| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/internal/entropy_pool.h" |
| |
| #include <bitset> |
| #include <cmath> |
| #include <cstddef> |
| #include <cstdint> |
| #include <thread> // NOLINT |
| #include <utility> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| #include "absl/container/flat_hash_set.h" |
| #include "absl/synchronization/mutex.h" |
| |
| namespace { |
| |
| using ::absl::random_internal::GetEntropyFromRandenPool; |
| |
| TEST(EntropyPoolTest, DistinctSequencesPerThread) { |
| using result_type = uint32_t; |
| constexpr int kNumThreads = 12; |
| constexpr size_t kValuesPerThread = 32; |
| |
| // Acquire entropy from multiple threads. |
| std::vector<std::vector<result_type>> data; |
| { |
| absl::Mutex mu; |
| std::vector<std::thread> threads; |
| for (int i = 0; i < kNumThreads; i++) { |
| threads.emplace_back([&]() { |
| std::vector<result_type> v(kValuesPerThread); |
| GetEntropyFromRandenPool(v.data(), sizeof(result_type) * v.size()); |
| absl::MutexLock l(mu); |
| data.push_back(std::move(v)); |
| }); |
| } |
| for (auto& t : threads) t.join(); |
| } |
| |
| EXPECT_EQ(data.size(), kNumThreads); |
| |
| // There should be essentially no duplicates in the sequences. |
| size_t expected_size = 0; |
| absl::flat_hash_set<result_type> seen; |
| for (const auto& v : data) { |
| expected_size += v.size(); |
| for (result_type x : v) seen.insert(x); |
| } |
| EXPECT_GE(seen.size(), expected_size - 1); |
| } |
| |
| // This validates that sequences are independent. |
| TEST(EntropyPoolTest, ValidateDistribution) { |
| using result_type = uint32_t; |
| constexpr int kNumOutputs = 16; |
| std::vector<result_type> a(kNumOutputs); |
| std::vector<result_type> b(kNumOutputs); |
| |
| GetEntropyFromRandenPool(a.data(), sizeof(a[0]) * a.size()); |
| GetEntropyFromRandenPool(b.data(), sizeof(b[0]) * b.size()); |
| |
| // Compare the two sequences, counting the number of bits that are different, |
| // then verify using a normal-approximation of the binomial distribution. |
| size_t changed_bits = 0; |
| size_t total_set = 0; |
| size_t equal_count = 0; |
| size_t zero_count = 0; |
| for (size_t i = 0; i < a.size(); ++i) { |
| std::bitset<sizeof(result_type) * 8> changed_set(a[i] ^ b[i]); |
| changed_bits += changed_set.count(); |
| |
| std::bitset<sizeof(result_type) * 8> a_set(a[i]); |
| std::bitset<sizeof(result_type) * 8> b_set(b[i]); |
| total_set += a_set.count() + b_set.count(); |
| |
| equal_count += (a[i] == b[i]) ? 1 : 0; |
| |
| zero_count += (a[i] == 0) ? 1 : 0; |
| zero_count += (b[i] == 0) ? 1 : 0; |
| } |
| |
| constexpr size_t kNBits = kNumOutputs * sizeof(result_type) * 8; |
| |
| // This should be a binomial distribution with: |
| // p = 0.5 |
| // n = kNBits |
| // sigma =~ 11.3 (sqrt(n * 0.5 * 0.5)) |
| // So we expect the number of changed bits to be within 5 standard deviations |
| // of the mean; this should fail less than one in 3 million times. |
| EXPECT_NEAR(changed_bits, kNBits * 0.5, 5 * std::sqrt(kNBits)) |
| << "@" << changed_bits / static_cast<double>(kNBits); |
| |
| // Verify that the number of set bits is also within the expected range; |
| // Note that this is summed over the two sequences, so the number of trials |
| // is twice the number of bits. |
| EXPECT_NEAR(total_set, kNBits, 5 * std::sqrt(2 * kNBits)) |
| << "@" << total_set / static_cast<double>(2 * kNBits); |
| |
| // A[i] == B[i] with probability ~= 16 * 1/2^32; certainly less than 1. |
| EXPECT_LE(equal_count, 1); |
| |
| // Zeros values must be rare; 32 / 2^32 is certainly less than 1. |
| EXPECT_LE(zero_count, 1); |
| } |
| } // namespace |