| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: hash.h |
| // ----------------------------------------------------------------------------- |
| // |
| #ifndef ABSL_HASH_INTERNAL_HASH_H_ |
| #define ABSL_HASH_INTERNAL_HASH_H_ |
| |
| #include <algorithm> |
| #include <array> |
| #include <cmath> |
| #include <cstring> |
| #include <deque> |
| #include <forward_list> |
| #include <functional> |
| #include <iterator> |
| #include <limits> |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/base/internal/endian.h" |
| #include "absl/base/port.h" |
| #include "absl/container/fixed_array.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/numeric/int128.h" |
| #include "absl/strings/cord.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/optional.h" |
| #include "absl/types/variant.h" |
| #include "absl/utility/utility.h" |
| #include "absl/hash/internal/city.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace hash_internal { |
| |
| class PiecewiseCombiner; |
| |
| // Internal detail: Large buffers are hashed in smaller chunks. This function |
| // returns the size of these chunks. |
| constexpr size_t PiecewiseChunkSize() { return 1024; } |
| |
| // HashStateBase |
| // |
| // A hash state object represents an intermediate state in the computation |
| // of an unspecified hash algorithm. `HashStateBase` provides a CRTP style |
| // base class for hash state implementations. Developers adding type support |
| // for `absl::Hash` should not rely on any parts of the state object other than |
| // the following member functions: |
| // |
| // * HashStateBase::combine() |
| // * HashStateBase::combine_contiguous() |
| // |
| // A derived hash state class of type `H` must provide a static member function |
| // with a signature similar to the following: |
| // |
| // `static H combine_contiguous(H state, const unsigned char*, size_t)`. |
| // |
| // `HashStateBase` will provide a complete implementation for a hash state |
| // object in terms of this method. |
| // |
| // Example: |
| // |
| // // Use CRTP to define your derived class. |
| // struct MyHashState : HashStateBase<MyHashState> { |
| // static H combine_contiguous(H state, const unsigned char*, size_t); |
| // using MyHashState::HashStateBase::combine; |
| // using MyHashState::HashStateBase::combine_contiguous; |
| // }; |
| template <typename H> |
| class HashStateBase { |
| public: |
| // HashStateBase::combine() |
| // |
| // Combines an arbitrary number of values into a hash state, returning the |
| // updated state. |
| // |
| // Each of the value types `T` must be separately hashable by the Abseil |
| // hashing framework. |
| // |
| // NOTE: |
| // |
| // state = H::combine(std::move(state), value1, value2, value3); |
| // |
| // is guaranteed to produce the same hash expansion as: |
| // |
| // state = H::combine(std::move(state), value1); |
| // state = H::combine(std::move(state), value2); |
| // state = H::combine(std::move(state), value3); |
| template <typename T, typename... Ts> |
| static H combine(H state, const T& value, const Ts&... values); |
| static H combine(H state) { return state; } |
| |
| // HashStateBase::combine_contiguous() |
| // |
| // Combines a contiguous array of `size` elements into a hash state, returning |
| // the updated state. |
| // |
| // NOTE: |
| // |
| // state = H::combine_contiguous(std::move(state), data, size); |
| // |
| // is NOT guaranteed to produce the same hash expansion as a for-loop (it may |
| // perform internal optimizations). If you need this guarantee, use the |
| // for-loop instead. |
| template <typename T> |
| static H combine_contiguous(H state, const T* data, size_t size); |
| |
| private: |
| friend class PiecewiseCombiner; |
| }; |
| |
| // is_uniquely_represented |
| // |
| // `is_uniquely_represented<T>` is a trait class that indicates whether `T` |
| // is uniquely represented. |
| // |
| // A type is "uniquely represented" if two equal values of that type are |
| // guaranteed to have the same bytes in their underlying storage. In other |
| // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be |
| // zero. This property cannot be detected automatically, so this trait is false |
| // by default, but can be specialized by types that wish to assert that they are |
| // uniquely represented. This makes them eligible for certain optimizations. |
| // |
| // If you have any doubt whatsoever, do not specialize this template. |
| // The default is completely safe, and merely disables some optimizations |
| // that will not matter for most types. Specializing this template, |
| // on the other hand, can be very hazardous. |
| // |
| // To be uniquely represented, a type must not have multiple ways of |
| // representing the same value; for example, float and double are not |
| // uniquely represented, because they have distinct representations for |
| // +0 and -0. Furthermore, the type's byte representation must consist |
| // solely of user-controlled data, with no padding bits and no compiler- |
| // controlled data such as vptrs or sanitizer metadata. This is usually |
| // very difficult to guarantee, because in most cases the compiler can |
| // insert data and padding bits at its own discretion. |
| // |
| // If you specialize this template for a type `T`, you must do so in the file |
| // that defines that type (or in this file). If you define that specialization |
| // anywhere else, `is_uniquely_represented<T>` could have different meanings |
| // in different places. |
| // |
| // The Enable parameter is meaningless; it is provided as a convenience, |
| // to support certain SFINAE techniques when defining specializations. |
| template <typename T, typename Enable = void> |
| struct is_uniquely_represented : std::false_type {}; |
| |
| // is_uniquely_represented<unsigned char> |
| // |
| // unsigned char is a synonym for "byte", so it is guaranteed to be |
| // uniquely represented. |
| template <> |
| struct is_uniquely_represented<unsigned char> : std::true_type {}; |
| |
| // is_uniquely_represented for non-standard integral types |
| // |
| // Integral types other than bool should be uniquely represented on any |
| // platform that this will plausibly be ported to. |
| template <typename Integral> |
| struct is_uniquely_represented< |
| Integral, typename std::enable_if<std::is_integral<Integral>::value>::type> |
| : std::true_type {}; |
| |
| // is_uniquely_represented<bool> |
| // |
| // |
| template <> |
| struct is_uniquely_represented<bool> : std::false_type {}; |
| |
| // hash_bytes() |
| // |
| // Convenience function that combines `hash_state` with the byte representation |
| // of `value`. |
| template <typename H, typename T> |
| H hash_bytes(H hash_state, const T& value) { |
| const unsigned char* start = reinterpret_cast<const unsigned char*>(&value); |
| return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); |
| } |
| |
| // PiecewiseCombiner |
| // |
| // PiecewiseCombiner is an internal-only helper class for hashing a piecewise |
| // buffer of `char` or `unsigned char` as though it were contiguous. This class |
| // provides two methods: |
| // |
| // H add_buffer(state, data, size) |
| // H finalize(state) |
| // |
| // `add_buffer` can be called zero or more times, followed by a single call to |
| // `finalize`. This will produce the same hash expansion as concatenating each |
| // buffer piece into a single contiguous buffer, and passing this to |
| // `H::combine_contiguous`. |
| // |
| // Example usage: |
| // PiecewiseCombiner combiner; |
| // for (const auto& piece : pieces) { |
| // state = combiner.add_buffer(std::move(state), piece.data, piece.size); |
| // } |
| // return combiner.finalize(std::move(state)); |
| class PiecewiseCombiner { |
| public: |
| PiecewiseCombiner() : position_(0) {} |
| PiecewiseCombiner(const PiecewiseCombiner&) = delete; |
| PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete; |
| |
| // PiecewiseCombiner::add_buffer() |
| // |
| // Appends the given range of bytes to the sequence to be hashed, which may |
| // modify the provided hash state. |
| template <typename H> |
| H add_buffer(H state, const unsigned char* data, size_t size); |
| template <typename H> |
| H add_buffer(H state, const char* data, size_t size) { |
| return add_buffer(std::move(state), |
| reinterpret_cast<const unsigned char*>(data), size); |
| } |
| |
| // PiecewiseCombiner::finalize() |
| // |
| // Finishes combining the hash sequence, which may may modify the provided |
| // hash state. |
| // |
| // Once finalize() is called, add_buffer() may no longer be called. The |
| // resulting hash state will be the same as if the pieces passed to |
| // add_buffer() were concatenated into a single flat buffer, and then provided |
| // to H::combine_contiguous(). |
| template <typename H> |
| H finalize(H state); |
| |
| private: |
| unsigned char buf_[PiecewiseChunkSize()]; |
| size_t position_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Basic Types |
| // ----------------------------------------------------------------------------- |
| |
| // Note: Default `AbslHashValue` implementations live in `hash_internal`. This |
| // allows us to block lexical scope lookup when doing an unqualified call to |
| // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can |
| // only be found via ADL. |
| |
| // AbslHashValue() for hashing bool values |
| // |
| // We use SFINAE to ensure that this overload only accepts bool, not types that |
| // are convertible to bool. |
| template <typename H, typename B> |
| typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue( |
| H hash_state, B value) { |
| return H::combine(std::move(hash_state), |
| static_cast<unsigned char>(value ? 1 : 0)); |
| } |
| |
| // AbslHashValue() for hashing enum values |
| template <typename H, typename Enum> |
| typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue( |
| H hash_state, Enum e) { |
| // In practice, we could almost certainly just invoke hash_bytes directly, |
| // but it's possible that a sanitizer might one day want to |
| // store data in the unused bits of an enum. To avoid that risk, we |
| // convert to the underlying type before hashing. Hopefully this will get |
| // optimized away; if not, we can reopen discussion with c-toolchain-team. |
| return H::combine(std::move(hash_state), |
| static_cast<typename std::underlying_type<Enum>::type>(e)); |
| } |
| // AbslHashValue() for hashing floating-point values |
| template <typename H, typename Float> |
| typename std::enable_if<std::is_same<Float, float>::value || |
| std::is_same<Float, double>::value, |
| H>::type |
| AbslHashValue(H hash_state, Float value) { |
| return hash_internal::hash_bytes(std::move(hash_state), |
| value == 0 ? 0 : value); |
| } |
| |
| // Long double has the property that it might have extra unused bytes in it. |
| // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits |
| // of it. This means we can't use hash_bytes on a long double and have to |
| // convert it to something else first. |
| template <typename H, typename LongDouble> |
| typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type |
| AbslHashValue(H hash_state, LongDouble value) { |
| const int category = std::fpclassify(value); |
