| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/internal/distribution_test_util.h" |
| |
| #include <cassert> |
| #include <cmath> |
| #include <string> |
| #include <vector> |
| |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/base/macros.h" |
| #include "absl/strings/str_cat.h" |
| #include "absl/strings/str_format.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace random_internal { |
| namespace { |
| |
| #if defined(__EMSCRIPTEN__) |
| // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found. |
| inline double fma(double x, double y, double z) { return (x * y) + z; } |
| #endif |
| |
| } // namespace |
| |
| DistributionMoments ComputeDistributionMoments( |
| absl::Span<const double> data_points) { |
| DistributionMoments result; |
| |
| // Compute m1 |
| for (double x : data_points) { |
| result.n++; |
| result.mean += x; |
| } |
| result.mean /= static_cast<double>(result.n); |
| |
| // Compute m2, m3, m4 |
| for (double x : data_points) { |
| double v = x - result.mean; |
| result.variance += v * v; |
| result.skewness += v * v * v; |
| result.kurtosis += v * v * v * v; |
| } |
| result.variance /= static_cast<double>(result.n - 1); |
| |
| result.skewness /= static_cast<double>(result.n); |
| result.skewness /= std::pow(result.variance, 1.5); |
| |
| result.kurtosis /= static_cast<double>(result.n); |
| result.kurtosis /= std::pow(result.variance, 2.0); |
| return result; |
| |
| // When validating the min/max count, the following confidence intervals may |
| // be of use: |
| // 3.291 * stddev = 99.9% CI |
| // 2.576 * stddev = 99% CI |
| // 1.96 * stddev = 95% CI |
| // 1.65 * stddev = 90% CI |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) { |
| return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f", |
| moments.mean, std::sqrt(moments.variance), |
| moments.skewness, moments.kurtosis); |
| } |
| |
| double InverseNormalSurvival(double x) { |
| // inv_sf(u) = -sqrt(2) * erfinv(2u-1) |
| static constexpr double kSqrt2 = 1.4142135623730950488; |
| return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0); |
| } |
| |
| bool Near(absl::string_view msg, double actual, double expected, double bound) { |
| assert(bound > 0.0); |
| double delta = fabs(expected - actual); |
| if (delta < bound) { |
| return true; |
| } |
| |
| std::string formatted = absl::StrCat( |
| msg, " actual=", actual, " expected=", expected, " err=", delta / bound); |
| ABSL_RAW_LOG(INFO, "%s", formatted.c_str()); |
| return false; |
| } |
| |
| // TODO(absl-team): Replace with an "ABSL_HAVE_SPECIAL_MATH" and try |
| // to use std::beta(). As of this writing P0226R1 is not implemented |
| // in libc++: http://libcxx.llvm.org/cxx1z_status.html |
| double beta(double p, double q) { |
| // Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x+y) |
| double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q); |
| return std::exp(lbeta); |
| } |
| |
| // Approximation to inverse of the Error Function in double precision. |
| // (http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf) |
| double erfinv(double x) { |
| #if !defined(__EMSCRIPTEN__) |
| using std::fma; |
| #endif |
| |
| double w = 0.0; |
| double p = 0.0; |
| w = -std::log((1.0 - x) * (1.0 + x)); |
| if (w < 6.250000) { |
| w = w - 3.125000; |
| p = -3.6444120640178196996e-21; |
| p = fma(p, w, -1.685059138182016589e-19); |
| p = fma(p, w, 1.2858480715256400167e-18); |
| p = fma(p, w, 1.115787767802518096e-17); |
| p = fma(p, w, -1.333171662854620906e-16); |
| p = fma(p, w, 2.0972767875968561637e-17); |
| p = fma(p, w, 6.6376381343583238325e-15); |
| p = fma(p, w, -4.0545662729752068639e-14); |
| p = fma(p, w, -8.1519341976054721522e-14); |
| p = fma(p, w, 2.6335093153082322977e-12); |
| p = fma(p, w, -1.2975133253453532498e-11); |
| p = fma(p, w, -5.4154120542946279317e-11); |
| p = fma(p, w, 1.051212273321532285e-09); |
| p = fma(p, w, -4.1126339803469836976e-09); |
| p = fma(p, w, -2.9070369957882005086e-08); |
| p = fma(p, w, 4.2347877827932403518e-07); |
| p = fma(p, w, -1.3654692000834678645e-06); |
| p = fma(p, w, -1.3882523362786468719e-05); |
| p = fma(p, w, 0.0001867342080340571352); |
| p = fma(p, w, -0.00074070253416626697512); |
| p = fma(p, w, -0.0060336708714301490533); |
| p = fma(p, w, 0.24015818242558961693); |
