| // Copyright 2019 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/container/inlined_vector.h" |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <forward_list> |
| #include <iterator> |
| #include <list> |
| #include <memory> |
| #include <scoped_allocator> |
| #include <sstream> |
| #include <stdexcept> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/base/attributes.h" |
| #include "absl/base/internal/exception_testing.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/options.h" |
| #include "absl/container/internal/test_allocator.h" |
| #include "absl/container/internal/test_instance_tracker.h" |
| #include "absl/hash/hash_testing.h" |
| #include "absl/log/check.h" |
| #include "absl/memory/memory.h" |
| #include "absl/strings/str_cat.h" |
| |
| namespace { |
| |
| using absl::container_internal::CountingAllocator; |
| using absl::test_internal::CopyableMovableInstance; |
| using absl::test_internal::CopyableOnlyInstance; |
| using absl::test_internal::InstanceTracker; |
| using testing::AllOf; |
| using testing::Each; |
| using testing::ElementsAre; |
| using testing::ElementsAreArray; |
| using testing::Eq; |
| using testing::Gt; |
| using testing::Pointee; |
| using testing::Pointwise; |
| using testing::PrintToString; |
| using testing::SizeIs; |
| |
| using IntVec = absl::InlinedVector<int, 8>; |
| |
| MATCHER_P(CapacityIs, n, "") { |
| return testing::ExplainMatchResult(n, arg.capacity(), result_listener); |
| } |
| |
| MATCHER_P(ValueIs, e, "") { |
| return testing::ExplainMatchResult(e, arg.value(), result_listener); |
| } |
| |
| // TODO(bsamwel): Add support for movable-only types. |
| |
| // Test fixture for typed tests on BaseCountedInstance derived classes, see |
| // test_instance_tracker.h. |
| template <typename T> |
| class InstanceTest : public ::testing::Test {}; |
| TYPED_TEST_SUITE_P(InstanceTest); |
| |
| // A simple reference counted class to make sure that the proper elements are |
| // destroyed in the erase(begin, end) test. |
| class RefCounted { |
| public: |
| RefCounted(int value, int* count) : value_(value), count_(count) { Ref(); } |
| |
| RefCounted(const RefCounted& v) : value_(v.value_), count_(v.count_) { |
| Ref(); |
| } |
| |
| ~RefCounted() { |
| Unref(); |
| count_ = nullptr; |
| } |
| |
| friend void swap(RefCounted& a, RefCounted& b) { |
| using std::swap; |
| swap(a.value_, b.value_); |
| swap(a.count_, b.count_); |
| } |
| |
| RefCounted& operator=(RefCounted v) { |
| using std::swap; |
| swap(*this, v); |
| return *this; |
| } |
| |
| void Ref() const { |
| CHECK_NE(count_, nullptr); |
| ++(*count_); |
| } |
| |
| void Unref() const { |
| --(*count_); |
| CHECK_GE(*count_, 0); |
| } |
| |
| int value_; |
| int* count_; |
| }; |
| |
| using RefCountedVec = absl::InlinedVector<RefCounted, 8>; |
| |
| // A class with a vtable pointer |
| class Dynamic { |
| public: |
| virtual ~Dynamic() {} |
| }; |
| |
| using DynamicVec = absl::InlinedVector<Dynamic, 8>; |
| |
| // Append 0..len-1 to *v |
| template <typename Container> |
| static void Fill(Container* v, size_t len, int offset = 0) { |
| for (size_t i = 0; i < len; i++) { |
| v->push_back(static_cast<int>(i) + offset); |
| } |
| } |
| |
| static IntVec Fill(size_t len, int offset = 0) { |
| IntVec v; |
| Fill(&v, len, offset); |
| return v; |
| } |
| |
| TEST(IntVec, SimpleOps) { |
| for (size_t len = 0; len < 20; len++) { |
| IntVec v; |
| const IntVec& cv = v; // const alias |
| |
| Fill(&v, len); |
| EXPECT_EQ(len, v.size()); |
| EXPECT_LE(len, v.capacity()); |
| |
| for (size_t i = 0; i < len; i++) { |
| EXPECT_EQ(static_cast<int>(i), v[i]); |
| EXPECT_EQ(static_cast<int>(i), v.at(i)); |
| } |
| EXPECT_EQ(v.begin(), v.data()); |
| EXPECT_EQ(cv.begin(), cv.data()); |
| |
| size_t counter = 0; |
| for (IntVec::iterator iter = v.begin(); iter != v.end(); ++iter) { |
| EXPECT_EQ(static_cast<int>(counter), *iter); |
| counter++; |
| } |
| EXPECT_EQ(counter, len); |
| |
| counter = 0; |
| for (IntVec::const_iterator iter = v.begin(); iter != v.end(); ++iter) { |
| EXPECT_EQ(static_cast<int>(counter), *iter); |
| counter++; |
| } |
| EXPECT_EQ(counter, len); |
| |
| counter = 0; |
| for (IntVec::const_iterator iter = v.cbegin(); iter != v.cend(); ++iter) { |
| EXPECT_EQ(static_cast<int>(counter), *iter); |
| counter++; |
| } |
| EXPECT_EQ(counter, len); |
| |
| if (len > 0) { |
| EXPECT_EQ(0, v.front()); |
| EXPECT_EQ(static_cast<int>(len - 1), v.back()); |
| v.pop_back(); |
| EXPECT_EQ(len - 1, v.size()); |
| for (size_t i = 0; i < v.size(); ++i) { |
| EXPECT_EQ(static_cast<int>(i), v[i]); |
| EXPECT_EQ(static_cast<int>(i), v.at(i)); |
| } |
| } |
| } |
| } |
| |
| TEST(IntVec, PopBackNoOverflow) { |
| IntVec v = {1}; |
| v.pop_back(); |
| EXPECT_EQ(v.size(), 0u); |
| } |
| |
| TEST(IntVec, AtThrows) { |
| IntVec v = {1, 2, 3}; |
| EXPECT_EQ(v.at(2), 3); |
| ABSL_BASE_INTERNAL_EXPECT_FAIL(v.at(3), std::out_of_range, |
| "failed bounds check"); |
| } |
| |
| TEST(IntVec, ReverseIterator) { |
| for (size_t len = 0; len < 20; len++) { |
| IntVec v; |
| Fill(&v, len); |
| |
| size_t counter = len; |
| for (IntVec::reverse_iterator iter = v.rbegin(); iter != v.rend(); ++iter) { |
| counter--; |
| EXPECT_EQ(static_cast<int>(counter), *iter); |
| } |
| EXPECT_EQ(counter, 0u); |
| |
| counter = len; |
| for (IntVec::const_reverse_iterator iter = v.rbegin(); iter != v.rend(); |
| ++iter) { |
| counter--; |
| EXPECT_EQ(static_cast<int>(counter), *iter); |
| } |
| EXPECT_EQ(counter, 0u); |
| |
| counter = len; |
| for (IntVec::const_reverse_iterator iter = v.crbegin(); iter != v.crend(); |
| ++iter) { |
| counter--; |
| EXPECT_EQ(static_cast<int>(counter), *iter); |
| } |
| EXPECT_EQ(counter, 0u); |
| } |
| } |
| |
| TEST(IntVec, Erase) { |
| for (size_t len = 1; len < 20; len++) { |
| for (size_t i = 0; i < len; ++i) { |
| IntVec v; |
| Fill(&v, len); |
| v.erase(v.begin() + i); |
| EXPECT_EQ(len - 1, v.size()); |
| for (size_t j = 0; j < i; ++j) { |
| EXPECT_EQ(static_cast<int>(j), v[j]); |
| } |
| for (size_t j = i; j < len - 1; ++j) { |
| EXPECT_EQ(static_cast<int>(j + 1), v[j]); |
| } |
| } |
| } |
| } |
| |
| TEST(IntVec, Hardened) { |
| IntVec v; |
| Fill(&v, 10); |
| EXPECT_EQ(v[9], 9); |
| #if !defined(NDEBUG) || ABSL_OPTION_HARDENED |
| EXPECT_DEATH_IF_SUPPORTED(v[10], ""); |
| EXPECT_DEATH_IF_SUPPORTED(v[static_cast<size_t>(-1)], ""); |
| EXPECT_DEATH_IF_SUPPORTED(v.resize(v.max_size() + 1), ""); |
| #endif |
| } |
| |
| // Move construction of a container of unique pointers should work fine, with no |
| // leaks, despite the fact that unique pointers are trivially relocatable but |
| // not trivially destructible. |
| TEST(UniquePtr, MoveConstruct) { |
| for (size_t size = 0; size < 16; ++size) { |
| SCOPED_TRACE(size); |
| |
| absl::InlinedVector<std::unique_ptr<size_t>, 2> a; |
| for (size_t i = 0; i < size; ++i) { |
| a.push_back(std::make_unique<size_t>(i)); |
| } |
| |
| absl::InlinedVector<std::unique_ptr<size_t>, 2> b(std::move(a)); |
| |
| ASSERT_THAT(b, SizeIs(size)); |
| for (size_t i = 0; i < size; ++i) { |
| ASSERT_THAT(b[i], Pointee(i)); |
| } |
| } |
| } |
| |
| // Move assignment of a container of unique pointers should work fine, with no |
| // leaks, despite the fact that unique pointers are trivially relocatable but |
| // not trivially destructible. |
| TEST(UniquePtr, MoveAssign) { |
| for (size_t size = 0; size < 16; ++size) { |
| SCOPED_TRACE(size); |
| |
| absl::InlinedVector<std::unique_ptr<size_t>, 2> a; |
| for (size_t i = 0; i < size; ++i) { |
| a.push_back(std::make_unique<size_t>(i)); |
| } |
| |
| absl::InlinedVector<std::unique_ptr<size_t>, 2> b; |
| b = std::move(a); |
| |
| ASSERT_THAT(b, SizeIs(size)); |
| for (size_t i = 0; i < size; ++i) { |
| ASSERT_THAT(b[i], Pointee(i)); |
| } |
| } |
| } |
| |
| // Swapping containers of unique pointers should work fine, with no |
| // leaks, despite the fact that unique pointers are trivially relocatable but |
| // not trivially destructible. |
| // TODO(absl-team): Using unique_ptr here is technically correct, but |
| // a trivially relocatable struct would be less semantically confusing. |
| TEST(UniquePtr, Swap) { |
| for (size_t size1 = 0; size1 < 5; ++size1) { |
| for (size_t size2 = 0; size2 < 5; ++size2) { |
| absl::InlinedVector<std::unique_ptr<size_t>, 2> a; |
| absl::InlinedVector<std::unique_ptr<size_t>, 2> b; |
| for (size_t i = 0; i < size1; ++i) { |
| a.push_back(std::make_unique<size_t>(i + 10)); |
| } |
| for (size_t i = 0; i < size2; ++i) { |
| b.push_back(std::make_unique<size_t>(i + 20)); |
| } |
| a.swap(b); |
| ASSERT_THAT(a, SizeIs(size2)); |
| ASSERT_THAT(b, SizeIs(size1)); |
| for (size_t i = 0; i < a.size(); ++i) { |
| ASSERT_THAT(a[i], Pointee(i + 20)); |
