blob: 30307b630bbf45184c15b810c9e697b3c1aa1791 [file] [log] [blame]
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/raw_hash_set.h"
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/endian.h"
#include "absl/base/optimization.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hashtablez_sampler.h"
#include "absl/hash/hash.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// Represents a control byte corresponding to a full slot with arbitrary hash.
constexpr ctrl_t ZeroCtrlT() { return static_cast<ctrl_t>(0); }
// We have space for `growth_info` before a single block of control bytes. A
// single block of empty control bytes for tables without any slots allocated.
// This enables removing a branch in the hot path of find(). In order to ensure
// that the control bytes are aligned to 16, we have 16 bytes before the control
// bytes even though growth_info only needs 8.
alignas(16) ABSL_CONST_INIT ABSL_DLL const ctrl_t kEmptyGroup[32] = {
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty};
// We need one full byte followed by a sentinel byte for iterator::operator++ to
// work. We have a full group after kSentinel to be safe (in case operator++ is
// changed to read a full group).
ABSL_CONST_INIT ABSL_DLL const ctrl_t kSooControl[17] = {
ZeroCtrlT(), ctrl_t::kSentinel, ZeroCtrlT(), ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty};
static_assert(NumControlBytes(SooCapacity()) <= 17,
"kSooControl capacity too small");
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr size_t Group::kWidth;
#endif
namespace {
// Returns "random" seed.
inline size_t RandomSeed() {
#ifdef ABSL_HAVE_THREAD_LOCAL
static thread_local size_t counter = 0;
// On Linux kernels >= 5.4 the MSAN runtime has a false-positive when
// accessing thread local storage data from loaded libraries
// (https://github.com/google/sanitizers/issues/1265), for this reason counter
// needs to be annotated as initialized.
ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&counter, sizeof(size_t));
size_t value = ++counter;
#else // ABSL_HAVE_THREAD_LOCAL
static std::atomic<size_t> counter(0);
size_t value = counter.fetch_add(1, std::memory_order_relaxed);
#endif // ABSL_HAVE_THREAD_LOCAL
return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
}
bool ShouldRehashForBugDetection(const ctrl_t* ctrl, size_t capacity) {
// Note: we can't use the abseil-random library because abseil-random
// depends on swisstable. We want to return true with probability
// `min(1, RehashProbabilityConstant() / capacity())`. In order to do this,
// we probe based on a random hash and see if the offset is less than
// RehashProbabilityConstant().
return probe(ctrl, capacity, absl::HashOf(RandomSeed())).offset() <
RehashProbabilityConstant();
}
} // namespace
GenerationType* EmptyGeneration() {
if (SwisstableGenerationsEnabled()) {
constexpr size_t kNumEmptyGenerations = 1024;
static constexpr GenerationType kEmptyGenerations[kNumEmptyGenerations]{};
return const_cast<GenerationType*>(
&kEmptyGenerations[RandomSeed() % kNumEmptyGenerations]);
}
return nullptr;
}
bool CommonFieldsGenerationInfoEnabled::
should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl,
size_t capacity) const {
if (reserved_growth_ == kReservedGrowthJustRanOut) return true;
if (reserved_growth_ > 0) return false;
return ShouldRehashForBugDetection(ctrl, capacity);
}
bool CommonFieldsGenerationInfoEnabled::should_rehash_for_bug_detection_on_move(
const ctrl_t* ctrl, size_t capacity) const {
return ShouldRehashForBugDetection(ctrl, capacity);
}
bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash,
const ctrl_t* ctrl) {
// To avoid problems with weak hashes and single bit tests, we use % 13.
// TODO(kfm,sbenza): revisit after we do unconditional mixing
return !is_small(capacity) && (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6;
}
size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size,
CommonFields& common) {
assert(common.capacity() == NextCapacity(SooCapacity()));
// After resize from capacity 1 to 3, we always have exactly the slot with
// index 1 occupied, so we need to insert either at index 0 or index 2.
assert(HashSetResizeHelper::SooSlotIndex() == 1);
PrepareInsertCommon(common);
const size_t offset = H1(hash, common.control()) & 2;
common.growth_info().OverwriteEmptyAsFull();
SetCtrlInSingleGroupTable(common, offset, H2(hash), slot_size);
common.infoz().RecordInsert(hash, /*distance_from_desired=*/0);
return offset;
}
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) {
assert(ctrl[capacity] == ctrl_t::kSentinel);
assert(IsValidCapacity(capacity));
for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) {
Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
}
// Copy the cloned ctrl bytes.
std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes());
ctrl[capacity] = ctrl_t::kSentinel;
}
// Extern template instantiation for inline function.
template FindInfo find_first_non_full(const CommonFields&, size_t);
FindInfo find_first_non_full_outofline(const CommonFields& common,
size_t hash) {
return find_first_non_full(common, hash);
}
namespace {
// Returns the address of the slot just after slot assuming each slot has the
// specified size.
static inline void* NextSlot(void* slot, size_t slot_size) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) + slot_size);
}
// Returns the address of the slot just before slot assuming each slot has the
// specified size.
static inline void* PrevSlot(void* slot, size_t slot_size) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) - slot_size);
}
// Finds guaranteed to exists empty slot from the given position.
// NOTE: this function is almost never triggered inside of the
// DropDeletesWithoutResize, so we keep it simple.
// The table is rather sparse, so empty slot will be found very quickly.
size_t FindEmptySlot(size_t start, size_t end, const ctrl_t* ctrl) {
for (size_t i = start; i < end; ++i) {
if (IsEmpty(ctrl[i])) {
return i;
}
}
assert(false && "no empty slot");
return ~size_t{};
}
void DropDeletesWithoutResize(CommonFields& common,
const PolicyFunctions& policy) {
void* set = &common;
void* slot_array = common.slot_array();
const size_t capacity = common.capacity();
assert(IsValidCapacity(capacity));
assert(!is_small(capacity));
// Algorithm:
// - mark all DELETED slots as EMPTY
// - mark all FULL slots as DELETED
// - for each slot marked as DELETED
// hash = Hash(element)
// target = find_first_non_full(hash)
// if target is in the same group
// mark slot as FULL
// else if target is EMPTY
// transfer element to target
// mark slot as EMPTY
// mark target as FULL
// else if target is DELETED
// swap current element with target element
// mark target as FULL
// repeat procedure for current slot with moved from element (target)
ctrl_t* ctrl = common.control();
ConvertDeletedToEmptyAndFullToDeleted(ctrl, capacity);
const void* hash_fn = policy.hash_fn(common);
auto hasher = policy.hash_slot;
auto transfer = policy.transfer;
const size_t slot_size = policy.slot_size;
size_t total_probe_length = 0;
void* slot_ptr = SlotAddress(slot_array, 0, slot_size);
// The index of an empty slot that can be used as temporary memory for
// the swap operation.
constexpr size_t kUnknownId = ~size_t{};
size_t tmp_space_id = kUnknownId;
for (size_t i = 0; i != capacity;
++i, slot_ptr = NextSlot(slot_ptr, slot_size)) {
assert(slot_ptr == SlotAddress(slot_array, i, slot_size));
if (IsEmpty(ctrl[i])) {
tmp_space_id = i;
continue;
}
if (!IsDeleted(ctrl[i])) continue;
const size_t hash = (*hasher)(hash_fn, slot_ptr);
const FindInfo target = find_first_non_full(common, hash);
const size_t new_i = target.offset;
total_probe_length += target.probe_length;
// Verify if the old and new i fall within the same group wrt the hash.
// If they do, we don't need to move the object as it falls already in the
// best probe we can.
const size_t probe_offset = probe(common, hash).offset();
const auto probe_index = [probe_offset, capacity](size_t pos) {
return ((pos - probe_offset) & capacity) / Group::kWidth;
};
// Element doesn't move.
if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
SetCtrl(common, i, H2(hash), slot_size);
continue;
}
void* new_slot_ptr = SlotAddress(slot_array, new_i, slot_size);
if (IsEmpty(ctrl[new_i])) {
// Transfer element to the empty spot.