| p = fma(p, w, 1.6536545626831027356); |
| } else if (w < 16.000000) { |
| w = std::sqrt(w) - 3.250000; |
| p = 2.2137376921775787049e-09; |
| p = fma(p, w, 9.0756561938885390979e-08); |
| p = fma(p, w, -2.7517406297064545428e-07); |
| p = fma(p, w, 1.8239629214389227755e-08); |
| p = fma(p, w, 1.5027403968909827627e-06); |
| p = fma(p, w, -4.013867526981545969e-06); |
| p = fma(p, w, 2.9234449089955446044e-06); |
| p = fma(p, w, 1.2475304481671778723e-05); |
| p = fma(p, w, -4.7318229009055733981e-05); |
| p = fma(p, w, 6.8284851459573175448e-05); |
| p = fma(p, w, 2.4031110387097893999e-05); |
| p = fma(p, w, -0.0003550375203628474796); |
| p = fma(p, w, 0.00095328937973738049703); |
| p = fma(p, w, -0.0016882755560235047313); |
| p = fma(p, w, 0.0024914420961078508066); |
| p = fma(p, w, -0.0037512085075692412107); |
| p = fma(p, w, 0.005370914553590063617); |
| p = fma(p, w, 1.0052589676941592334); |
| p = fma(p, w, 3.0838856104922207635); |
| } else { |
| w = std::sqrt(w) - 5.000000; |
| p = -2.7109920616438573243e-11; |
| p = fma(p, w, -2.5556418169965252055e-10); |
| p = fma(p, w, 1.5076572693500548083e-09); |
| p = fma(p, w, -3.7894654401267369937e-09); |
| p = fma(p, w, 7.6157012080783393804e-09); |
| p = fma(p, w, -1.4960026627149240478e-08); |
| p = fma(p, w, 2.9147953450901080826e-08); |
| p = fma(p, w, -6.7711997758452339498e-08); |
| p = fma(p, w, 2.2900482228026654717e-07); |
| p = fma(p, w, -9.9298272942317002539e-07); |
| p = fma(p, w, 4.5260625972231537039e-06); |
| p = fma(p, w, -1.9681778105531670567e-05); |
| p = fma(p, w, 7.5995277030017761139e-05); |
| p = fma(p, w, -0.00021503011930044477347); |
| p = fma(p, w, -0.00013871931833623122026); |
| p = fma(p, w, 1.0103004648645343977); |
| p = fma(p, w, 4.8499064014085844221); |
| } |
| return p * x; |
| } |
| |
| namespace { |
| |
| // Direct implementation of AS63, BETAIN() |
| // https://www.jstor.org/stable/2346797?seq=3#page_scan_tab_contents. |
| // |
| // BETAIN(x, p, q, beta) |
| // x: the value of the upper limit x. |
| // p: the value of the parameter p. |
| // q: the value of the parameter q. |
| // beta: the value of ln B(p, q) |
| // |
| double BetaIncompleteImpl(const double x, const double p, const double q, |
| const double beta) { |
| if (p < (p + q) * x) { |
| // Incomplete beta function is symmetrical, so return the complement. |
| return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta); |
| } |
| |
| double psq = p + q; |
| const double kErr = 1e-14; |
| const double xc = 1. - x; |
| const double pre = |
| std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p; |
| |
| double term = 1.; |
| double ai = 1.; |
| double result = 1.; |
| int ns = static_cast<int>(q + xc * psq); |
| |
| // Use the soper reduction formula. |
| double rx = (ns == 0) ? x : x / xc; |
| double temp = q - ai; |
| for (;;) { |
| term = term * temp * rx / (p + ai); |
| result = result + term; |
| temp = std::fabs(term); |
| if (temp < kErr && temp < kErr * result) { |
| return result * pre; |
| } |
| ai = ai + 1.; |
| --ns; |
| if (ns >= 0) { |
| temp = q - ai; |
| if (ns == 0) { |
| rx = x; |
| } |
| } else { |
| temp = psq; |
| psq = psq + 1.; |
| } |
| } |
| |
| // NOTE: See also TOMS Algorithm 708. |
| // http://www.netlib.org/toms/index.html |
| // |
| // NOTE: The NWSC library also includes BRATIO / ISUBX (p87) |
| // https://archive.org/details/DTIC_ADA261511/page/n75 |
| } |
| |
| // Direct implementation of AS109, XINBTA(p, q, beta, alpha) |
| // https://www.jstor.org/stable/2346798?read-now=1&seq=4#page_scan_tab_contents |
| // https://www.jstor.org/stable/2346887?seq=1#page_scan_tab_contents |
| // |
| // XINBTA(p, q, beta, alpha) |
| // p: the value of the parameter p. |
| // q: the value of the parameter q. |
| // beta: the value of ln B(p, q) |
| // alpha: the value of the lower tail area. |
| // |
| double BetaIncompleteInvImpl(const double p, const double q, const double beta, |
| const double alpha) { |
| if (alpha < 0.5) { |
| // Inverse Incomplete beta function is symmetrical, return the complement. |
| return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha); |
| } |
| const double kErr = 1e-14; |
| double value = kErr; |
| |
| // Compute the initial estimate. |
| { |
| double r = std::sqrt(-std::log(alpha * alpha)); |
| double y = |