| } |
| for (size_t i = 0; i < b.size(); ++i) { |
| ASSERT_THAT(b[i], Pointee(i + 10)); |
| } |
| } |
| } |
| } |
| |
| // Erasing from a container of unique pointers should work fine, with no |
| // leaks, despite the fact that unique pointers are trivially relocatable but |
| // not trivially destructible. |
| // TODO(absl-team): Using unique_ptr here is technically correct, but |
| // a trivially relocatable struct would be less semantically confusing. |
| TEST(UniquePtr, EraseSingle) { |
| for (size_t size = 4; size < 16; ++size) { |
| absl::InlinedVector<std::unique_ptr<size_t>, 8> a; |
| for (size_t i = 0; i < size; ++i) { |
| a.push_back(std::make_unique<size_t>(i)); |
| } |
| a.erase(a.begin()); |
| ASSERT_THAT(a, SizeIs(size - 1)); |
| for (size_t i = 0; i < size - 1; ++i) { |
| ASSERT_THAT(a[i], Pointee(i + 1)); |
| } |
| a.erase(a.begin() + 2); |
| ASSERT_THAT(a, SizeIs(size - 2)); |
| ASSERT_THAT(a[0], Pointee(1)); |
| ASSERT_THAT(a[1], Pointee(2)); |
| for (size_t i = 2; i < size - 2; ++i) { |
| ASSERT_THAT(a[i], Pointee(i + 2)); |
| } |
| } |
| } |
| |
| // Erasing from a container of unique pointers should work fine, with no |
| // leaks, despite the fact that unique pointers are trivially relocatable but |
| // not trivially destructible. |
| // TODO(absl-team): Using unique_ptr here is technically correct, but |
| // a trivially relocatable struct would be less semantically confusing. |
| TEST(UniquePtr, EraseMulti) { |
| for (size_t size = 5; size < 16; ++size) { |
| absl::InlinedVector<std::unique_ptr<size_t>, 8> a; |
| for (size_t i = 0; i < size; ++i) { |
| a.push_back(std::make_unique<size_t>(i)); |
| } |
| a.erase(a.begin(), a.begin() + 2); |
| ASSERT_THAT(a, SizeIs(size - 2)); |
| for (size_t i = 0; i < size - 2; ++i) { |
| ASSERT_THAT(a[i], Pointee(i + 2)); |
| } |
| a.erase(a.begin() + 1, a.begin() + 3); |
| ASSERT_THAT(a, SizeIs(size - 4)); |
| ASSERT_THAT(a[0], Pointee(2)); |
| for (size_t i = 1; i < size - 4; ++i) { |
| ASSERT_THAT(a[i], Pointee(i + 4)); |
| } |
| } |
| } |
| |
| // At the end of this test loop, the elements between [erase_begin, erase_end) |
| // should have reference counts == 0, and all others elements should have |
| // reference counts == 1. |
| TEST(RefCountedVec, EraseBeginEnd) { |
| for (size_t len = 1; len < 20; ++len) { |
| for (size_t erase_begin = 0; erase_begin < len; ++erase_begin) { |
| for (size_t erase_end = erase_begin; erase_end <= len; ++erase_end) { |
| std::vector<int> counts(len, 0); |
| RefCountedVec v; |
| for (size_t i = 0; i < len; ++i) { |
| v.push_back(RefCounted(static_cast<int>(i), &counts[i])); |
| } |
| |
| size_t erase_len = erase_end - erase_begin; |
| |
| v.erase(v.begin() + erase_begin, v.begin() + erase_end); |
| |
| EXPECT_EQ(len - erase_len, v.size()); |
| |
| // Check the elements before the first element erased. |
| for (size_t i = 0; i < erase_begin; ++i) { |
| EXPECT_EQ(static_cast<int>(i), v[i].value_); |
| } |
| |
| // Check the elements after the first element erased. |
| for (size_t i = erase_begin; i < v.size(); ++i) { |
| EXPECT_EQ(static_cast<int>(i + erase_len), v[i].value_); |
| } |
| |
| // Check that the elements at the beginning are preserved. |
| for (size_t i = 0; i < erase_begin; ++i) { |
| EXPECT_EQ(1, counts[i]); |
| } |
| |
| // Check that the erased elements are destroyed |
| for (size_t i = erase_begin; i < erase_end; ++i) { |
| EXPECT_EQ(0, counts[i]); |
| } |
| |
| // Check that the elements at the end are preserved. |
| for (size_t i = erase_end; i < len; ++i) { |
| EXPECT_EQ(1, counts[i]); |
| } |
| } |
| } |
| } |
| } |
| |
| struct NoDefaultCtor { |
| explicit NoDefaultCtor(int) {} |
| }; |
| struct NoCopy { |
| NoCopy() {} |
| NoCopy(const NoCopy&) = delete; |
| }; |
| struct NoAssign { |
| NoAssign() {} |
| NoAssign& operator=(const NoAssign&) = delete; |
| }; |
| struct MoveOnly { |
| MoveOnly() {} |
| MoveOnly(MoveOnly&&) = default; |
| MoveOnly& operator=(MoveOnly&&) = default; |
| }; |
| TEST(InlinedVectorTest, NoDefaultCtor) { |
| absl::InlinedVector<NoDefaultCtor, 1> v(10, NoDefaultCtor(2)); |
| (void)v; |
| } |
| TEST(InlinedVectorTest, NoCopy) { |
| absl::InlinedVector<NoCopy, 1> v(10); |
| (void)v; |
| } |
| TEST(InlinedVectorTest, NoAssign) { |
| absl::InlinedVector<NoAssign, 1> v(10); |
| (void)v; |
| } |
| TEST(InlinedVectorTest, MoveOnly) { |
| absl::InlinedVector<MoveOnly, 2> v; |
| v.push_back(MoveOnly{}); |
| v.push_back(MoveOnly{}); |
| v.push_back(MoveOnly{}); |
| v.erase(v.begin()); |
| v.push_back(MoveOnly{}); |
| v.erase(v.begin(), v.begin() + 1); |
| v.insert(v.begin(), MoveOnly{}); |
| v.emplace(v.begin()); |
| v.emplace(v.begin(), MoveOnly{}); |
| } |
| TEST(InlinedVectorTest, Noexcept) { |
| EXPECT_TRUE(std::is_nothrow_move_constructible<IntVec>::value); |
| EXPECT_TRUE((std::is_nothrow_move_constructible< |
| absl::InlinedVector<MoveOnly, 2>>::value)); |
| |
| struct MoveCanThrow { |
| MoveCanThrow(MoveCanThrow&&) {} |
| }; |
| EXPECT_EQ(absl::default_allocator_is_nothrow::value, |
| (std::is_nothrow_move_constructible< |
| absl::InlinedVector<MoveCanThrow, 2>>::value)); |
| } |
| |
| TEST(InlinedVectorTest, EmplaceBack) { |
| absl::InlinedVector<std::pair<std::string, int>, 1> v; |
| |
| auto& inlined_element = v.emplace_back("answer", 42); |
| EXPECT_EQ(&inlined_element, &v[0]); |
| EXPECT_EQ(inlined_element.first, "answer"); |
| EXPECT_EQ(inlined_element.second, 42); |
| |
| auto& allocated_element = v.emplace_back("taxicab", 1729); |
| EXPECT_EQ(&allocated_element, &v[1]); |
| EXPECT_EQ(allocated_element.first, "taxicab"); |
| EXPECT_EQ(allocated_element.second, 1729); |
| } |
| |
| TEST(InlinedVectorTest, ShrinkToFitGrowingVector) { |
| absl::InlinedVector<std::pair<std::string, int>, 1> v; |
| |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 1u); |
| |
| v.emplace_back("answer", 42); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 1u); |
| |
| v.emplace_back("taxicab", 1729); |
| EXPECT_GE(v.capacity(), 2u); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 2u); |
| |
| v.reserve(100); |
| EXPECT_GE(v.capacity(), 100u); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 2u); |
| } |
| |
| TEST(InlinedVectorTest, ShrinkToFitEdgeCases) { |
| { |
| absl::InlinedVector<std::pair<std::string, int>, 1> v; |
| v.emplace_back("answer", 42); |
| v.emplace_back("taxicab", 1729); |
| EXPECT_GE(v.capacity(), 2u); |
| v.pop_back(); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 1u); |
| EXPECT_EQ(v[0].first, "answer"); |
| EXPECT_EQ(v[0].second, 42); |
| } |
| |
| { |
| absl::InlinedVector<std::string, 2> v(100); |
| v.resize(0); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 2u); // inlined capacity |
| } |
| |
| { |
| absl::InlinedVector<std::string, 2> v(100); |
| v.resize(1); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 2u); // inlined capacity |
| } |
| |
| { |
| absl::InlinedVector<std::string, 2> v(100); |
| v.resize(2); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 2u); |
| } |
| |
| { |
| absl::InlinedVector<std::string, 2> v(100); |
| v.resize(3); |
| v.shrink_to_fit(); |
| EXPECT_EQ(v.capacity(), 3u); |
| } |
| } |
| |
| TEST(IntVec, Insert) { |
| for (size_t len = 0; len < 20; len++) { |
| for (ptrdiff_t pos = 0; pos <= static_cast<ptrdiff_t>(len); pos++) { |
| { |
| // Single element |
| std::vector<int> std_v; |
| Fill(&std_v, len); |
| IntVec v; |
| Fill(&v, len); |
| |
| std_v.insert(std_v.begin() + pos, 9999); |
| IntVec::iterator it = v.insert(v.cbegin() + pos, 9999); |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| EXPECT_EQ(it, v.cbegin() + pos); |
| } |
| { |
| // n elements |
| std::vector<int> std_v; |
| Fill(&std_v, len); |
| IntVec v; |
| Fill(&v, len); |
| |
| IntVec::size_type n = 5; |
| std_v.insert(std_v.begin() + pos, n, 9999); |
| IntVec::iterator it = v.insert(v.cbegin() + pos, n, 9999); |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| EXPECT_EQ(it, v.cbegin() + pos); |
| } |
| { |
| // Iterator range (random access iterator) |
| std::vector<int> std_v; |
| Fill(&std_v, len); |
| IntVec v; |
| Fill(&v, len); |
| |
| const std::vector<int> input = {9999, 8888, 7777}; |
| std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend()); |
| IntVec::iterator it = |
| v.insert(v.cbegin() + pos, input.cbegin(), input.cend()); |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| EXPECT_EQ(it, v.cbegin() + pos); |
| } |
| { |
| // Iterator range (forward iterator) |
| std::vector<int> std_v; |
| Fill(&std_v, len); |
| IntVec v; |
| Fill(&v, len); |
| |
| const std::forward_list<int> input = {9999, 8888, 7777}; |
| std_v.insert(std_v.begin() + pos, input.cbegin(), input.cend()); |
| IntVec::iterator it = |
| v.insert(v.cbegin() + pos, input.cbegin(), input.cend()); |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| EXPECT_EQ(it, v.cbegin() + pos); |
| } |
| { |
| // Iterator range (input iterator) |
| std::vector<int> std_v; |
| Fill(&std_v, len); |
| IntVec v; |
| Fill(&v, len); |
| |
| std_v.insert(std_v.begin() + pos, {9999, 8888, 7777}); |
| std::istringstream input("9999 8888 7777"); |
| IntVec::iterator it = |
| v.insert(v.cbegin() + pos, std::istream_iterator<int>(input), |
| std::istream_iterator<int>()); |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| EXPECT_EQ(it, v.cbegin() + pos); |
| } |
| { |
| // Initializer list |
| std::vector<int> std_v; |
| Fill(&std_v, len); |
| IntVec v; |
| Fill(&v, len); |
| |
| std_v.insert(std_v.begin() + pos, {9999, 8888}); |
| IntVec::iterator it = v.insert(v.cbegin() + pos, {9999, 8888}); |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| EXPECT_EQ(it, v.cbegin() + pos); |
| } |
| } |
| } |
| } |
| |
| TEST(RefCountedVec, InsertConstructorDestructor) { |
| // Make sure the proper construction/destruction happen during insert |
| // operations. |
| for (size_t len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| for (size_t pos = 0; pos <= len; pos++) { |
| SCOPED_TRACE(pos); |
| std::vector<int> counts(len, 0); |
| int inserted_count = 0; |
| RefCountedVec v; |
| for (size_t i = 0; i < len; ++i) { |
| SCOPED_TRACE(i); |
| v.push_back(RefCounted(static_cast<int>(i), &counts[i])); |
| } |
| |
| EXPECT_THAT(counts, Each(Eq(1))); |
| |
| RefCounted insert_element(9999, &inserted_count); |
| EXPECT_EQ(1, inserted_count); |
| v.insert(v.begin() + pos, insert_element); |
| EXPECT_EQ(2, inserted_count); |
| // Check that the elements at the end are preserved. |
| EXPECT_THAT(counts, Each(Eq(1))); |
| EXPECT_EQ(2, inserted_count); |
| } |
| } |
| } |
| |
| TEST(IntVec, Resize) { |
| for (size_t len = 0; len < 20; len++) { |
| IntVec v; |
| Fill(&v, len); |
| |
| // Try resizing up and down by k elements |
| static const int kResizeElem = 1000000; |
| for (size_t k = 0; k < 10; k++) { |
| // Enlarging resize |
| v.resize(len + k, kResizeElem); |
| EXPECT_EQ(len + k, v.size()); |
| EXPECT_LE(len + k, v.capacity()); |
| for (size_t i = 0; i < len + k; i++) { |
| if (i < len) { |
| EXPECT_EQ(static_cast<int>(i), v[i]); |
| } else { |
| EXPECT_EQ(kResizeElem, v[i]); |
| } |
| } |
| |
| // Shrinking resize |
| v.resize(len, kResizeElem); |
| EXPECT_EQ(len, v.size()); |
| EXPECT_LE(len, v.capacity()); |
| for (size_t i = 0; i < len; i++) { |
| EXPECT_EQ(static_cast<int>(i), v[i]); |
| } |
| } |
| } |
| } |
| |
| TEST(IntVec, InitWithLength) { |
| for (size_t len = 0; len < 20; len++) { |
| IntVec v(len, 7); |
| EXPECT_EQ(len, v.size()); |
| EXPECT_LE(len, v.capacity()); |
| for (size_t i = 0; i < len; i++) { |
| EXPECT_EQ(7, v[i]); |
| } |
| } |
| } |
| |
| TEST(IntVec, CopyConstructorAndAssignment) { |
| for (size_t len = 0; len < 20; len++) { |
| IntVec v; |
| Fill(&v, len); |
| EXPECT_EQ(len, v.size()); |
| EXPECT_LE(len, v.capacity()); |
| |
| IntVec v2(v); |
| EXPECT_TRUE(v == v2) << PrintToString(v) << PrintToString(v2); |
| |
| for (size_t start_len = 0; start_len < 20; start_len++) { |
| IntVec v3; |
| Fill(&v3, start_len, 99); // Add dummy elements that should go away |
| v3 = v; |
| EXPECT_TRUE(v == v3) << PrintToString(v) << PrintToString(v3); |
| } |
| } |
| } |
| |
| TEST(IntVec, AliasingCopyAssignment) { |
| for (size_t len = 0; len < 20; ++len) { |
| IntVec original; |
| Fill(&original, len); |
| IntVec dup = original; |
| dup = *&dup; |
| EXPECT_EQ(dup, original); |
| } |
| } |
| |
| TEST(IntVec, MoveConstructorAndAssignment) { |
| for (size_t len = 0; len < 20; len++) { |
| IntVec v_in; |
| const size_t inlined_capacity = v_in.capacity(); |
| Fill(&v_in, len); |
| EXPECT_EQ(len, v_in.size()); |
| EXPECT_LE(len, v_in.capacity()); |
| |
| { |
| IntVec v_temp(v_in); |
| auto* old_data = v_temp.data(); |
| IntVec v_out(std::move(v_temp)); |
| EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out); |
| if (v_in.size() > inlined_capacity) { |
| // Allocation is moved as a whole, data stays in place. |
| EXPECT_TRUE(v_out.data() == old_data); |
| } else { |
| EXPECT_FALSE(v_out.data() == old_data); |
| } |
| } |
| for (size_t start_len = 0; start_len < 20; start_len++) { |
| IntVec v_out; |
| Fill(&v_out, start_len, 99); // Add dummy elements that should go away |
| IntVec v_temp(v_in); |
| auto* old_data = v_temp.data(); |
| v_out = std::move(v_temp); |
| EXPECT_TRUE(v_in == v_out) << PrintToString(v_in) << PrintToString(v_out); |
| if (v_in.size() > inlined_capacity) { |
| // Allocation is moved as a whole, data stays in place. |
| EXPECT_TRUE(v_out.data() == old_data); |
| } else { |
| EXPECT_FALSE(v_out.data() == old_data); |
| } |
| } |
| } |
| } |
| |
| class NotTriviallyDestructible { |
| public: |
| NotTriviallyDestructible() : p_(new int(1)) {} |
| explicit NotTriviallyDestructible(int i) : p_(new int(i)) {} |
| |
| NotTriviallyDestructible(const NotTriviallyDestructible& other) |
| : p_(new int(*other.p_)) {} |
| |
| NotTriviallyDestructible& operator=(const NotTriviallyDestructible& other) { |
| p_ = absl::make_unique<int>(*other.p_); |
| return *this; |
| } |
| |
| bool operator==(const NotTriviallyDestructible& other) const { |
| return *p_ == *other.p_; |
| } |
| |
| private: |
| std::unique_ptr<int> p_; |
| }; |
| |
| TEST(AliasingTest, Emplace) { |
| for (size_t i = 2; i < 20; ++i) { |
| absl::InlinedVector<NotTriviallyDestructible, 10> vec; |
| for (size_t j = 0; j < i; ++j) { |
| vec.push_back(NotTriviallyDestructible(static_cast<int>(j))); |
| } |
| vec.emplace(vec.begin(), vec[0]); |
| EXPECT_EQ(vec[0], vec[1]); |
| vec.emplace(vec.begin() + i / 2, vec[i / 2]); |
| EXPECT_EQ(vec[i / 2], vec[i / 2 + 1]); |
| vec.emplace(vec.end() - 1, vec.back()); |
| EXPECT_EQ(vec[vec.size() - 2], vec.back()); |
| } |
| } |
| |
| TEST(AliasingTest, InsertWithCount) { |
| for (size_t i = 1; i < 20; ++i) { |
| absl::InlinedVector<NotTriviallyDestructible, 10> vec; |
| for (size_t j = 0; j < i; ++j) { |
| vec.push_back(NotTriviallyDestructible(static_cast<int>(j))); |
| } |
| for (size_t n = 0; n < 5; ++n) { |
| // We use back where we can because it's guaranteed to become invalidated |
| vec.insert(vec.begin(), n, vec.back()); |
| auto b = vec.begin(); |
| EXPECT_TRUE( |
| std::all_of(b, b + n, [&vec](const NotTriviallyDestructible& x) { |
| return x == vec.back(); |
| })); |
| |
| auto m_idx = vec.size() / 2; |
| vec.insert(vec.begin() + m_idx, n, vec.back()); |
| auto m = vec.begin() + m_idx; |
| EXPECT_TRUE( |
| std::all_of(m, m + n, [&vec](const NotTriviallyDestructible& x) { |
| return x == vec.back(); |
| })); |
| |
| // We want distinct values so the equality test is meaningful, |
| // vec[vec.size() - 1] is also almost always invalidated. |
| auto old_e = vec.size() - 1; |
| auto val = vec[old_e]; |
| vec.insert(vec.end(), n, vec[old_e]); |
| auto e = vec.begin() + old_e; |
| EXPECT_TRUE(std::all_of( |
| e, e + n, |
| [&val](const NotTriviallyDestructible& x) { return x == val; })); |
| } |
| } |
| } |
| |
| TEST(OverheadTest, Storage) { |
| // Check for size overhead. |
| // In particular, ensure that std::allocator doesn't cost anything to store. |
| // The union should be absorbing some of the allocation bookkeeping overhead |
| // in the larger vectors, leaving only the size_ field as overhead. |
| |
| struct T { |
| void* val; |
| }; |
| size_t expected_overhead = sizeof(T); |
| |
| EXPECT_EQ((2 * expected_overhead), |
| sizeof(absl::InlinedVector<T, 1>) - sizeof(T[1])); |
| EXPECT_EQ(expected_overhead, |
| sizeof(absl::InlinedVector<T, 2>) - sizeof(T[2])); |
| EXPECT_EQ(expected_overhead, |
| sizeof(absl::InlinedVector<T, 3>) - sizeof(T[3])); |
| EXPECT_EQ(expected_overhead, |
| sizeof(absl::InlinedVector<T, 4>) - sizeof(T[4])); |
| EXPECT_EQ(expected_overhead, |
| sizeof(absl::InlinedVector<T, 5>) - sizeof(T[5])); |
| EXPECT_EQ(expected_overhead, |
| sizeof(absl::InlinedVector<T, 6>) - sizeof(T[6])); |
| EXPECT_EQ(expected_overhead, |
| sizeof(absl::InlinedVector<T, 7>) - sizeof(T[7])); |
| EXPECT_EQ(expected_overhead, |
| sizeof(absl::InlinedVector<T, 8>) - sizeof(T[8])); |
| } |
| |
| TEST(IntVec, Clear) { |
| for (size_t len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| IntVec v; |
| Fill(&v, len); |
| v.clear(); |
| EXPECT_EQ(0u, v.size()); |
| EXPECT_EQ(v.begin(), v.end()); |
| } |
| } |
| |
| TEST(IntVec, Reserve) { |
| for (size_t len = 0; len < 20; len++) { |
| IntVec v; |
| Fill(&v, len); |
| |
| for (size_t newlen = 0; newlen < 100; newlen++) { |
| const int* start_rep = v.data(); |
| v.reserve(newlen); |
| const int* final_rep = v.data(); |
| if (newlen <= len) { |
| EXPECT_EQ(start_rep, final_rep); |