// SetCtrl poisons/unpoisons the slots so we have to call it at the
// right time.
SetCtrl(common, new_i, H2(hash), slot_size);
(*transfer)(set, new_slot_ptr, slot_ptr);
SetCtrl(common, i, ctrl_t::kEmpty, slot_size);
// Initialize or change empty space id.
tmp_space_id = i;
} else {
assert(IsDeleted(ctrl[new_i]));
SetCtrl(common, new_i, H2(hash), slot_size);
// Until we are done rehashing, DELETED marks previously FULL slots.
if (tmp_space_id == kUnknownId) {
tmp_space_id = FindEmptySlot(i + 1, capacity, ctrl);
}
void* tmp_space = SlotAddress(slot_array, tmp_space_id, slot_size);
SanitizerUnpoisonMemoryRegion(tmp_space, slot_size);
// Swap i and new_i elements.
(*transfer)(set, tmp_space, new_slot_ptr);
(*transfer)(set, new_slot_ptr, slot_ptr);
(*transfer)(set, slot_ptr, tmp_space);
SanitizerPoisonMemoryRegion(tmp_space, slot_size);
// repeat the processing of the ith slot
--i;
slot_ptr = PrevSlot(slot_ptr, slot_size);
}
}
ResetGrowthLeft(common);
common.infoz().RecordRehash(total_probe_length);
}
static bool WasNeverFull(CommonFields& c, size_t index) {
if (is_single_group(c.capacity())) {
return true;
}
const size_t index_before = (index - Group::kWidth) & c.capacity();
const auto empty_after = Group(c.control() + index).MaskEmpty();
const auto empty_before = Group(c.control() + index_before).MaskEmpty();
// We count how many consecutive non empties we have to the right and to the
// left of `it`. If the sum is >= kWidth then there is at least one probe
// window that might have seen a full group.
return empty_before && empty_after &&
static_cast<size_t>(empty_after.TrailingZeros()) +
empty_before.LeadingZeros() <
Group::kWidth;
}
} // namespace
void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size) {
assert(IsFull(c.control()[index]) && "erasing a dangling iterator");
c.decrement_size();
c.infoz().RecordErase();
if (WasNeverFull(c, index)) {
SetCtrl(c, index, ctrl_t::kEmpty, slot_size);
c.growth_info().OverwriteFullAsEmpty();
return;
}
c.growth_info().OverwriteFullAsDeleted();
SetCtrl(c, index, ctrl_t::kDeleted, slot_size);
}
void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
bool reuse, bool soo_enabled) {
c.set_size(0);
if (reuse) {
assert(!soo_enabled || c.capacity() > SooCapacity());
ResetCtrl(c, policy.slot_size);
ResetGrowthLeft(c);
c.infoz().RecordStorageChanged(0, c.capacity());
} else {
// We need to record infoz before calling dealloc, which will unregister
// infoz.
c.infoz().RecordClearedReservation();
c.infoz().RecordStorageChanged(0, soo_enabled ? SooCapacity() : 0);
(*policy.dealloc)(c, policy);
c = soo_enabled ? CommonFields{soo_tag_t{}} : CommonFields{non_soo_tag_t{}};
}
}
void HashSetResizeHelper::GrowIntoSingleGroupShuffleControlBytes(
ctrl_t* __restrict new_ctrl, size_t new_capacity) const {
assert(is_single_group(new_capacity));
constexpr size_t kHalfWidth = Group::kWidth / 2;
ABSL_ASSUME(old_capacity_ < kHalfWidth);
ABSL_ASSUME(old_capacity_ > 0);
static_assert(Group::kWidth == 8 || Group::kWidth == 16,
"Group size is not supported.");
// NOTE: operations are done with compile time known size = 8.
// Compiler optimizes that into single ASM operation.
// Load the bytes from old_capacity. This contains
// - the sentinel byte
// - all the old control bytes
// - the rest is filled with kEmpty bytes
// Example:
// old_ctrl = 012S012EEEEEEEEE...
// copied_bytes = S012EEEE
uint64_t copied_bytes =
absl::little_endian::Load64(old_ctrl() + old_capacity_);
// We change the sentinel byte to kEmpty before storing to both the start of
// the new_ctrl, and past the end of the new_ctrl later for the new cloned
// bytes. Note that this is faster than setting the sentinel byte to kEmpty
// after the copy directly in new_ctrl because we are limited on store
// bandwidth.
static constexpr uint64_t kEmptyXorSentinel =
static_cast<uint8_t>(ctrl_t::kEmpty) ^
static_cast<uint8_t>(ctrl_t::kSentinel);
// Replace the first byte kSentinel with kEmpty.
// Resulting bytes will be shifted by one byte old control blocks.
// Example:
// old_ctrl = 012S012EEEEEEEEE...
// before = S012EEEE
// after = E012EEEE
copied_bytes ^= kEmptyXorSentinel;
if (Group::kWidth == 8) {
// With group size 8, we can grow with two write operations.
assert(old_capacity_ < 8 && "old_capacity_ is too large for group size 8");
absl::little_endian::Store64(new_ctrl, copied_bytes);
static constexpr uint64_t kSentinal64 =
static_cast<uint8_t>(ctrl_t::kSentinel);
// Prepend kSentinel byte to the beginning of copied_bytes.
// We have maximum 3 non-empty bytes at the beginning of copied_bytes for
// group size 8.
// Example:
// old_ctrl = 012S012EEEE
// before = E012EEEE
// after = SE012EEE
copied_bytes = (copied_bytes << 8) ^ kSentinal64;
absl::little_endian::Store64(new_ctrl + new_capacity, copied_bytes);
// Example for capacity 3:
// old_ctrl = 012S012EEEE
// After the first store:
// >!
// new_ctrl = E012EEEE???????
// After the second store:
// >!
// new_ctrl = E012EEESE012EEE
return;
}
assert(Group::kWidth == 16);
// Fill the second half of the main control bytes with kEmpty.
// For small capacity that may write into mirrored control bytes.
// It is fine as we will overwrite all the bytes later.
std::memset(new_ctrl + kHalfWidth, static_cast<int8_t>(ctrl_t::kEmpty),
kHalfWidth);
// Fill the second half of the mirrored control bytes with kEmpty.
std::memset(new_ctrl + new_capacity + kHalfWidth,
static_cast<int8_t>(ctrl_t::kEmpty), kHalfWidth);
// Copy the first half of the non-mirrored control bytes.
absl::little_endian::Store64(new_ctrl, copied_bytes);
new_ctrl[new_capacity] = ctrl_t::kSentinel;
// Copy the first half of the mirrored control bytes.
absl::little_endian::Store64(new_ctrl + new_capacity + 1, copied_bytes);
// Example for growth capacity 1->3:
// old_ctrl = 0S0EEEEEEEEEEEEEE
// new_ctrl at the end = E0ESE0EEEEEEEEEEEEE
// >!
// new_ctrl after 1st memset = ????????EEEEEEEE???
// >!
// new_ctrl after 2nd memset = ????????EEEEEEEEEEE
// >!
// new_ctrl after 1st store = E0EEEEEEEEEEEEEEEEE
// new_ctrl after kSentinel = E0ESEEEEEEEEEEEEEEE
// >!
// new_ctrl after 2nd store = E0ESE0EEEEEEEEEEEEE
// Example for growth capacity 3->7:
// old_ctrl = 012S012EEEEEEEEEEEE
// new_ctrl at the end = E012EEESE012EEEEEEEEEEE
// >!
// new_ctrl after 1st memset = ????????EEEEEEEE???????
// >!
// new_ctrl after 2nd memset = ????????EEEEEEEEEEEEEEE
// >!
// new_ctrl after 1st store = E012EEEEEEEEEEEEEEEEEEE
// new_ctrl after kSentinel = E012EEESEEEEEEEEEEEEEEE
// >!
// new_ctrl after 2nd store = E012EEESE012EEEEEEEEEEE
// Example for growth capacity 7->15:
// old_ctrl = 0123456S0123456EEEEEEEE
// new_ctrl at the end = E0123456EEEEEEESE0123456EEEEEEE
// >!
// new_ctrl after 1st memset = ????????EEEEEEEE???????????????
// >!
// new_ctrl after 2nd memset = ????????EEEEEEEE???????EEEEEEEE
// >!
// new_ctrl after 1st store = E0123456EEEEEEEE???????EEEEEEEE
// new_ctrl after kSentinel = E0123456EEEEEEES???????EEEEEEEE
// >!
// new_ctrl after 2nd store = E0123456EEEEEEESE0123456EEEEEEE
}
void HashSetResizeHelper::InitControlBytesAfterSoo(ctrl_t* new_ctrl, ctrl_t h2,
size_t new_capacity) {
assert(is_single_group(new_capacity));
std::memset(new_ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
NumControlBytes(new_capacity));
assert(HashSetResizeHelper::SooSlotIndex() == 1);
// This allows us to avoid branching on had_soo_slot_.
assert(had_soo_slot_ || h2 == ctrl_t::kEmpty);
new_ctrl[1] = new_ctrl[new_capacity + 2] = h2;
new_ctrl[new_capacity] = ctrl_t::kSentinel;
}
void HashSetResizeHelper::GrowIntoSingleGroupShuffleTransferableSlots(
void* new_slots, size_t slot_size) const {
ABSL_ASSUME(old_capacity_ > 0);
SanitizerUnpoisonMemoryRegion(old_slots(), slot_size * old_capacity_);
std::memcpy(SlotAddress(new_slots, 1, slot_size), old_slots(),
slot_size * old_capacity_);
}
void HashSetResizeHelper::GrowSizeIntoSingleGroupTransferable(
CommonFields& c, size_t slot_size) {
assert(old_capacity_ < Group::kWidth / 2);
assert(is_single_group(c.capacity()));
assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity()));
GrowIntoSingleGroupShuffleControlBytes(c.control(), c.capacity());
GrowIntoSingleGroupShuffleTransferableSlots(c.slot_array(), slot_size);
// We poison since GrowIntoSingleGroupShuffleTransferableSlots
// may leave empty slots unpoisoned.
PoisonSingleGroupEmptySlots(c, slot_size);
}
void HashSetResizeHelper::TransferSlotAfterSoo(CommonFields& c,
size_t slot_size) {
assert(was_soo_);
assert(had_soo_slot_);
assert(is_single_group(c.capacity()));
std::memcpy(SlotAddress(c.slot_array(), SooSlotIndex(), slot_size),
old_soo_data(), slot_size);
PoisonSingleGroupEmptySlots(c, slot_size);
}
namespace {
// Called whenever the table needs to vacate empty slots either by removing
// tombstones via rehash or growth.
ABSL_ATTRIBUTE_NOINLINE
FindInfo FindInsertPositionWithGrowthOrRehash(CommonFields& common, size_t hash,
const PolicyFunctions& policy) {
const size_t cap = common.capacity();
if (cap > Group::kWidth &&
// Do these calculations in 64-bit to avoid overflow.
common.size() * uint64_t{32} <= cap * uint64_t{25}) {
// Squash DELETED without growing if there is enough capacity.
//
// Rehash in place if the current size is <= 25/32 of capacity.
// Rationale for such a high factor: 1) DropDeletesWithoutResize() is
// faster than resize, and 2) it takes quite a bit of work to add
// tombstones. In the worst case, seems to take approximately 4
// insert/erase pairs to create a single tombstone and so if we are
// rehashing because of tombstones, we can afford to rehash-in-place as
// long as we are reclaiming at least 1/8 the capacity without doing more
// than 2X the work. (Where "work" is defined to be size() for rehashing
// or rehashing in place, and 1 for an insert or erase.) But rehashing in
// place is faster per operation than inserting or even doubling the size
// of the table, so we actually afford to reclaim even less space from a
// resize-in-place. The decision is to rehash in place if we can reclaim
// at about 1/8th of the usable capacity (specifically 3/28 of the
// capacity) which means that the total cost of rehashing will be a small
// fraction of the total work.
//
// Here is output of an experiment using the BM_CacheInSteadyState
// benchmark running the old case (where we rehash-in-place only if we can
// reclaim at least 7/16*capacity) vs. this code (which rehashes in place
// if we can recover 3/32*capacity).
//
// Note that although in the worst-case number of rehashes jumped up from
// 15 to 190, but the number of operations per second is almost the same.
//
// Abridged output of running BM_CacheInSteadyState benchmark from
// raw_hash_set_benchmark. N is the number of insert/erase operations.
//
// | OLD (recover >= 7/16 | NEW (recover >= 3/32)
// size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes
// 448 | 145284 0.44 18 | 140118 0.44 19
// 493 | 152546 0.24 11 | 151417 0.48 28
// 538 | 151439 0.26 11 | 151152 0.53 38
// 583 | 151765 0.28 11 | 150572 0.57 50
// 628 | 150241 0.31 11 | 150853 0.61 66
// 672 | 149602 0.33 12 | 150110 0.66 90
// 717 | 149998 0.35 12 | 149531 0.70 129
// 762 | 149836 0.37 13 | 148559 0.74 190
// 807 | 149736 0.39 14 | 151107 0.39 14
// 852 | 150204 0.42 15 | 151019 0.42 15
DropDeletesWithoutResize(common, policy);
} else {
// Otherwise grow the container.
policy.resize(common, NextCapacity(cap), HashtablezInfoHandle{});
}
// This function is typically called with tables containing deleted slots.
// The table will be big and `FindFirstNonFullAfterResize` will always
// fallback to `find_first_non_full`. So using `find_first_non_full` directly.
return find_first_non_full(common, hash);
}
} // namespace
const void* GetHashRefForEmptyHasher(const CommonFields& common) {
// Empty base optimization typically make the empty base class address to be
// the same as the first address of the derived class object.
// But we generally assume that for empty hasher we can return any valid
// pointer.
return &common;
}
size_t PrepareInsertNonSoo(CommonFields& common, size_t hash, FindInfo target,
const PolicyFunctions& policy) {
// When there are no deleted slots in the table
// and growth_left is positive, we can insert at the first
// empty slot in the probe sequence (target).
const bool use_target_hint =
// Optimization is disabled when generations are enabled.
// We have to rehash even sparse tables randomly in such mode.
!SwisstableGenerationsEnabled() &&
common.growth_info().HasNoDeletedAndGrowthLeft();
if (ABSL_PREDICT_FALSE(!use_target_hint)) {
// Notes about optimized mode when generations are disabled:
// We do not enter this branch if table has no deleted slots
// and growth_left is positive.
// We enter this branch in the following cases listed in decreasing
// frequency:
// 1. Table without deleted slots (>95% cases) that needs to be resized.
// 2. Table with deleted slots that has space for the inserting element.
// 3. Table with deleted slots that needs to be rehashed or resized.
if (ABSL_PREDICT_TRUE(common.growth_info().HasNoGrowthLeftAndNoDeleted())) {
const size_t old_capacity = common.capacity();
policy.resize(common, NextCapacity(old_capacity), HashtablezInfoHandle{});
target = HashSetResizeHelper::FindFirstNonFullAfterResize(
common, old_capacity, hash);
} else {
// Note: the table may have no deleted slots here when generations
// are enabled.
const bool rehash_for_bug_detection =
common.should_rehash_for_bug_detection_on_insert();
if (rehash_for_bug_detection) {
// Move to a different heap allocation in order to detect bugs.
const size_t cap = common.capacity();
policy.resize(common,
common.growth_left() > 0 ? cap : NextCapacity(cap),
HashtablezInfoHandle{});
}
if (ABSL_PREDICT_TRUE(common.growth_left() > 0)) {
target = find_first_non_full(common, hash);
} else {
target = FindInsertPositionWithGrowthOrRehash(common, hash, policy);
}
}
}
PrepareInsertCommon(common);
common.growth_info().OverwriteControlAsFull(common.control()[target.offset]);
SetCtrl(common, target.offset, H2(hash), policy.slot_size);
common.infoz().RecordInsert(hash, target.probe_length);
return target.offset;
}
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl