&&) = delete; |
| |
| ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); } |
| |
| private: |
| Mutex* const mu_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Condition |
| // ----------------------------------------------------------------------------- |
| // |
| // `Mutex` contains a number of member functions which take a `Condition` as an |
| // argument; clients can wait for conditions to become `true` before attempting |
| // to acquire the mutex. These sections are known as "condition critical" |
| // sections. To use a `Condition`, you simply need to construct it, and use |
| // within an appropriate `Mutex` member function; everything else in the |
| // `Condition` class is an implementation detail. |
| // |
| // A `Condition` is specified as a function pointer which returns a boolean. |
| // `Condition` functions should be pure functions -- their results should depend |
| // only on passed arguments, should not consult any external state (such as |
| // clocks), and should have no side-effects, aside from debug logging. Any |
| // objects that the function may access should be limited to those which are |
| // constant while the mutex is blocked on the condition (e.g. a stack variable), |
| // or objects of state protected explicitly by the mutex. |
| // |
| // No matter which construction is used for `Condition`, the underlying |
| // function pointer / functor / callable must not throw any |
| // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in |
| // the face of a throwing `Condition`. (When Abseil is allowed to depend |
| // on C++17, these function pointers will be explicitly marked |
| // `noexcept`; until then this requirement cannot be enforced in the |
| // type system.) |
| // |
| // Note: to use a `Condition`, you need only construct it and pass it to a |
| // suitable `Mutex' member function, such as `Mutex::Await()`, or to the |
| // constructor of one of the scope guard classes. |
| // |
| // Example using LockWhen/Unlock: |
| // |
| // // assume count_ is not internal reference count |
| // int count_ ABSL_GUARDED_BY(mu_); |
| // Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_); |
| // |
| // mu_.LockWhen(count_is_zero); |
| // // ... |
| // mu_.Unlock(); |
| // |
| // Example using a scope guard: |
| // |
| // { |
| // MutexLock lock(&mu_, count_is_zero); |
| // // ... |
| // } |
| // |
| // When multiple threads are waiting on exactly the same condition, make sure |
| // that they are constructed with the same parameters (same pointer to function |
| // + arg, or same pointer to object + method), so that the mutex implementation |
| // can avoid redundantly evaluating the same condition for each thread. |
| class Condition { |
| public: |
| // A Condition that returns the result of "(*func)(arg)" |
| Condition(bool (*func)(void*), void* arg); |
| |
| // Templated version for people who are averse to casts. |
| // |
| // To use a lambda, prepend it with unary plus, which converts the lambda |
| // into a function pointer: |
| // Condition(+[](T* t) { return ...; }, arg). |
| // |
| // Note: lambdas in this case must contain no bound variables. |
| // |
| // See class comment for performance advice. |
| template <typename T> |
| Condition(bool (*func)(T*), T* arg); |
| |
| // Same as above, but allows for cases where `arg` comes from a pointer that |
| // is convertible to the function parameter type `T*` but not an exact match. |
| // |
| // For example, the argument might be `X*` but the function takes `const X*`, |
| // or the argument might be `Derived*` while the function takes `Base*`, and |
| // so on for cases where the argument pointer can be implicitly converted. |
| // |
| // Implementation notes: This constructor overload is required in addition to |
| // the one above to allow deduction of `T` from `arg` for cases such as where |
| // a function template is passed as `func`. Also, the dummy `typename = void` |
| // template parameter exists just to work around a MSVC mangling bug. |
| template <typename T, typename = void> |
| Condition(bool (*func)(T*), |
| typename absl::internal::type_identity<T>::type* arg); |
| |
| // Templated version for invoking a method that returns a `bool`. |
| // |
| // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates |
| // `object->Method()`. |
| // |
| // Implementation Note: `absl::internal::type_identity` is used to allow |
| // methods to come from base classes. A simpler signature like |
| // `Condition(T*, bool (T::*)())` does not suffice. |
| template <typename T> |
| Condition(T* object, |
| bool (absl::internal::type_identity<T>::type::*method)()); |
| |
| // Same as above, for const members |
| template <typename T> |
| Condition(const T* object, |
| bool (absl::internal::type_identity<T>::type::*method)() const); |
| |
| // A Condition that returns the value of `*cond` |
| explicit Condition(const bool* cond); |
| |
| // Templated version for invoking a functor that returns a `bool`. |
| // This approach accepts pointers to non-mutable lambdas, `std::function`, |
| // the result of` std::bind` and user-defined functors that define |
| // `bool F::operator()() const`. |
| // |
| // Example: |
| // |
| // auto reached = [this, current]() { |
| // mu_.AssertReaderHeld(); // For annotalysis. |
| // return processed_ >= current; |
| // }; |
| // mu_.Await(Condition(&reached)); |
| // |
| // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in |
| // the lambda as it may be called when the mutex is being unlocked from a |
| // scope holding only a reader lock, which will make the assertion not |
| // fulfilled and crash the binary. |
| |
| // See class comment for performance advice. In particular, if there |
| // might be more than one waiter for the same condition, make sure |
| // that all waiters construct the condition with the same pointers. |
| |
| // Implementation note: The second template parameter ensures that this |
| // constructor doesn't participate in overload resolution if T doesn't have |
| // `bool operator() const`. |
| template <typename T, typename E = decltype(static_cast<bool (T::*)() const>( |
| &T::operator()))> |
| explicit Condition(const T* obj) |
| : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {} |
| |
| // A Condition that always returns `true`. |
| // kTrue is only useful in a narrow set of circumstances, mostly when |
| // it's passed conditionally. For example: |
| // |
| // mu.LockWhen(some_flag ? kTrue : SomeOtherCondition); |
| // |
| // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition |
| // don't return immediately when the timeout happens, they still block until |
| // the Mutex becomes available. The return value of these methods does |
| // not indicate if the timeout was reached; rather it indicates whether or |
| // not the condition is true. |
| ABSL_CONST_INIT static const Condition kTrue; |
| |
| // Evaluates the condition. |
| bool Eval() const; |
| |
| // Returns `true` if the two conditions are guaranteed to return the same |
| // value if evaluated at the same time, `false` if the evaluation *may* return |
| // different results. |
| // |
| // Two `Condition` values are guaranteed equal if both their `func` and `arg` |
| // components are the same. A null pointer is equivalent to a `true` |
| // condition. |
| static bool GuaranteedEqual(const Condition* a, const Condition* b); |
| |
| private: |
| // Sizing an allocation for a method pointer can be subtle. In the Itanium |
| // specifications, a method pointer has a predictable, uniform size. On the |
| // other hand, MSVC ABI, method pointer sizes vary based on the |
| // inheritance of the class. Specifically, method pointers from classes with |
| // multiple inheritance are bigger than those of classes with single |
| // inheritance. Other variations also exist. |
| |
| #ifndef _MSC_VER |
| // Allocation for a function pointer or method pointer. |
| // The {0} initializer ensures that all unused bytes of this buffer are |
| // always zeroed out. This is necessary, because GuaranteedEqual() compares |
| // all of the bytes, unaware of which bytes are relevant to a given `eval_`. |
| using MethodPtr = bool (Condition::*)(); |
| char callback_[sizeof(MethodPtr)] = {0}; |
| #else |
| // It is well known that the larget MSVC pointer-to-member is 24 bytes. This |
| // may be the largest known pointer-to-member of any platform. For this |
| // reason we will allocate 24 bytes for MSVC platform toolchains. |
| char callback_[24] = {0}; |
| #endif |
| |
| // Function with which to evaluate callbacks and/or arguments. |
| bool (*eval_)(const Condition*) = nullptr; |
| |
| // Either an argument for a function call or an object for a method call. |
| void* arg_ = nullptr; |
| |
| // Various functions eval_ can point to: |
| static bool CallVoidPtrFunction(const Condition*); |
| template <typename T> |
| static bool CastAndCallFunction(const Condition* c); |
| template <typename T, typename ConditionMethodPtr> |
| static bool CastAndCallMethod(const Condition* c); |
| |
| // Helper methods for storing, validating, and reading callback arguments. |
| template <typename T> |
| inline void StoreCallback(T callback) { |
| static_assert( |
| sizeof(callback) <= sizeof(callback_), |
| "An overlarge pointer was passed as a callback to Condition."); |
| std::memcpy(callback_, &callback, sizeof(callback)); |
| } |
| |
| template <typename T> |
| inline void ReadCallback(T* callback) const { |
| std::memcpy(callback, callback_, sizeof(*callback)); |
| } |
| |
| static bool AlwaysTrue(const Condition*) { return true; } |
| |
| // Used only to create kTrue. |
| constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {} |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // CondVar |
| // ----------------------------------------------------------------------------- |
| // |
| // A condition variable, reflecting state evaluated separately outside of the |
| // `Mutex` object, which can be signaled to wake callers. |
| // This class is not normally needed; use `Mutex` member functions such as |
| // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases |
| // with many threads and many conditions, `CondVar` may be faster. |
| // |
| // The implementation may deliver signals to any condition variable at |
| // any time, even when no call to `Signal()` or `SignalAll()` is made; as a |
| // result, upon being awoken, you must check the logical condition you have |
| // been waiting upon. |
| // |
| // Examples: |
| // |
| // Usage for a thread waiting for some condition C protected by mutex mu: |
| // mu.Lock(); |
| // while (!C) { cv->Wait(&mu); } // releases and reacquires mu |
| // // C holds; process data |
| // mu.Unlock(); |
| // |
| // Usage to wake T is: |
| // mu.Lock(); |
| // // process data, possibly establishing C |
| // if (C) { cv->Signal(); } |
| // mu.Unlock(); |
| // |
| // If C may be useful to more than one waiter, use `SignalAll()` instead of |
| // `Signal()`. |
| // |
| // With this implementation it is efficient to use `Signal()/SignalAll()` inside |
| // the locked region; this usage can make reasoning about your program easier. |
| // |
| class CondVar { |
| public: |
| // A `CondVar` allocated on the heap or on the stack can use the this |
| // constructor. |
| CondVar(); |
| |
| // CondVar::Wait() |
| // |
| // Atomically releases a `Mutex` and blocks on this condition variable. |
| // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| // spurious wakeup), then reacquires the `Mutex` and returns. |
| // |
| // Requires and ensures that the current thread holds the `Mutex`. |
| void Wait(Mutex* mu) { |
| WaitCommon(mu, synchronization_internal::KernelTimeout::Never()); |
| } |
| |
| // CondVar::WaitWithTimeout() |
| // |
| // Atomically releases a `Mutex` and blocks on this condition variable. |
| // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| // spurious wakeup), or until the timeout has expired, then reacquires |
| // the `Mutex` and returns. |
| // |
| // Returns true if the timeout has expired without this `CondVar` |
| // being signalled in any manner. If both the timeout has expired |
| // and this `CondVar` has been signalled, the implementation is free |
| // to return `true` or `false`. |
| // |
| // Requires and ensures that the current thread holds the `Mutex`. |
| bool WaitWithTimeout(Mutex* mu, absl::Duration timeout) { |
| return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout)); |
| } |
| |
| // CondVar::WaitWithDeadline() |
| // |
| // Atomically releases a `Mutex` and blocks on this condition variable. |
| // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a |
| // spurious wakeup), or until the deadline has passed, then reacquires |
| // the `Mutex` and returns. |
| // |
| // Deadlines in the past are equivalent to an immediate deadline. |
| // |
| // Returns true if the deadline has passed without this `CondVar` |
| // being signalled in any manner. If both the deadline has passed |
| // and this `CondVar` has been signalled, the implementation is free |
| // to return `true` or `false`. |
| // |
| // Requires and ensures that the current thread holds the `Mutex`. |
| bool WaitWithDeadline(Mutex* mu, absl::Time deadline) { |
| return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline)); |
| } |
| |
| // CondVar::Signal() |
| // |
| // Signal this `CondVar`; wake at least one waiter if one exists. |
| void Signal(); |
| |
| // CondVar::SignalAll() |
| // |
| // Signal this `CondVar`; wake all waiters. |
| void SignalAll(); |
| |
| // CondVar::EnableDebugLog() |
| // |
| // Causes all subsequent uses of this `CondVar` to be logged via |
| // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`. |
| // Note: this method substantially reduces `CondVar` performance. |
| void EnableDebugLog(const char* name); |
| |
| private: |
| bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t); |
| void Remove(base_internal::PerThreadSynch* s); |
| std::atomic<intptr_t> cv_; // Condition variable state. |
| CondVar(const CondVar&) = delete; |
| CondVar& operator=(const CondVar&) = delete; |
| }; |
| |
| // Variants of MutexLock. |
| // |
| // If you find yourself using one of these, consider instead using |
| // Mutex::Unlock() and/or if-statements for clarity. |
| |
| // MutexLockMaybe |
| // |
| // MutexLockMaybe is like MutexLock, but is a no-op when mu is null. |
| class ABSL_SCOPED_LOCKABLE MutexLockMaybe { |
| public: |
| explicit MutexLockMaybe(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| if (this->mu_ != nullptr) { |
| this->mu_->Lock(); |
| } |
| } |
| |
| explicit MutexLockMaybe(Mutex* mu, const Condition& cond) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| if (this->mu_ != nullptr) { |
| this->mu_->LockWhen(cond); |
| } |
| } |
| |
| ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() { |
| if (this->mu_ != nullptr) { |
| this->mu_->Unlock(); |
| } |
| } |
| |
| private: |
| Mutex* const mu_; |
| MutexLockMaybe(const MutexLockMaybe&) = delete; |
| MutexLockMaybe(MutexLockMaybe&&) = delete; |
| MutexLockMaybe& operator=(const MutexLockMaybe&) = delete; |
| MutexLockMaybe& operator=(MutexLockMaybe&&) = delete; |
| }; |
| |
| // ReleasableMutexLock |
| // |
| // ReleasableMutexLock is like MutexLock, but permits `Release()` of its |
| // mutex before destruction. `Release()` may be called at most once. |
| class ABSL_SCOPED_LOCKABLE ReleasableMutexLock { |
| public: |
| explicit ReleasableMutexLock(Mutex* mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| this->mu_->Lock(); |
| } |
| |
| explicit ReleasableMutexLock(Mutex* mu, const Condition& cond) |
| ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) |
| : mu_(mu) { |
| this->mu_->LockWhen(cond); |
| } |
| |
| ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() { |
| if (this->mu_ != nullptr) { |
| this->mu_->Unlock(); |
| } |
| } |
| |
| void Release() ABSL_UNLOCK_FUNCTION(); |
| |
| private: |
| Mutex* mu_; |
| ReleasableMutexLock(const ReleasableMutexLock&) = delete; |
| ReleasableMutexLock(ReleasableMutexLock&&) = delete; |
| ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete; |
| ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete; |
| }; |
| |
| inline Mutex::Mutex() : mu_(0) { |
| ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static); |
| } |
| |
| inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {} |
| |
| #if !defined(__APPLE__) && !defined(ABSL_BUILD_DLL) |
| ABSL_ATTRIBUTE_ALWAYS_INLINE |
| inline Mutex::~Mutex() { Dtor(); } |
| #endif |
| |
| #if defined(NDEBUG) && !defined(ABSL_HAVE_THREAD_SANITIZER) |
| // Use default (empty) destructor in release build for performance reasons. |
| // We need to mark both Dtor and ~Mutex as always inline for inconsistent |
| // builds that use both NDEBUG and !NDEBUG with dynamic libraries. In these |
| // cases we want the empty functions to dissolve entirely rather than being |
| // exported from dynamic libraries and potentially override the non-empty ones. |
| ABSL_ATTRIBUTE_ALWAYS_INLINE |
| inline void Mutex::Dtor() {} |
| #endif |
| |
| inline CondVar::CondVar() : cv_(0) {} |
| |
| // static |
| template <typename T, typename ConditionMethodPtr> |
| bool Condition::CastAndCallMethod(const Condition* c) { |
| T* object = static_cast<T*>(c->arg_); |
| ConditionMethodPtr condition_method_pointer; |
| c->ReadCallback(&condition_method_pointer); |
| return (object->*condition_method_pointer)(); |
| } |
| |
| // static |
| template <typename T> |
| bool Condition::CastAndCallFunction(const Condition* c) { |
| bool (*function)(T*); |
| c->ReadCallback(&function); |
| T* argument = static_cast<T*>(c->arg_); |
| return (*function)(argument); |
| } |
| |
| template <typename T> |
| inline Condition::Condition(bool (*func)(T*), T* arg) |
| : eval_(&CastAndCallFunction<T>), |
| arg_(const_cast<void*>(static_cast<const void*>(arg))) { |
| static_assert(sizeof(&func) <= sizeof(callback_), |
| "An overlarge function pointer was passed to Condition."); |
| StoreCallback(func); |
| } |
| |
| template <typename T, typename> |
| inline Condition::Condition( |
| bool (*func)(T*), typename absl::internal::type_identity<T>::type* arg) |
| // Just delegate to the overload above. |
| : Condition(func, arg) {} |
| |
| template <typename T> |
| inline Condition::Condition( |
| T* object, bool (absl::internal::type_identity<T>::type::*method)()) |
| : eval_(&CastAndCallMethod<T, decltype(method)>), arg_(object) { |
| static_assert(sizeof(&method) <= sizeof(callback_), |
| "An overlarge method pointer was passed to Condition."); |
| StoreCallback(method); |
| } |
| |
| template <typename T> |
| inline Condition::Condition( |
| const T* object, |
| bool (absl::internal::type_identity<T>::type::*method)() const) |
| : eval_(&CastAndCallMethod<const T, decltype(method)>), |
| arg_(reinterpret_cast<void*>(const_cast<T*>(object))) { |
| StoreCallback(method); |
| } |
| |
| // Register hooks for profiling support. |
| // |
| // The function pointer registered here will be called whenever a mutex is |
| // contended. The callback is given the cycles for which waiting happened (as |
| // measured by //absl/base/internal/cycleclock.h, and which may not |
| // be real "cycle" counts.) |
| // |
| // There is no ordering guarantee between when the hook is registered and when |
| // callbacks will begin. Only a single profiler can be installed in a running |
| // binary; if this function is called a second time with a different function |
| // pointer, the value is ignored (and will cause an assertion failure in debug |
| // mode.) |
| void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)); |
| |
| // Register a hook for Mutex tracing. |
| // |
| // The function pointer registered here will be called whenever a mutex is |
| // contended. The callback is given an opaque handle to the contended mutex, |
| // an event name, and the number of wait cycles (as measured by |
| // //absl/base/internal/cycleclock.h, and which may not be real |
| // "cycle" counts.) |
| // |
| // The only event name currently sent is "slow release". |
| // |
| // This has the same ordering and single-use limitations as |
| // RegisterMutexProfiler() above. |
| void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj, |
| int64_t wait_cycles)); |
| |
| // Register a hook for CondVar tracing. |
| // |
| // The function pointer registered here will be called here on various CondVar |
| // events. The callback is given an opaque handle to the CondVar object and |
| // a string identifying the event. This is thread-safe, but only a single |
| // tracer can be registered. |
| // |
| // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and |
| // "SignalAll wakeup". |
| // |
| // This has the same ordering and single-use limitations as |
| // RegisterMutexProfiler() above. |
| void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv)); |
| |
| // EnableMutexInvariantDebugging() |
| // |
| // Enable or disable global support for Mutex invariant debugging. If enabled, |
| // then invariant predicates can be registered per-Mutex for debug checking. |
| // See Mutex::EnableInvariantDebugging(). |
| void EnableMutexInvariantDebugging(bool enabled); |
| |
| // When in debug mode, and when the feature has been enabled globally, the |
| // implementation will keep track of lock ordering and complain (or optionally |
| // crash) if a cycle is detected in the acquired-before graph. |
| |
| // Possible modes of operation for the deadlock detector in debug mode. |
| enum class OnDeadlockCycle { |
| kIgnore, // Neither report on nor attempt to track cycles in lock ordering |
| kReport, // Report lock cycles to stderr when detected |
| kAbort, // Report lock cycles to stderr when detected, then abort |
| }; |
| |
| // SetMutexDeadlockDetectionMode() |
| // |
| // Enable or disable global support for detection of potential deadlocks |
| // due to Mutex lock ordering inversions. When set to 'kIgnore', tracking of |
| // lock ordering is disabled. Otherwise, in debug builds, a lock ordering graph |
| // will be maintained internally, and detected cycles will be reported in |
| // the manner chosen here. |
| void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode); |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| // In some build configurations we pass --detect-odr-violations to the |
| // gold linker. This causes it to flag weak symbol overrides as ODR |
| // violations. Because ODR only applies to C++ and not C, |
| // --detect-odr-violations ignores symbols not mangled with C++ names. |
| // By changing our extension points to be extern "C", we dodge this |
| // check. |
| extern "C" { |
| void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)(); |
| } // extern "C" |
| |
| #endif // ABSL_SYNCHRONIZATION_MUTEX_H_ |