| } |
| EXPECT_LE(newlen, v.capacity()); |
| |
| // Filling up to newlen should not change rep |
| while (v.size() < newlen) { |
| v.push_back(0); |
| } |
| EXPECT_EQ(final_rep, v.data()); |
| } |
| } |
| } |
| |
| TEST(StringVec, SelfRefPushBack) { |
| std::vector<std::string> std_v; |
| absl::InlinedVector<std::string, 4> v; |
| const std::string s = "A quite long string to ensure heap."; |
| std_v.push_back(s); |
| v.push_back(s); |
| for (int i = 0; i < 20; ++i) { |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| |
| v.push_back(v.back()); |
| std_v.push_back(std_v.back()); |
| } |
| EXPECT_THAT(v, ElementsAreArray(std_v)); |
| } |
| |
| TEST(StringVec, SelfRefPushBackWithMove) { |
| std::vector<std::string> std_v; |
| absl::InlinedVector<std::string, 4> v; |
| const std::string s = "A quite long string to ensure heap."; |
| std_v.push_back(s); |
| v.push_back(s); |
| for (int i = 0; i < 20; ++i) { |
| EXPECT_EQ(v.back(), std_v.back()); |
| |
| v.push_back(std::move(v.back())); |
| std_v.push_back(std::move(std_v.back())); |
| } |
| EXPECT_EQ(v.back(), std_v.back()); |
| } |
| |
| TEST(StringVec, SelfMove) { |
| const std::string s = "A quite long string to ensure heap."; |
| for (int len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| absl::InlinedVector<std::string, 8> v; |
| for (int i = 0; i < len; ++i) { |
| SCOPED_TRACE(i); |
| v.push_back(s); |
| } |
| // Indirection necessary to avoid compiler warning. |
| v = std::move(*(&v)); |
| // Ensure that the inlined vector is still in a valid state by copying it. |
| // We don't expect specific contents since a self-move results in an |
| // unspecified valid state. |
| std::vector<std::string> copy(v.begin(), v.end()); |
| } |
| } |
| |
| TEST(IntVec, Swap) { |
| for (size_t l1 = 0; l1 < 20; l1++) { |
| SCOPED_TRACE(l1); |
| for (size_t l2 = 0; l2 < 20; l2++) { |
| SCOPED_TRACE(l2); |
| IntVec a = Fill(l1, 0); |
| IntVec b = Fill(l2, 100); |
| { |
| using std::swap; |
| swap(a, b); |
| } |
| EXPECT_EQ(l1, b.size()); |
| EXPECT_EQ(l2, a.size()); |
| for (size_t i = 0; i < l1; i++) { |
| SCOPED_TRACE(i); |
| EXPECT_EQ(static_cast<int>(i), b[i]); |
| } |
| for (size_t i = 0; i < l2; i++) { |
| SCOPED_TRACE(i); |
| EXPECT_EQ(100 + static_cast<int>(i), a[i]); |
| } |
| } |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, Swap) { |
| using Instance = TypeParam; |
| using InstanceVec = absl::InlinedVector<Instance, 8>; |
| for (size_t l1 = 0; l1 < 20; l1++) { |
| SCOPED_TRACE(l1); |
| for (size_t l2 = 0; l2 < 20; l2++) { |
| SCOPED_TRACE(l2); |
| InstanceTracker tracker; |
| InstanceVec a, b; |
| const size_t inlined_capacity = a.capacity(); |
| auto min_len = std::min(l1, l2); |
| auto max_len = std::max(l1, l2); |
| for (size_t i = 0; i < l1; i++) |
| a.push_back(Instance(static_cast<int>(i))); |
| for (size_t i = 0; i < l2; i++) |
| b.push_back(Instance(100 + static_cast<int>(i))); |
| EXPECT_EQ(tracker.instances(), static_cast<int>(l1 + l2)); |
| tracker.ResetCopiesMovesSwaps(); |
| { |
| using std::swap; |
| swap(a, b); |
| } |
| EXPECT_EQ(tracker.instances(), static_cast<int>(l1 + l2)); |
| if (a.size() > inlined_capacity && b.size() > inlined_capacity) { |
| EXPECT_EQ(tracker.swaps(), 0); // Allocations are swapped. |
| EXPECT_EQ(tracker.moves(), 0); |
| } else if (a.size() <= inlined_capacity && b.size() <= inlined_capacity) { |
| EXPECT_EQ(tracker.swaps(), static_cast<int>(min_len)); |
| EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()), |
| static_cast<int>(max_len - min_len)); |
| } else { |
| // One is allocated and the other isn't. The allocation is transferred |
| // without copying elements, and the inlined instances are copied/moved. |
| EXPECT_EQ(tracker.swaps(), 0); |
| EXPECT_EQ((tracker.moves() ? tracker.moves() : tracker.copies()), |
| static_cast<int>(min_len)); |
| } |
| |
| EXPECT_EQ(l1, b.size()); |
| EXPECT_EQ(l2, a.size()); |
| for (size_t i = 0; i < l1; i++) { |
| EXPECT_EQ(static_cast<int>(i), b[i].value()); |
| } |
| for (size_t i = 0; i < l2; i++) { |
| EXPECT_EQ(100 + static_cast<int>(i), a[i].value()); |
| } |
| } |
| } |
| } |
| |
| TEST(IntVec, EqualAndNotEqual) { |
| IntVec a, b; |
| EXPECT_TRUE(a == b); |
| EXPECT_FALSE(a != b); |
| |
| a.push_back(3); |
| EXPECT_FALSE(a == b); |
| EXPECT_TRUE(a != b); |
| |
| b.push_back(3); |
| EXPECT_TRUE(a == b); |
| EXPECT_FALSE(a != b); |
| |
| b.push_back(7); |
| EXPECT_FALSE(a == b); |
| EXPECT_TRUE(a != b); |
| |
| a.push_back(6); |
| EXPECT_FALSE(a == b); |
| EXPECT_TRUE(a != b); |
| |
| a.clear(); |
| b.clear(); |
| for (size_t i = 0; i < 100; i++) { |
| a.push_back(static_cast<int>(i)); |
| b.push_back(static_cast<int>(i)); |
| EXPECT_TRUE(a == b); |
| EXPECT_FALSE(a != b); |
| |
| b[i] = b[i] + 1; |
| EXPECT_FALSE(a == b); |
| EXPECT_TRUE(a != b); |
| |
| b[i] = b[i] - 1; // Back to before |
| EXPECT_TRUE(a == b); |
| EXPECT_FALSE(a != b); |
| } |
| } |
| |
| TEST(IntVec, RelationalOps) { |
| IntVec a, b; |
| EXPECT_FALSE(a < b); |
| EXPECT_FALSE(b < a); |
| EXPECT_FALSE(a > b); |
| EXPECT_FALSE(b > a); |
| EXPECT_TRUE(a <= b); |
| EXPECT_TRUE(b <= a); |
| EXPECT_TRUE(a >= b); |
| EXPECT_TRUE(b >= a); |
| b.push_back(3); |
| EXPECT_TRUE(a < b); |
| EXPECT_FALSE(b < a); |
| EXPECT_FALSE(a > b); |
| EXPECT_TRUE(b > a); |
| EXPECT_TRUE(a <= b); |
| EXPECT_FALSE(b <= a); |
| EXPECT_FALSE(a >= b); |
| EXPECT_TRUE(b >= a); |
| } |
| |
| TYPED_TEST_P(InstanceTest, CountConstructorsDestructors) { |
| using Instance = TypeParam; |
| using InstanceVec = absl::InlinedVector<Instance, 8>; |
| InstanceTracker tracker; |
| for (size_t len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| InstanceVec v; |
| const size_t inlined_capacity = v.capacity(); |
| for (size_t i = 0; i < len; i++) { |
| v.push_back(Instance(static_cast<int>(i))); |
| } |
| EXPECT_EQ(tracker.instances(), static_cast<int>(len)); |
| EXPECT_GE(tracker.copies() + tracker.moves(), |
| static_cast<int>(len)); // More due to reallocation. |
| tracker.ResetCopiesMovesSwaps(); |
| |
| // Enlarging resize() must construct some objects |
| tracker.ResetCopiesMovesSwaps(); |
| v.resize(len + 10, Instance(100)); |
| EXPECT_EQ(tracker.instances(), static_cast<int>(len) + 10); |
| if (len <= inlined_capacity && len + 10 > inlined_capacity) { |
| EXPECT_EQ(tracker.copies() + tracker.moves(), 10 + static_cast<int>(len)); |
| } else { |
| // Only specify a minimum number of copies + moves. We don't want to |
| // depend on the reallocation policy here. |
| EXPECT_GE(tracker.copies() + tracker.moves(), |
| 10); // More due to reallocation. |
| } |
| |
| // Shrinking resize() must destroy some objects |
| tracker.ResetCopiesMovesSwaps(); |
| v.resize(len, Instance(100)); |
| EXPECT_EQ(tracker.instances(), static_cast<int>(len)); |
| EXPECT_EQ(tracker.copies(), 0); |
| EXPECT_EQ(tracker.moves(), 0); |
| |
| // reserve() must not increase the number of initialized objects |
| SCOPED_TRACE("reserve"); |
| v.reserve(len + 1000); |
| EXPECT_EQ(tracker.instances(), static_cast<int>(len)); |
| EXPECT_EQ(tracker.copies() + tracker.moves(), static_cast<int>(len)); |
| |
| // pop_back() and erase() must destroy one object |
| if (len > 0) { |
| tracker.ResetCopiesMovesSwaps(); |
| v.pop_back(); |
| EXPECT_EQ(tracker.instances(), static_cast<int>(len) - 1); |
| EXPECT_EQ(tracker.copies(), 0); |
| EXPECT_EQ(tracker.moves(), 0); |
| |
| if (!v.empty()) { |
| tracker.ResetCopiesMovesSwaps(); |
| v.erase(v.begin()); |
| EXPECT_EQ(tracker.instances(), static_cast<int>(len) - 2); |
| EXPECT_EQ(tracker.copies() + tracker.moves(), |
| static_cast<int>(len) - 2); |
| } |
| } |
| |
| tracker.ResetCopiesMovesSwaps(); |
| int instances_before_empty_erase = tracker.instances(); |
| v.erase(v.begin(), v.begin()); |
| EXPECT_EQ(tracker.instances(), instances_before_empty_erase); |
| EXPECT_EQ(tracker.copies() + tracker.moves(), 0); |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnCopyConstruction) { |
| using Instance = TypeParam; |
| using InstanceVec = absl::InlinedVector<Instance, 8>; |
| InstanceTracker tracker; |
| for (int len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| InstanceVec v; |
| for (int i = 0; i < len; i++) { |
| v.push_back(Instance(i)); |
| } |
| EXPECT_EQ(tracker.instances(), len); |
| EXPECT_GE(tracker.copies() + tracker.moves(), |
| len); // More due to reallocation. |
| tracker.ResetCopiesMovesSwaps(); |
| { // Copy constructor should create 'len' more instances. |
| InstanceVec v_copy(v); |
| EXPECT_EQ(v_copy.size(), v.size()); |
| EXPECT_EQ(tracker.instances(), len + len); |
| EXPECT_EQ(tracker.copies(), len); |
| EXPECT_EQ(tracker.moves(), 0); |
| } |
| EXPECT_EQ(tracker.instances(), len); |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveConstruction) { |
| using Instance = TypeParam; |
| using InstanceVec = absl::InlinedVector<Instance, 8>; |
| InstanceTracker tracker; |
| for (int len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| InstanceVec v; |
| const size_t inlined_capacity = v.capacity(); |
| for (int i = 0; i < len; i++) { |
| v.push_back(Instance(i)); |
| } |
| EXPECT_EQ(tracker.instances(), len); |
| EXPECT_GE(tracker.copies() + tracker.moves(), |
| len); // More due to reallocation. |
| tracker.ResetCopiesMovesSwaps(); |
| { |
| InstanceVec v_copy(std::move(v)); |
| EXPECT_EQ(v_copy.size(), len); |
| if (static_cast<size_t>(len) > inlined_capacity) { |
| // Allocation is moved as a whole. |
| EXPECT_EQ(tracker.instances(), len); |
| EXPECT_EQ(tracker.live_instances(), len); |
| // Tests an implementation detail, don't rely on this in your code. |
| EXPECT_EQ(v.size(), 0u); // NOLINT misc-use-after-move |
| EXPECT_EQ(tracker.copies(), 0); |
| EXPECT_EQ(tracker.moves(), 0); |
| } else { |
| EXPECT_EQ(tracker.instances(), len + len); |
| if (Instance::supports_move()) { |
| EXPECT_EQ(tracker.live_instances(), len); |
| EXPECT_EQ(tracker.copies(), 0); |
| EXPECT_EQ(tracker.moves(), len); |
| } else { |
| EXPECT_EQ(tracker.live_instances(), len + len); |
| EXPECT_EQ(tracker.copies(), len); |
| EXPECT_EQ(tracker.moves(), 0); |
| } |
| } |
| EXPECT_EQ(tracker.swaps(), 0); |
| } |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnAssignment) { |
| using Instance = TypeParam; |
| using InstanceVec = absl::InlinedVector<Instance, 8>; |
| InstanceTracker tracker; |
| for (int len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| for (int longorshort = 0; longorshort <= 1; ++longorshort) { |
| SCOPED_TRACE(longorshort); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| InstanceVec longer, shorter; |
| for (int i = 0; i < len; i++) { |
| longer.push_back(Instance(i)); |
| shorter.push_back(Instance(i)); |
| } |
| longer.push_back(Instance(len)); |
| EXPECT_EQ(tracker.instances(), len + len + 1); |
| EXPECT_GE(tracker.copies() + tracker.moves(), |
| len + len + 1); // More due to reallocation. |
| |
| tracker.ResetCopiesMovesSwaps(); |
| if (longorshort) { |
| shorter = longer; |
| EXPECT_EQ(tracker.instances(), (len + 1) + (len + 1)); |
| EXPECT_GE(tracker.copies() + tracker.moves(), |
| len + 1); // More due to reallocation. |
| } else { |
| longer = shorter; |
| EXPECT_EQ(tracker.instances(), len + len); |
| EXPECT_EQ(tracker.copies() + tracker.moves(), len); |
| } |
| } |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, CountConstructorsDestructorsOnMoveAssignment) { |
| using Instance = TypeParam; |
| using InstanceVec = absl::InlinedVector<Instance, 8>; |
| InstanceTracker tracker; |
| for (int len = 0; len < 20; len++) { |
| SCOPED_TRACE(len); |
| for (int longorshort = 0; longorshort <= 1; ++longorshort) { |
| SCOPED_TRACE(longorshort); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| InstanceVec longer, shorter; |
| const size_t inlined_capacity = longer.capacity(); |
| for (int i = 0; i < len; i++) { |
| longer.push_back(Instance(i)); |
| shorter.push_back(Instance(i)); |
| } |
| longer.push_back(Instance(len)); |
| EXPECT_EQ(tracker.instances(), len + len + 1); |
| EXPECT_GE(tracker.copies() + tracker.moves(), |
| len + len + 1); // More due to reallocation. |
| |
| tracker.ResetCopiesMovesSwaps(); |
| int src_len; |
| if (longorshort) { |
| src_len = len + 1; |
| shorter = std::move(longer); |
| } else { |
| src_len = len; |
| longer = std::move(shorter); |
| } |
| if (static_cast<size_t>(src_len) > inlined_capacity) { |
| // Allocation moved as a whole. |
| EXPECT_EQ(tracker.instances(), src_len); |
| EXPECT_EQ(tracker.live_instances(), src_len); |
| EXPECT_EQ(tracker.copies(), 0); |
| EXPECT_EQ(tracker.moves(), 0); |
| } else { |
| // Elements are all copied. |
| EXPECT_EQ(tracker.instances(), src_len + src_len); |
| if (Instance::supports_move()) { |
| EXPECT_EQ(tracker.copies(), 0); |
| EXPECT_EQ(tracker.moves(), src_len); |
| EXPECT_EQ(tracker.live_instances(), src_len); |
| } else { |
| EXPECT_EQ(tracker.copies(), src_len); |
| EXPECT_EQ(tracker.moves(), 0); |
| EXPECT_EQ(tracker.live_instances(), src_len + src_len); |
| } |
| } |
| EXPECT_EQ(tracker.swaps(), 0); |
| } |
| } |
| } |
| |
| TEST(CountElemAssign, SimpleTypeWithInlineBacking) { |
| const size_t inlined_capacity = absl::InlinedVector<int, 2>().capacity(); |
| |
| for (size_t original_size = 0; original_size <= 5; ++original_size) { |
| SCOPED_TRACE(original_size); |
| // Original contents are [12345, 12345, ...] |
| std::vector<int> original_contents(original_size, 12345); |
| |
| absl::InlinedVector<int, 2> v(original_contents.begin(), |
| original_contents.end()); |
| v.assign(2, 123); |
| EXPECT_THAT(v, AllOf(SizeIs(2u), ElementsAre(123, 123))); |
| if (original_size <= inlined_capacity) { |
| // If the original had inline backing, it should stay inline. |
| EXPECT_EQ(v.capacity(), inlined_capacity); |
| } |
| } |
| } |
| |
| TEST(CountElemAssign, SimpleTypeWithAllocation) { |
| for (size_t original_size = 0; original_size <= 5; ++original_size) { |
| SCOPED_TRACE(original_size); |
| // Original contents are [12345, 12345, ...] |
| std::vector<int> original_contents(original_size, 12345); |
| |
| absl::InlinedVector<int, 2> v(original_contents.begin(), |
| original_contents.end()); |
| v.assign(3, 123); |
| EXPECT_THAT(v, AllOf(SizeIs(3u), ElementsAre(123, 123, 123))); |
| EXPECT_LE(v.size(), v.capacity()); |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, CountElemAssignInlineBacking) { |
| using Instance = TypeParam; |
| for (size_t original_size = 0; original_size <= 5; ++original_size) { |
| SCOPED_TRACE(original_size); |
| // Original contents are [12345, 12345, ...] |
| std::vector<Instance> original_contents(original_size, Instance(12345)); |
| |
| absl::InlinedVector<Instance, 2> v(original_contents.begin(), |
| original_contents.end()); |
| v.assign(2, Instance(123)); |
| EXPECT_THAT(v, AllOf(SizeIs(2u), ElementsAre(ValueIs(123), ValueIs(123)))); |
| if (original_size <= 2) { |
| // If the original had inline backing, it should stay inline. |
| EXPECT_EQ(2u, v.capacity()); |
| } |
| } |
| } |
| |
| template <typename Instance> |
| void InstanceCountElemAssignWithAllocationTest() { |
| for (size_t original_size = 0; original_size <= 5; ++original_size) { |
| SCOPED_TRACE(original_size); |
| // Original contents are [12345, 12345, ...] |
| std::vector<Instance> original_contents(original_size, Instance(12345)); |
| |
| absl::InlinedVector<Instance, 2> v(original_contents.begin(), |
| original_contents.end()); |
| v.assign(3, Instance(123)); |
| EXPECT_THAT(v, AllOf(SizeIs(3u), ElementsAre(ValueIs(123), ValueIs(123), |
| ValueIs(123)))); |
| EXPECT_LE(v.size(), v.capacity()); |
| } |
| } |
| TEST(CountElemAssign, WithAllocationCopyableInstance) { |
| InstanceCountElemAssignWithAllocationTest<CopyableOnlyInstance>(); |
| } |
| TEST(CountElemAssign, WithAllocationCopyableMovableInstance) { |
| InstanceCountElemAssignWithAllocationTest<CopyableMovableInstance>(); |
| } |
| |
| TEST(RangedConstructor, SimpleType) { |
| std::vector<int> source_v = {4, 5, 6}; |
| // First try to fit in inline backing |
| absl::InlinedVector<int, 4> v(source_v.begin(), source_v.end()); |
| EXPECT_EQ(3u, v.size()); |
| EXPECT_EQ(4u, |
| v.capacity()); // Indication that we're still on inlined storage |
| EXPECT_EQ(4, v[0]); |
| EXPECT_EQ(5, v[1]); |
| EXPECT_EQ(6, v[2]); |
| |
| // Now, force a re-allocate |
| absl::InlinedVector<int, 2> realloc_v(source_v.begin(), source_v.end()); |
| EXPECT_EQ(3u, realloc_v.size()); |
| EXPECT_LT(2u, realloc_v.capacity()); |
| EXPECT_EQ(4, realloc_v[0]); |
| EXPECT_EQ(5, realloc_v[1]); |
| EXPECT_EQ(6, realloc_v[2]); |
| } |
| |
| // Test for ranged constructors using Instance as the element type and |
| // SourceContainer as the source container type. |
| template <typename Instance, typename SourceContainer, int inlined_capacity> |
| void InstanceRangedConstructorTestForContainer() { |
| InstanceTracker tracker; |
| SourceContainer source_v = {Instance(0), Instance(1)}; |
| tracker.ResetCopiesMovesSwaps(); |
| absl::InlinedVector<Instance, inlined_capacity> v(source_v.begin(), |
| source_v.end()); |
| EXPECT_EQ(2u, v.size()); |
| EXPECT_LT(1u, v.capacity()); |
| EXPECT_EQ(0, v[0].value()); |
| EXPECT_EQ(1, v[1].value()); |
| EXPECT_EQ(tracker.copies(), 2); |
| EXPECT_EQ(tracker.moves(), 0); |
| } |
| |
| template <typename Instance, int inlined_capacity> |
| void InstanceRangedConstructorTestWithCapacity() { |
| // Test with const and non-const, random access and non-random-access sources. |
| // TODO(bsamwel): Test with an input iterator source. |
| { |
| SCOPED_TRACE("std::list"); |
| InstanceRangedConstructorTestForContainer<Instance, std::list<Instance>, |
| inlined_capacity>(); |
| { |
| SCOPED_TRACE("const std::list"); |
| InstanceRangedConstructorTestForContainer< |
| Instance, const std::list<Instance>, inlined_capacity>(); |
| } |
| { |
| SCOPED_TRACE("std::vector"); |
| InstanceRangedConstructorTestForContainer<Instance, std::vector<Instance>, |
| inlined_capacity>(); |
| } |
| { |
| SCOPED_TRACE("const std::vector"); |
| InstanceRangedConstructorTestForContainer< |
| Instance, const std::vector<Instance>, inlined_capacity>(); |
| } |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, RangedConstructor) { |
| using Instance = TypeParam; |
| SCOPED_TRACE("capacity=1"); |
| InstanceRangedConstructorTestWithCapacity<Instance, 1>(); |
| SCOPED_TRACE("capacity=2"); |
| InstanceRangedConstructorTestWithCapacity<Instance, 2>(); |
| } |
| |
| TEST(RangedConstructor, ElementsAreConstructed) { |
| std::vector<std::string> source_v = {"cat", "dog"}; |
| |
| // Force expansion and re-allocation of v. Ensures that when the vector is |
| // expanded that new elements are constructed. |
| absl::InlinedVector<std::string, 1> v(source_v.begin(), source_v.end()); |
| EXPECT_EQ("cat", v[0]); |
| EXPECT_EQ("dog", v[1]); |
| } |
| |
| TEST(RangedAssign, SimpleType) { |
| const size_t inlined_capacity = absl::InlinedVector<int, 3>().capacity(); |
| |
| // Test for all combinations of original sizes (empty and non-empty inline, |
| // and out of line) and target sizes. |
| for (size_t original_size = 0; original_size <= 5; ++original_size) { |
| SCOPED_TRACE(original_size); |
| // Original contents are [12345, 12345, ...] |
| std::vector<int> original_contents(original_size, 12345); |
| |
| for (size_t target_size = 0; target_size <= 5; ++target_size) { |
| SCOPED_TRACE(target_size); |
| |
| // New contents are [3, 4, ...] |
| std::vector<int> new_contents; |
| for (size_t i = 0; i < target_size; ++i) { |
| new_contents.push_back(static_cast<int>(i + 3)); |
| } |
| |
| absl::InlinedVector<int, 3> v(original_contents.begin(), |
| original_contents.end()); |
| v.assign(new_contents.begin(), new_contents.end()); |
| |
| EXPECT_EQ(new_contents.size(), v.size()); |
| EXPECT_LE(new_contents.size(), v.capacity()); |
| if (target_size <= inlined_capacity && |
| original_size <= inlined_capacity) { |
| // Storage should stay inline when target size is small. |
| EXPECT_EQ(v.capacity(), inlined_capacity); |
| } |
| EXPECT_THAT(v, ElementsAreArray(new_contents)); |
| } |
| } |
| } |
| |
| // Returns true if lhs and rhs have the same value. |
| template <typename Instance> |
| static bool InstanceValuesEqual(const Instance& lhs, const Instance& rhs) { |
| return lhs.value() == rhs.value(); |
| } |
| |
| // Test for ranged assign() using Instance as the element type and |
| // SourceContainer as the source container type. |
| template <typename Instance, typename SourceContainer> |
| void InstanceRangedAssignTestForContainer() { |
| // Test for all combinations of original sizes (empty and non-empty inline, |
| // and out of line) and target sizes. |
| for (size_t original_size = 0; original_size <= 5; ++original_size) { |
| SCOPED_TRACE(original_size); |
| // Original contents are [12345, 12345, ...] |
| std::vector<Instance> original_contents(original_size, Instance(12345)); |
| |
| for (size_t target_size = 0; target_size <= 5; ++target_size) { |
| SCOPED_TRACE(target_size); |
| |
| // New contents are [3, 4, ...] |
| // Generate data using a non-const container, because SourceContainer |
| // itself may be const. |
| // TODO(bsamwel): Test with an input iterator. |
| std::vector<Instance> new_contents_in; |
| for (size_t i = 0; i < target_size; ++i) { |
| new_contents_in.push_back(Instance(static_cast<int>(i) + 3)); |
| } |
| SourceContainer new_contents(new_contents_in.begin(), |
| new_contents_in.end()); |
| |
| absl::InlinedVector<Instance, 3> v(original_contents.begin(), |
| original_contents.end()); |
| v.assign(new_contents.begin(), new_contents.end()); |
| |
| EXPECT_EQ(new_contents.size(), v.size()); |
| EXPECT_LE(new_contents.size(), v.capacity()); |
| if (target_size <= 3 && original_size <= 3) { |
| // Storage should stay inline when target size is small. |
| EXPECT_EQ(3u, v.capacity()); |
| } |
| EXPECT_TRUE(std::equal(v.begin(), v.end(), new_contents.begin(), |
| InstanceValuesEqual<Instance>)); |
| } |
| } |
| } |
| |
| TYPED_TEST_P(InstanceTest, RangedAssign) { |
| using Instance = TypeParam; |
| // Test with const and non-const, random access and non-random-access sources. |
| // TODO(bsamwel): Test with an input iterator source. |
| SCOPED_TRACE("std::list"); |
| InstanceRangedAssignTestForContainer<Instance, std::list<Instance>>(); |
| SCOPED_TRACE("const std::list"); |
| InstanceRangedAssignTestForContainer<Instance, const std::list<Instance>>(); |
| SCOPED_TRACE("std::vector"); |
| InstanceRangedAssignTestForContainer<Instance, std::vector<Instance>>(); |
| SCOPED_TRACE("const std::vector"); |
| InstanceRangedAssignTestForContainer<Instance, const std::vector<Instance>>(); |
| } |
| |
| TEST(InitializerListConstructor, SimpleTypeWithInlineBacking) { |
| EXPECT_THAT((absl::InlinedVector<int, 4>{4, 5, 6}), |
| AllOf(SizeIs(3u), CapacityIs(4u), ElementsAre(4, 5, 6))); |
| } |
| |
| TEST(InitializerListConstructor, SimpleTypeWithReallocationRequired) { |
| EXPECT_THAT((absl::InlinedVector<int, 2>{4, 5, 6}), |
| AllOf(SizeIs(3u), CapacityIs(Gt(2u)), ElementsAre(4, 5, 6))); |
| } |
| |
| TEST(InitializerListConstructor, DisparateTypesInList) { |
| EXPECT_THAT((absl::InlinedVector<int, 2>{-7, 8ULL}), ElementsAre(-7, 8)); |
| |
| EXPECT_THAT((absl::InlinedVector<std::string, 2>{"foo", std::string("bar")}), |
| ElementsAre("foo", "bar")); |
| } |
| |
| TEST(InitializerListConstructor, ComplexTypeWithInlineBacking) { |
| const size_t inlined_capacity = |
| absl::InlinedVector<CopyableMovableInstance, 1>().capacity(); |
| EXPECT_THAT( |
| (absl::InlinedVector<CopyableMovableInstance, 1>{ |
| CopyableMovableInstance(0)}), |
| AllOf(SizeIs(1u), CapacityIs(inlined_capacity), ElementsAre(ValueIs(0)))); |
| } |
| |
| TEST(InitializerListConstructor, ComplexTypeWithReallocationRequired) { |
| EXPECT_THAT((absl::InlinedVector<CopyableMovableInstance, 1>{ |
| CopyableMovableInstance(0), CopyableMovableInstance(1)}), |
| AllOf(SizeIs(2u), CapacityIs(Gt(1u)), |
| ElementsAre(ValueIs(0), ValueIs(1)))); |
| } |
| |
| TEST(InitializerListAssign, SimpleTypeFitsInlineBacking) { |
| for (size_t original_size = 0; original_size <= 4; ++original_size) { |
| SCOPED_TRACE(original_size); |
| |
| absl::InlinedVector<int, 2> v1(original_size, 12345); |
| const size_t original_capacity_v1 = v1.capacity(); |
| v1.assign({3}); |
| EXPECT_THAT(v1, AllOf(SizeIs(1u), CapacityIs(original_capacity_v1), |
| ElementsAre(3))); |
| |
| absl::InlinedVector<int, 2> v2(original_size, 12345); |
| const size_t original_capacity_v2 = v2.capacity(); |
| v2 = {3}; |
| EXPECT_THAT(v2, AllOf(SizeIs(1u), CapacityIs(original_capacity_v2), |
| ElementsAre(3))); |
| } |
| } |
| |
| TEST(InitializerListAssign, SimpleTypeDoesNotFitInlineBacking) { |
| for (size_t original_size = 0; original_size <= 4; ++original_size) { |
| SCOPED_TRACE(original_size); |
| absl::InlinedVector<int, 2> v1(original_size, 12345); |
| v1.assign({3, 4, 5}); |
| EXPECT_THAT(v1, AllOf(SizeIs(3u), ElementsAre(3, 4, 5))); |
| EXPECT_LE(3u, v1.capacity()); |
| |
| absl::InlinedVector<int, 2> v2(original_size, 12345); |
| v2 = {3, 4, 5}; |
| EXPECT_THAT(v2, AllOf(SizeIs(3u), ElementsAre(3, 4, 5))); |
| EXPECT_LE(3u, v2.capacity()); |
| } |
| } |
| |
| TEST(InitializerListAssign, DisparateTypesInList) { |
| absl::InlinedVector<int, 2> v_int1; |
| v_int1.assign({-7, 8ULL}); |
| EXPECT_THAT(v_int1, ElementsAre(-7, 8)); |
| |
| absl::InlinedVector<int, 2> v_int2; |
| v_int2 = {-7, 8ULL}; |
| EXPECT_THAT(v_int2, ElementsAre(-7, 8)); |
| |
| absl::InlinedVector<std::string, 2> v_string1; |
| v_string1.assign({"foo", std::string("bar")}); |
| EXPECT_THAT(v_string1, ElementsAre("foo", "bar")); |
| |
| absl::InlinedVector<std::string, 2> v_string2; |
| v_string2 = {"foo", std::string("bar")}; |
| EXPECT_THAT(v_string2, ElementsAre("foo", "bar")); |
| } |
| |
| TYPED_TEST_P(InstanceTest, InitializerListAssign) { |
| using Instance = TypeParam; |
| for (size_t original_size = 0; original_size <= 4; ++original_size) { |
| SCOPED_TRACE(original_size); |
| absl::InlinedVector<Instance, 2> v(original_size, Instance(12345)); |
| const size_t original_capacity = v.capacity(); |
| v.assign({Instance(3)}); |
| EXPECT_THAT(v, AllOf(SizeIs(1u), CapacityIs(original_capacity), |
| ElementsAre(ValueIs(3)))); |
| } |
| for (size_t original_size = 0; original_size <= 4; ++original_size) { |
| SCOPED_TRACE(original_size); |
| absl::InlinedVector<Instance, 2> v(original_size, Instance(12345)); |
| v.assign({Instance(3), Instance(4), Instance(5)}); |
| EXPECT_THAT( |
| v, AllOf(SizeIs(3u), ElementsAre(ValueIs(3), ValueIs(4), ValueIs(5)))); |
| EXPECT_LE(3u, v.capacity()); |
| } |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(InstanceTest, Swap, CountConstructorsDestructors, |
| CountConstructorsDestructorsOnCopyConstruction, |
| CountConstructorsDestructorsOnMoveConstruction, |
| CountConstructorsDestructorsOnAssignment, |
| CountConstructorsDestructorsOnMoveAssignment, |
| CountElemAssignInlineBacking, RangedConstructor, |
| RangedAssign, InitializerListAssign); |
| |
| using InstanceTypes = |
| ::testing::Types<CopyableOnlyInstance, CopyableMovableInstance>; |
| INSTANTIATE_TYPED_TEST_SUITE_P(InstanceTestOnTypes, InstanceTest, |
| InstanceTypes); |
| |
| TEST(DynamicVec, DynamicVecCompiles) { |
| DynamicVec v; |
| (void)v; |
| } |
| |
| TEST(DynamicVec, CreateNonEmptyDynamicVec) { |
| DynamicVec v(1); |
| EXPECT_EQ(v.size(), 1u); |
| } |
| |
| TEST(DynamicVec, EmplaceBack) { |
| DynamicVec v; |
| v.emplace_back(Dynamic{}); |
| EXPECT_EQ(v.size(), 1u); |
| } |
| |
| TEST(DynamicVec, EmplaceBackAfterHeapAllocation) { |
| DynamicVec v; |
| v.reserve(10); |
| v.emplace_back(Dynamic{}); |
| EXPECT_EQ(v.size(), 1u); |
| } |
| |
| TEST(DynamicVec, EmptyIteratorComparison) { |
| DynamicVec v; |
| EXPECT_EQ(v.begin(), v.end()); |
| EXPECT_EQ(v.cbegin(), v.cend()); |
| } |
| |
| TEST(AllocatorSupportTest, Constructors) { |
| using MyAlloc = CountingAllocator<int>; |
| using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; |
| const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| int64_t allocated = 0; |
| MyAlloc alloc(&allocated); |
| { AllocVec ABSL_ATTRIBUTE_UNUSED v; } |
| { AllocVec ABSL_ATTRIBUTE_UNUSED v(alloc); } |
| { AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc); } |
| { AllocVec ABSL_ATTRIBUTE_UNUSED v({1, 2, 3}, alloc); } |
| |
| AllocVec v2; |
| { AllocVec ABSL_ATTRIBUTE_UNUSED v(v2, alloc); } |
| { AllocVec ABSL_ATTRIBUTE_UNUSED v(std::move(v2), alloc); } |
| } |
| |
| TEST(AllocatorSupportTest, CountAllocations) { |
| using MyAlloc = CountingAllocator<int>; |
| using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; |
| const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| int64_t allocated = 0; |
| MyAlloc alloc(&allocated); |
| { |
| AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + 4, alloc); |
| EXPECT_THAT(allocated, Eq(0)); |
| } |
| EXPECT_THAT(allocated, Eq(0)); |
| { |
| AllocVec ABSL_ATTRIBUTE_UNUSED v(ia, ia + ABSL_ARRAYSIZE(ia), alloc); |
| EXPECT_THAT(allocated, Eq(static_cast<int64_t>(v.size() * sizeof(int)))); |
| } |
| EXPECT_THAT(allocated, Eq(0)); |
| { |
| AllocVec v(4, 1, alloc); |
| EXPECT_THAT(allocated, Eq(0)); |
| |
| int64_t allocated2 = 0; |
| MyAlloc alloc2(&allocated2); |
| ABSL_ATTRIBUTE_UNUSED AllocVec v2(v, alloc2); |
| EXPECT_THAT(allocated2, Eq(0)); |
| |
| int64_t allocated3 = 0; |
| MyAlloc alloc3(&allocated3); |
| ABSL_ATTRIBUTE_UNUSED AllocVec v3(std::move(v), alloc3); |
| EXPECT_THAT(allocated3, Eq(0)); |
| } |
| EXPECT_THAT(allocated, 0); |
| { |
| AllocVec v(8, 2, alloc); |
| EXPECT_THAT(allocated, Eq(static_cast<int64_t>(v.size() * sizeof(int)))); |
| |
| int64_t allocated2 = 0; |
| MyAlloc alloc2(&allocated2); |
| AllocVec v2(v, alloc2); |
| EXPECT_THAT(allocated2, Eq(static_cast<int64_t>(v2.size() * sizeof(int)))); |
| |
| int64_t allocated3 = 0; |
| MyAlloc alloc3(&allocated3); |
| AllocVec v3(std::move(v), alloc3); |
| EXPECT_THAT(allocated3, Eq(static_cast<int64_t>(v3.size() * sizeof(int)))); |
| } |
| EXPECT_EQ(allocated, 0); |
| { |
| // Test shrink_to_fit deallocations. |
| AllocVec v(8, 2, alloc); |
| EXPECT_EQ(allocated, static_cast<int64_t>(8 * sizeof(int))); |
| v.resize(5); |
| EXPECT_EQ(allocated, static_cast<int64_t>(8 * sizeof(int))); |
| v.shrink_to_fit(); |
| EXPECT_EQ(allocated, static_cast<int64_t>(5 * sizeof(int))); |
| v.resize(4); |
| EXPECT_EQ(allocated, static_cast<int64_t>(5 * sizeof(int))); |
| v.shrink_to_fit(); |
| EXPECT_EQ(allocated, 0); |
| } |
| } |
| |
| TEST(AllocatorSupportTest, SwapBothAllocated) { |
| using MyAlloc = CountingAllocator<int>; |
| using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; |
| int64_t allocated1 = 0; |
| int64_t allocated2 = 0; |
| { |
| const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| const int ia2[] = {0, 1, 2, 3, 4, 5, 6, 7, 8}; |
| MyAlloc a1(&allocated1); |
| MyAlloc a2(&allocated2); |
| AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1); |
| AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2); |
| EXPECT_LT(v1.capacity(), v2.capacity()); |
| EXPECT_THAT(allocated1, |
| Eq(static_cast<int64_t>(v1.capacity() * sizeof(int)))); |
| EXPECT_THAT(allocated2, |
| Eq(static_cast<int64_t>(v2.capacity() * sizeof(int)))); |
| v1.swap(v2); |
| EXPECT_THAT(v1, ElementsAreArray(ia2)); |
| EXPECT_THAT(v2, ElementsAreArray(ia1)); |
| EXPECT_THAT(allocated1, |
| Eq(static_cast<int64_t>(v2.capacity() * sizeof(int)))); |
| EXPECT_THAT(allocated2, |
| Eq(static_cast<int64_t>(v1.capacity() * sizeof(int)))); |
| } |
| EXPECT_THAT(allocated1, 0); |
| EXPECT_THAT(allocated2, 0); |
| } |
| |
| TEST(AllocatorSupportTest, SwapOneAllocated) { |
| using MyAlloc = CountingAllocator<int>; |
| using AllocVec = absl::InlinedVector<int, 4, MyAlloc>; |
| int64_t allocated1 = 0; |
| int64_t allocated2 = 0; |
| { |
| const int ia1[] = {0, 1, 2, 3, 4, 5, 6, 7}; |
| const int ia2[] = {0, 1, 2, 3}; |
| MyAlloc a1(&allocated1); |
| MyAlloc a2(&allocated2); |
| AllocVec v1(ia1, ia1 + ABSL_ARRAYSIZE(ia1), a1); |
| AllocVec v2(ia2, ia2 + ABSL_ARRAYSIZE(ia2), a2); |
| EXPECT_THAT(allocated1, |
| Eq(static_cast<int64_t>(v1.capacity() * sizeof(int)))); |
| EXPECT_THAT(allocated2, Eq(0)); |
| v1.swap(v2); |
| EXPECT_THAT(v1, ElementsAreArray(ia2)); |
| EXPECT_THAT(v2, ElementsAreArray(ia1)); |
| EXPECT_THAT(allocated1, |
| Eq(static_cast<int64_t>(v2.capacity() * sizeof(int)))); |
| EXPECT_THAT(allocated2, Eq(0)); |
| EXPECT_TRUE(v2.get_allocator() == a1); |
| EXPECT_TRUE(v1.get_allocator() == a2); |
| } |
| EXPECT_THAT(allocated1, 0); |
| EXPECT_THAT(allocated2, 0); |
| } |
| |
| TEST(AllocatorSupportTest, ScopedAllocatorWorksInlined) { |
| using StdVector = std::vector<int, CountingAllocator<int>>; |
| using Alloc = CountingAllocator<StdVector>; |
| using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>; |
| using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>; |
| |
| int64_t total_allocated_byte_count = 0; |
| |
| AllocVec inlined_case(ScopedAlloc(Alloc(+&total_allocated_byte_count))); |
| |
| // Called only once to remain inlined |
| inlined_case.emplace_back(); |
| |
| int64_t absl_responsible_for_count = total_allocated_byte_count; |
| |
| // MSVC's allocator preemptively allocates in debug mode |
| #if !defined(_MSC_VER) |
| EXPECT_EQ(absl_responsible_for_count, 0); |
| #endif // !defined(_MSC_VER) |
| |
| inlined_case[0].emplace_back(); |
| EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count); |
| |
| inlined_case.clear(); |
| inlined_case.shrink_to_fit(); |
| EXPECT_EQ(total_allocated_byte_count, 0); |
| } |
| |
| TEST(AllocatorSupportTest, ScopedAllocatorWorksAllocated) { |
| using StdVector = std::vector<int, CountingAllocator<int>>; |
| using Alloc = CountingAllocator<StdVector>; |
| using ScopedAlloc = std::scoped_allocator_adaptor<Alloc>; |
| using AllocVec = absl::InlinedVector<StdVector, 1, ScopedAlloc>; |
| |
| int64_t total_allocated_byte_count = 0; |
| |
| AllocVec allocated_case(ScopedAlloc(Alloc(+&total_allocated_byte_count))); |
| |
| // Called twice to force into being allocated |
| allocated_case.emplace_back(); |
| allocated_case.emplace_back(); |
| |
| int64_t absl_responsible_for_count = total_allocated_byte_count; |
| EXPECT_GT(absl_responsible_for_count, 0); |
| |
| allocated_case[1].emplace_back(); |
| EXPECT_GT(total_allocated_byte_count, absl_responsible_for_count); |
| |
| allocated_case.clear(); |
| allocated_case.shrink_to_fit(); |
| EXPECT_EQ(total_allocated_byte_count, 0); |
| } |
| |
| TEST(AllocatorSupportTest, SizeAllocConstructor) { |
| constexpr size_t inlined_size = 4; |
| using Alloc = CountingAllocator<int>; |
| using AllocVec = absl::InlinedVector<int, inlined_size, Alloc>; |
| |
| { |
| auto len = inlined_size / 2; |
| int64_t allocated = 0; |
| auto v = AllocVec(len, Alloc(&allocated)); |
| |
| // Inline storage used; allocator should not be invoked |
| EXPECT_THAT(allocated, Eq(0)); |
| EXPECT_THAT(v, AllOf(SizeIs(len), Each(0))); |
| } |
| |
| { |
| auto len = inlined_size * 2; |
| int64_t allocated = 0; |
| auto v = AllocVec(len, Alloc(&allocated)); |
| |
| // Out of line storage used; allocation of 8 elements expected |
| EXPECT_THAT(allocated, Eq(static_cast<int64_t>(len * sizeof(int)))); |
| EXPECT_THAT(v, AllOf(SizeIs(len), Each(0))); |
| } |
| } |
| |
| TEST(InlinedVectorTest, MinimumAllocatorCompilesUsingTraits) { |
| using T = int; |
| using A = std::allocator<T>; |
| using ATraits = absl::allocator_traits<A>; |
| |
| struct MinimumAllocator { |
| using value_type = T; |
| |
| value_type* allocate(size_t n) { |
| A a; |
| return ATraits::allocate(a, n); |
| } |
| |
| void deallocate(value_type* p, size_t n) { |
| A a; |
| ATraits::deallocate(a, p, n); |
| } |
| }; |
| |
| absl::InlinedVector<T, 1, MinimumAllocator> vec; |
| vec.emplace_back(); |
| vec.resize(0); |
| } |
| |
| TEST(InlinedVectorTest, AbslHashValueWorks) { |
| using V = absl::InlinedVector<int, 4>; |
| std::vector<V> cases; |
| |
| // Generate a variety of vectors some of these are small enough for the inline |
| // space but are stored out of line. |
| for (size_t i = 0; i < 10; ++i) { |
| V v; |
| for (int j = 0; j < static_cast<int>(i); ++j) { |
| v.push_back(j); |
| } |
| cases.push_back(v); |
| v.resize(i % 4); |
| cases.push_back(v); |
| } |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases)); |
| } |
| |
| class MoveConstructibleOnlyInstance |
| : public absl::test_internal::BaseCountedInstance { |
| public: |
| explicit MoveConstructibleOnlyInstance(int x) : BaseCountedInstance(x) {} |
| MoveConstructibleOnlyInstance(MoveConstructibleOnlyInstance&& other) = |
| default; |
| MoveConstructibleOnlyInstance& operator=( |
| MoveConstructibleOnlyInstance&& other) = delete; |
| }; |
| |
| MATCHER(HasValue, "") { |
| return ::testing::get<0>(arg).value() == ::testing::get<1>(arg); |
| } |
| |
| TEST(NonAssignableMoveAssignmentTest, AllocatedToInline) { |
| using X = MoveConstructibleOnlyInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> inlined; |
| inlined.emplace_back(1); |
| absl::InlinedVector<X, 2> allocated; |
| allocated.emplace_back(1); |
| allocated.emplace_back(2); |
| allocated.emplace_back(3); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| inlined = std::move(allocated); |
| // passed ownership of the allocated storage |
| EXPECT_EQ(tracker.moves(), 0); |
| EXPECT_EQ(tracker.live_instances(), 3); |
| |
| EXPECT_THAT(inlined, Pointwise(HasValue(), {1, 2, 3})); |
| } |
| |
| TEST(NonAssignableMoveAssignmentTest, InlineToAllocated) { |
| using X = MoveConstructibleOnlyInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> inlined; |
| inlined.emplace_back(1); |
| absl::InlinedVector<X, 2> allocated; |
| allocated.emplace_back(1); |
| allocated.emplace_back(2); |
| allocated.emplace_back(3); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| allocated = std::move(inlined); |
| // Moved elements |
| EXPECT_EQ(tracker.moves(), 1); |
| EXPECT_EQ(tracker.live_instances(), 1); |
| |
| EXPECT_THAT(allocated, Pointwise(HasValue(), {1})); |
| } |
| |
| TEST(NonAssignableMoveAssignmentTest, InlineToInline) { |
| using X = MoveConstructibleOnlyInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> inlined_a; |
| inlined_a.emplace_back(1); |
| absl::InlinedVector<X, 2> inlined_b; |
| inlined_b.emplace_back(1); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| inlined_a = std::move(inlined_b); |
| // Moved elements |
| EXPECT_EQ(tracker.moves(), 1); |
| EXPECT_EQ(tracker.live_instances(), 1); |
| |
| EXPECT_THAT(inlined_a, Pointwise(HasValue(), {1})); |
| } |
| |
| TEST(NonAssignableMoveAssignmentTest, AllocatedToAllocated) { |
| using X = MoveConstructibleOnlyInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> allocated_a; |
| allocated_a.emplace_back(1); |
| allocated_a.emplace_back(2); |
| allocated_a.emplace_back(3); |
| absl::InlinedVector<X, 2> allocated_b; |
| allocated_b.emplace_back(4); |
| allocated_b.emplace_back(5); |
| allocated_b.emplace_back(6); |
| allocated_b.emplace_back(7); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| allocated_a = std::move(allocated_b); |
| // passed ownership of the allocated storage |
| EXPECT_EQ(tracker.moves(), 0); |
| EXPECT_EQ(tracker.live_instances(), 4); |
| |
| EXPECT_THAT(allocated_a, Pointwise(HasValue(), {4, 5, 6, 7})); |
| } |
| |
| TEST(NonAssignableMoveAssignmentTest, AssignThis) { |
| using X = MoveConstructibleOnlyInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> v; |
| v.emplace_back(1); |
| v.emplace_back(2); |
| v.emplace_back(3); |
| |
| tracker.ResetCopiesMovesSwaps(); |
| |
| // Obfuscated in order to pass -Wself-move. |
| v = std::move(*std::addressof(v)); |
| // nothing happens |
| EXPECT_EQ(tracker.moves(), 0); |
| EXPECT_EQ(tracker.live_instances(), 3); |
| |
| EXPECT_THAT(v, Pointwise(HasValue(), {1, 2, 3})); |
| } |
| |
| class NonSwappableInstance : public absl::test_internal::BaseCountedInstance { |
| public: |
| explicit NonSwappableInstance(int x) : BaseCountedInstance(x) {} |
| NonSwappableInstance(const NonSwappableInstance& other) = default; |
| NonSwappableInstance& operator=(const NonSwappableInstance& other) = default; |
| NonSwappableInstance(NonSwappableInstance&& other) = default; |
| NonSwappableInstance& operator=(NonSwappableInstance&& other) = default; |
| }; |
| |
| void swap(NonSwappableInstance&, NonSwappableInstance&) = delete; |
| |
| TEST(NonSwappableSwapTest, InlineAndAllocatedTransferStorageAndMove) { |
| using X = NonSwappableInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> inlined; |
| inlined.emplace_back(1); |
| absl::InlinedVector<X, 2> allocated; |
| allocated.emplace_back(1); |
| allocated.emplace_back(2); |
| allocated.emplace_back(3); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| inlined.swap(allocated); |
| EXPECT_EQ(tracker.moves(), 1); |
| EXPECT_EQ(tracker.live_instances(), 4); |
| |
| EXPECT_THAT(inlined, Pointwise(HasValue(), {1, 2, 3})); |
| } |
| |
| TEST(NonSwappableSwapTest, InlineAndInlineMoveIndividualElements) { |
| using X = NonSwappableInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> inlined_a; |
| inlined_a.emplace_back(1); |
| absl::InlinedVector<X, 2> inlined_b; |
| inlined_b.emplace_back(2); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| inlined_a.swap(inlined_b); |
| EXPECT_EQ(tracker.moves(), 3); |
| EXPECT_EQ(tracker.live_instances(), 2); |
| |
| EXPECT_THAT(inlined_a, Pointwise(HasValue(), {2})); |
| EXPECT_THAT(inlined_b, Pointwise(HasValue(), {1})); |
| } |
| |
| TEST(NonSwappableSwapTest, AllocatedAndAllocatedOnlyTransferStorage) { |
| using X = NonSwappableInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> allocated_a; |
| allocated_a.emplace_back(1); |
| allocated_a.emplace_back(2); |
| allocated_a.emplace_back(3); |
| absl::InlinedVector<X, 2> allocated_b; |
| allocated_b.emplace_back(4); |
| allocated_b.emplace_back(5); |
| allocated_b.emplace_back(6); |
| allocated_b.emplace_back(7); |
| tracker.ResetCopiesMovesSwaps(); |
| |
| allocated_a.swap(allocated_b); |
| EXPECT_EQ(tracker.moves(), 0); |
| EXPECT_EQ(tracker.live_instances(), 7); |
| |
| EXPECT_THAT(allocated_a, Pointwise(HasValue(), {4, 5, 6, 7})); |
| EXPECT_THAT(allocated_b, Pointwise(HasValue(), {1, 2, 3})); |
| } |
| |
| TEST(NonSwappableSwapTest, SwapThis) { |
| using X = NonSwappableInstance; |
| InstanceTracker tracker; |
| absl::InlinedVector<X, 2> v; |
| v.emplace_back(1); |
| v.emplace_back(2); |
| v.emplace_back(3); |
| |
| tracker.ResetCopiesMovesSwaps(); |
| |
| v.swap(v); |
| EXPECT_EQ(tracker.moves(), 0); |
| EXPECT_EQ(tracker.live_instances(), 3); |
| |
| EXPECT_THAT(v, Pointwise(HasValue(), {1, 2, 3})); |
| } |
| |
| template <size_t N> |
| using CharVec = absl::InlinedVector<char, N>; |
| |
| // Warning: This struct "simulates" the type `InlinedVector::Storage::Allocated` |
| // to make reasonable expectations for inlined storage capacity optimization. If |
| // implementation changes `Allocated`, then `MySpan` and tests that use it need |
| // to be updated accordingly. |
| template <typename T> |
| struct MySpan { |
| T* data; |
| size_t size; |
| }; |
| |
| TEST(StorageTest, InlinedCapacityAutoIncrease) { |
| // The requested capacity is auto increased to `sizeof(MySpan<char>)`. |
| EXPECT_GT(CharVec<1>().capacity(), 1); |
| EXPECT_EQ(CharVec<1>().capacity(), sizeof(MySpan<char>)); |
| EXPECT_EQ(CharVec<1>().capacity(), CharVec<2>().capacity()); |
| EXPECT_EQ(sizeof(CharVec<1>), sizeof(CharVec<2>)); |
| |
| // The requested capacity is auto increased to |
| // `sizeof(MySpan<int>) / sizeof(int)`. |
| EXPECT_GT((absl::InlinedVector<int, 1>().capacity()), 1); |
| EXPECT_EQ((absl::InlinedVector<int, 1>().capacity()), |
| sizeof(MySpan<int>) / sizeof(int)); |
| } |
| |
| } // anonymous namespace |