| r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0); |
| if (p > 1. && q > 1.) { |
| r = (y * y - 3.) / 6.; |
| double s = 1. / (p + p - 1.); |
| double t = 1. / (q + q - 1.); |
| double h = 2. / s + t; |
| double w = |
| y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h)); |
| value = p / (p + q * std::exp(w + w)); |
| } else { |
| r = q + q; |
| double t = 1.0 / (9. * q); |
| double u = 1.0 - t + y * std::sqrt(t); |
| t = r * (u * u * u); |
| if (t <= 0) { |
| value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q); |
| } else { |
| t = (4.0 * p + r - 2.0) / t; |
| if (t <= 1) { |
| value = std::exp((std::log(alpha * p) + beta) / p); |
| } else { |
| value = 1.0 - 2.0 / (t + 1.0); |
| } |
| } |
| } |
| } |
| |
| // Solve for x using a modified newton-raphson method using the function |
| // BetaIncomplete. |
| { |
| value = std::max(value, kErr); |
| value = std::min(value, 1.0 - kErr); |
| |
| const double r = 1.0 - p; |
| const double t = 1.0 - q; |
| double y; |
| double yprev = 0; |
| double sq = 1; |
| double prev = 1; |
| for (;;) { |
| if (value < 0 || value > 1.0) { |
| // Error case; value went infinite. |
| return std::numeric_limits<double>::infinity(); |
| } else if (value == 0 || value == 1) { |
| y = value; |
| } else { |
| y = BetaIncompleteImpl(value, p, q, beta); |
| if (!std::isfinite(y)) { |
| return y; |
| } |
| } |
| y = (y - alpha) * |
| std::exp(beta + r * std::log(value) + t * std::log(1.0 - value)); |
| if (y * yprev <= 0) { |
| prev = std::max(sq, std::numeric_limits<double>::min()); |
| } |
| double g = 1.0; |
| for (;;) { |
| const double adj = g * y; |
| const double adj_sq = adj * adj; |
| if (adj_sq >= prev) { |
| g = g / 3.0; |
| continue; |
| } |
| const double tx = value - adj; |
| if (tx < 0 || tx > 1) { |
| g = g / 3.0; |
| continue; |
| } |
| if (prev < kErr) { |
| return value; |
| } |
| if (y * y < kErr) { |
| return value; |
| } |
| if (tx == value) { |
| return value; |
| } |
| if (tx == 0 || tx == 1) { |
| g = g / 3.0; |
| continue; |
| } |
| value = tx; |
| yprev = y; |
| break; |
| } |
| } |
| } |
| |
| // NOTES: See also: Asymptotic inversion of the incomplete beta function. |
| // https://core.ac.uk/download/pdf/82140723.pdf |
| // |
| // NOTE: See the Boost library documentation as well: |
| // https://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_beta/ibeta_function.html |
| } |
| |
| } // namespace |
| |
| double BetaIncomplete(const double x, const double p, const double q) { |
| // Error cases. |
| if (p < 0 || q < 0 || x < 0 || x > 1.0) { |
| return std::numeric_limits<double>::infinity(); |
| } |
| if (x == 0 || x == 1) { |
| return x; |
| } |
| // ln(Beta(p, q)) |
| double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q); |
| return BetaIncompleteImpl(x, p, q, beta); |
| } |
| |
| double BetaIncompleteInv(const double p, const double q, const double alpha) { |
| // Error cases. |
| if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) { |
| return std::numeric_limits<double>::infinity(); |
| } |
| if (alpha == 0 || alpha == 1) { |
| return alpha; |
| } |
| // ln(Beta(p, q)) |
| double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q); |
| return BetaIncompleteInvImpl(p, q, beta, alpha); |
| } |
| |
| // Given `num_trials` trials each with probability `p` of success, the |
| // probability of no failures is `p^k`. To ensure the probability of a failure |
| // is no more than `p_fail`, it must be that `p^k == 1 - p_fail`. This function |
| // computes `p` from that equation. |
| double RequiredSuccessProbability(const double p_fail, const int num_trials) { |
| double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials)); |
| ABSL_ASSERT(p > 0); |
| return p; |
| } |
| |
| double ZScore(double expected_mean, const DistributionMoments& moments) { |
| return (moments.mean - expected_mean) / |
| (std::sqrt(moments.variance) / |
| std::sqrt(static_cast<double>(moments.n))); |
| } |
| |
| double MaxErrorTolerance(double acceptance_probability) { |
| double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability); |
| const double max_err = InverseNormalSurvival(one_sided_pvalue); |
| ABSL_ASSERT(max_err > 0); |
| return max_err; |
| } |
| |
| } // namespace random_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |