| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ |
| #define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <iostream> |
| #include <string> |
| |
| #include "absl/base/config.h" |
| #include "absl/strings/ascii.h" |
| #include "absl/strings/internal/charconv_parse.h" |
| #include "absl/strings/string_view.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace strings_internal { |
| |
| // The largest power that 5 that can be raised to, and still fit in a uint32_t. |
| constexpr int kMaxSmallPowerOfFive = 13; |
| // The largest power that 10 that can be raised to, and still fit in a uint32_t. |
| constexpr int kMaxSmallPowerOfTen = 9; |
| |
| ABSL_DLL extern const uint32_t |
| kFiveToNth[kMaxSmallPowerOfFive + 1]; |
| ABSL_DLL extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1]; |
| |
| // Large, fixed-width unsigned integer. |
| // |
| // Exact rounding for decimal-to-binary floating point conversion requires very |
| // large integer math, but a design goal of absl::from_chars is to avoid |
| // allocating memory. The integer precision needed for decimal-to-binary |
| // conversions is large but bounded, so a huge fixed-width integer class |
| // suffices. |
| // |
| // This is an intentionally limited big integer class. Only needed operations |
| // are implemented. All storage lives in an array data member, and all |
| // arithmetic is done in-place, to avoid requiring separate storage for operand |
| // and result. |
| // |
| // This is an internal class. Some methods live in the .cc file, and are |
| // instantiated only for the values of max_words we need. |
| template <int max_words> |
| class BigUnsigned { |
| public: |
| static_assert(max_words == 4 || max_words == 84, |
| "unsupported max_words value"); |
| |
| BigUnsigned() : size_(0), words_{} {} |
| explicit constexpr BigUnsigned(uint64_t v) |
| : size_((v >> 32) ? 2 : v ? 1 : 0), |
| words_{static_cast<uint32_t>(v & 0xffffffffu), |
| static_cast<uint32_t>(v >> 32)} {} |
| |
| // Constructs a BigUnsigned from the given string_view containing a decimal |
| // value. If the input string is not a decimal integer, constructs a 0 |
| // instead. |
| explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} { |
| // Check for valid input, returning a 0 otherwise. This is reasonable |
| // behavior only because this constructor is for unit tests. |
| if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() || |
| sv.empty()) { |
| return; |
| } |
| int exponent_adjust = |
| ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1); |
| if (exponent_adjust > 0) { |
| MultiplyByTenToTheNth(exponent_adjust); |
| } |
| } |
| |
| // Loads the mantissa value of a previously-parsed float. |
| // |
| // Returns the associated decimal exponent. The value of the parsed float is |
| // exactly *this * 10**exponent. |
| int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits); |
| |
| // Returns the number of decimal digits of precision this type provides. All |
| // numbers with this many decimal digits or fewer are representable by this |
| // type. |
| // |
| // Analogous to std::numeric_limits<BigUnsigned>::digits10. |
| static constexpr int Digits10() { |
| // 9975007/1035508 is very slightly less than log10(2**32). |
| return static_cast<uint64_t>(max_words) * 9975007 / 1035508; |
| } |
| |
| // Shifts left by the given number of bits. |
| void ShiftLeft(int count) { |
| if (count > 0) { |
| const int word_shift = count / 32; |
| if (word_shift >= max_words) { |
| SetToZero(); |
| return; |
| } |
| size_ = (std::min)(size_ + word_shift, max_words); |
| count %= 32; |
| if (count == 0) { |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=warray-bounds |
| // shows a lot of bogus -Warray-bounds warnings under GCC. |
| // This is not the only one in Abseil. |
| #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(14, 0) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Warray-bounds" |
| #endif |
| std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_); |
| #if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(14, 0) |
| #pragma GCC diagnostic pop |
| #endif |
| } else { |
| for (int i = (std::min)(size_, max_words - 1); i > word_shift; --i) { |
| words_[i] = (words_[i - word_shift] << count) | |
| (words_[i - word_shift - 1] >> (32 - count)); |
| } |
| words_[word_shift] = words_[0] << count; |
| // Grow size_ if necessary. |
| if (size_ < max_words && words_[size_]) { |
| ++size_; |
| } |
| } |
| std::fill_n(words_, word_shift, 0u); |
| } |
| } |
| |
| |
| // Multiplies by v in-place. |
| void MultiplyBy(uint32_t v) { |
| if (size_ == 0 || v == 1) { |
| return; |
| } |
| if (v == 0) { |
| SetToZero(); |
| return; |
| } |
| const uint64_t factor = v; |
| uint64_t window = 0; |
| for (int i = 0; i < size_; ++i) { |
| window += factor * words_[i]; |
| words_[i] = window & 0xffffffff; |
| window >>= 32; |
| } |
| // If carry bits remain and there's space for them, grow size_. |
| if (window && size_ < max_words) { |
| words_[size_] = window & 0xffffffff; |
| ++size_; |
| } |
| } |
| |
| void MultiplyBy(uint64_t v) { |
| uint32_t words[2]; |
| words[0] = static_cast<uint32_t>(v); |
| words[1] = static_cast<uint32_t>(v >> 32); |
| if (words[1] == 0) { |
| MultiplyBy(words[0]); |
| } else { |
| MultiplyBy(2, words); |
| } |
| } |
| |
| // Multiplies in place by 5 to the power of n. n must be non-negative. |
| void MultiplyByFiveToTheNth(int n) { |
| while (n >= kMaxSmallPowerOfFive) { |
| MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]); |
| n -= kMaxSmallPowerOfFive; |
| } |
| if (n > 0) { |
| MultiplyBy(kFiveToNth[n]); |
| } |
| } |
| |
| // Multiplies in place by 10 to the power of n. n must be non-negative. |
| void MultiplyByTenToTheNth(int n) { |
| if (n > kMaxSmallPowerOfTen) { |
| // For large n, raise to a power of 5, then shift left by the same amount. |
| // (10**n == 5**n * 2**n.) This requires fewer multiplications overall. |
| MultiplyByFiveToTheNth(n); |
| ShiftLeft(n); |
| } else if (n > 0) { |
| // We can do this more quickly for very small N by using a single |
| // multiplication. |
| MultiplyBy(kTenToNth[n]); |
| } |
| } |
| |
| // Returns the value of 5**n, for non-negative n. This implementation uses |
| // a lookup table, and is faster then seeding a BigUnsigned with 1 and calling |
| // MultiplyByFiveToTheNth(). |
| static BigUnsigned FiveToTheNth(int n); |
| |
| // Multiplies by another BigUnsigned, in-place. |
| template <int M> |
| void MultiplyBy(const BigUnsigned<M>& other) { |
| MultiplyBy(other.size(), other.words()); |
| } |
| |
| void SetToZero() { |
| std::fill_n(words_, size_, 0u); |
| size_ = 0; |
| } |
| |
| // Returns the value of the nth word of this BigUnsigned. This is |
| // range-checked, and returns 0 on out-of-bounds accesses. |
| uint32_t GetWord(int index) const { |
| if (index < 0 || index >= size_) { |
| return 0; |
| } |
| return words_[index]; |
| } |
| |
| // Returns this integer as a decimal string. This is not used in the decimal- |
| // to-binary conversion; it is intended to aid in testing. |
| std::string ToString() const; |
| |
| int size() const { return size_; } |
| const uint32_t* words() const { return words_; } |
| |
| private: |
| // Reads the number between [begin, end), possibly containing a decimal point, |
| // into this BigUnsigned. |
| // |
| // Callers are required to ensure [begin, end) contains a valid number, with |
| // one or more decimal digits and at most one decimal point. This routine |
| // will behave unpredictably if these preconditions are not met. |
| // |
| // Only the first `significant_digits` digits are read. Digits beyond this |
| // limit are "sticky": If the final significant digit is 0 or 5, and if any |
| // dropped digit is nonzero, then that final significant digit is adjusted up |
| // to 1 or 6. This adjustment allows for precise rounding. |
| // |
| // Returns `exponent_adjustment`, a power-of-ten exponent adjustment to |
| // account for the decimal point and for dropped significant digits. After |
| // this function returns, |
| // actual_value_of_parsed_string ~= *this * 10**exponent_adjustment. |
| int ReadDigits(const char* begin, const char* end, int significant_digits); |
| |
| // Performs a step of big integer multiplication. This computes the full |
| // (64-bit-wide) values that should be added at the given index (step), and |
| // adds to that location in-place. |
| // |
| // Because our math all occurs in place, we must multiply starting from the |
| // highest word working downward. (This is a bit more expensive due to the |
| // extra carries involved.) |
| // |
| // This must be called in steps, for each word to be calculated, starting from |
| // the high end and working down to 0. The first value of `step` should be |
| // `std::min(original_size + other.size_ - 2, max_words - 1)`. |
| // The reason for this expression is that multiplying the i'th word from one |
| // multiplicand and the j'th word of another multiplicand creates a |
| // two-word-wide value to be stored at the (i+j)'th element. The highest |
| // word indices we will access are `original_size - 1` from this object, and |
| // `other.size_ - 1` from our operand. Therefore, |
| // `original_size + other.size_ - 2` is the first step we should calculate, |
| // but limited on an upper bound by max_words. |
| |
| // Working from high-to-low ensures that we do not overwrite the portions of |
| // the initial value of *this which are still needed for later steps. |
| // |
| // Once called with step == 0, *this contains the result of the |
| // multiplication. |
| // |
| // `original_size` is the size_ of *this before the first call to |
| // MultiplyStep(). `other_words` and `other_size` are the contents of our |
| // operand. `step` is the step to perform, as described above. |
| void MultiplyStep(int original_size, const uint32_t* other_words, |
| int other_size, int step); |
| |
| void MultiplyBy(int other_size, const uint32_t* other_words) { |
| const int original_size = size_; |
| const int first_step = |
| (std::min)(original_size + other_size - 2, max_words - 1); |
| for (int step = first_step; step >= 0; --step) { |
| MultiplyStep(original_size, other_words, other_size, step); |
| } |
| } |
| |
| // Adds a 32-bit value to the index'th word, with carry. |
| void AddWithCarry(int index, uint32_t value) { |
| if (value) { |
| while (index < max_words && value > 0) { |
| words_[index] += value; |
| // carry if we overflowed in this word: |
| if (value > words_[index]) { |
| value = 1; |
| ++index; |
| } else { |
| value = 0; |
| } |
| } |
| size_ = (std::min)(max_words, (std::max)(index + 1, size_)); |
| } |
| } |
| |
| void AddWithCarry(int index, uint64_t value) { |
| if (value && index < max_words) { |
| uint32_t high = value >> 32; |
| uint32_t low = value & 0xffffffff; |
| words_[index] += low; |
| if (words_[index] < low) { |
| ++high; |
| if (high == 0) { |
| // Carry from the low word caused our high word to overflow. |
| // Short circuit here to do the right thing. |
| AddWithCarry(index + 2, static_cast<uint32_t>(1)); |
| return; |
| } |
| } |
| if (high > 0) { |
| AddWithCarry(index + 1, high); |
| } else { |
| // Normally 32-bit AddWithCarry() sets size_, but since we don't call |
| // it when `high` is 0, do it ourselves here. |
| size_ = (std::min)(max_words, (std::max)(index + 1, size_)); |
| } |
| } |
| } |
| |
| // Divide this in place by a constant divisor. Returns the remainder of the |
| // division. |
| template <uint32_t divisor> |
| uint32_t DivMod() { |
| uint64_t accumulator = 0; |
| for (int i = size_ - 1; i >= 0; --i) { |
| accumulator <<= 32; |
| accumulator += words_[i]; |
| // accumulator / divisor will never overflow an int32_t in this loop |
| words_[i] = static_cast<uint32_t>(accumulator / divisor); |
| accumulator = accumulator % divisor; |
| } |
| while (size_ > 0 && words_[size_ - 1] == 0) { |
| --size_; |
| } |
| return static_cast<uint32_t>(accumulator); |
| } |
| |
| // The number of elements in words_ that may carry significant values. |
| // All elements beyond this point are 0. |
| // |
| // When size_ is 0, this BigUnsigned stores the value 0. |
| // When size_ is nonzero, is *not* guaranteed that words_[size_ - 1] is |
| // nonzero. This can occur due to overflow truncation. |
| // In particular, x.size_ != y.size_ does *not* imply x != y. |
| int size_; |
| uint32_t words_[max_words]; |
| }; |
| |
| // Compares two big integer instances. |
| // |
| // Returns -1 if lhs < rhs, 0 if lhs == rhs, and 1 if lhs > rhs. |
| template <int N, int M> |
| int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { |
| int limit = (std::max)(lhs.size(), rhs.size()); |
| for (int i = limit - 1; i >= 0; --i) { |
| const uint32_t lhs_word = lhs.GetWord(i); |
| const uint32_t rhs_word = rhs.GetWord(i); |
| if (lhs_word < rhs_word) { |
| return -1; |
| } else if (lhs_word > rhs_word) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| template <int N, int M> |
| bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { |
| int limit = (std::max)(lhs.size(), rhs.size()); |
| for (int i = 0; i < limit; ++i) { |
| if (lhs.GetWord(i) != rhs.GetWord(i)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <int N, int M> |
| bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { |
| return !(lhs == rhs); |
| } |
| |
| template <int N, int M> |
| bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { |
| return Compare(lhs, rhs) == -1; |
| } |
| |
| template <int N, int M> |
| bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { |
| return rhs < lhs; |
| } |
| template <int N, int M> |
| bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { |
| return !(rhs < lhs); |
| } |
| template <int N, int M> |
| bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) { |
| return !(lhs < rhs); |
| } |
| |
| // Output operator for BigUnsigned, for testing purposes only. |
| template <int N> |
| std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) { |
| return os << num.ToString(); |
| } |
| |
| // Explicit instantiation declarations for the sizes of BigUnsigned that we |
| // are using. |
| // |
| // For now, the choices of 4 and 84 are arbitrary; 4 is a small value that is |
| // still bigger than an int128, and 84 is a large value we will want to use |
| // in the from_chars implementation. |
| // |
| // Comments justifying the use of 84 belong in the from_chars implementation, |
| // and will be added in a follow-up CL. |
| extern template class BigUnsigned<4>; |
| extern template class BigUnsigned<84>; |
| |
| } // namespace strings_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_ |