| switch (category) { |
| case FP_INFINITE: |
| // Add the sign bit to differentiate between +Inf and -Inf |
| hash_state = H::combine(std::move(hash_state), std::signbit(value)); |
| break; |
| |
| case FP_NAN: |
| case FP_ZERO: |
| default: |
| // Category is enough for these. |
| break; |
| |
| case FP_NORMAL: |
| case FP_SUBNORMAL: |
| // We can't convert `value` directly to double because this would have |
| // undefined behavior if the value is out of range. |
| // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is |
| // guaranteed to be in range for `double`. The truncation is |
| // implementation defined, but that works as long as it is deterministic. |
| int exp; |
| auto mantissa = static_cast<double>(std::frexp(value, &exp)); |
| hash_state = H::combine(std::move(hash_state), mantissa, exp); |
| } |
| |
| return H::combine(std::move(hash_state), category); |
| } |
| |
| // AbslHashValue() for hashing pointers |
| template <typename H, typename T> |
| H AbslHashValue(H hash_state, T* ptr) { |
| auto v = reinterpret_cast<uintptr_t>(ptr); |
| // Due to alignment, pointers tend to have low bits as zero, and the next few |
| // bits follow a pattern since they are also multiples of some base value. |
| // Mixing the pointer twice helps prevent stuck low bits for certain alignment |
| // values. |
| return H::combine(std::move(hash_state), v, v); |
| } |
| |
| // AbslHashValue() for hashing nullptr_t |
| template <typename H> |
| H AbslHashValue(H hash_state, std::nullptr_t) { |
| return H::combine(std::move(hash_state), static_cast<void*>(nullptr)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Composite Types |
| // ----------------------------------------------------------------------------- |
| |
| // is_hashable() |
| // |
| // Trait class which returns true if T is hashable by the absl::Hash framework. |
| // Used for the AbslHashValue implementations for composite types below. |
| template <typename T> |
| struct is_hashable; |
| |
| // AbslHashValue() for hashing pairs |
| template <typename H, typename T1, typename T2> |
| typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::pair<T1, T2>& p) { |
| return H::combine(std::move(hash_state), p.first, p.second); |
| } |
| |
| // hash_tuple() |
| // |
| // Helper function for hashing a tuple. The third argument should |
| // be an index_sequence running from 0 to tuple_size<Tuple> - 1. |
| template <typename H, typename Tuple, size_t... Is> |
| H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) { |
| return H::combine(std::move(hash_state), std::get<Is>(t)...); |
| } |
| |
| // AbslHashValue for hashing tuples |
| template <typename H, typename... Ts> |
| #if defined(_MSC_VER) |
| // This SFINAE gets MSVC confused under some conditions. Let's just disable it |
| // for now. |
| H |
| #else // _MSC_VER |
| typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type |
| #endif // _MSC_VER |
| AbslHashValue(H hash_state, const std::tuple<Ts...>& t) { |
| return hash_internal::hash_tuple(std::move(hash_state), t, |
| absl::make_index_sequence<sizeof...(Ts)>()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Pointers |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing unique_ptr |
| template <typename H, typename T, typename D> |
| H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) { |
| return H::combine(std::move(hash_state), ptr.get()); |
| } |
| |
| // AbslHashValue for hashing shared_ptr |
| template <typename H, typename T> |
| H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) { |
| return H::combine(std::move(hash_state), ptr.get()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for String-Like Types |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing strings |
| // |
| // All the string-like types supported here provide the same hash expansion for |
| // the same character sequence. These types are: |
| // |
| // - `absl::Cord` |
| // - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for |
| // any allocator A) |
| // - `absl::string_view` and `std::string_view` |
| // |
| // For simplicity, we currently support only `char` strings. This support may |
| // be broadened, if necessary, but with some caution - this overload would |
| // misbehave in cases where the traits' `eq()` member isn't equivalent to `==` |
| // on the underlying character type. |
| template <typename H> |
| H AbslHashValue(H hash_state, absl::string_view str) { |
| return H::combine( |
| H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
| str.size()); |
| } |
| |
| // Support std::wstring, std::u16string and std::u32string. |
| template <typename Char, typename Alloc, typename H, |
| typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || |
| std::is_same<Char, char16_t>::value || |
| std::is_same<Char, char32_t>::value>> |
| H AbslHashValue( |
| H hash_state, |
| const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) { |
| return H::combine( |
| H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
| str.size()); |
| } |
| |
| template <typename H> |
| H HashFragmentedCord(H hash_state, const absl::Cord& c) { |
| PiecewiseCombiner combiner; |
| c.ForEachChunk([&combiner, &hash_state](absl::string_view chunk) { |
| hash_state = |
| combiner.add_buffer(std::move(hash_state), chunk.data(), chunk.size()); |
| }); |
| return H::combine(combiner.finalize(std::move(hash_state)), c.size()); |
| } |
| |
| template <typename H> |
| H AbslHashValue(H hash_state, const absl::Cord& c) { |
| absl::optional<absl::string_view> maybe_flat = c.TryFlat(); |
| if (maybe_flat.has_value()) { |
| return H::combine(std::move(hash_state), *maybe_flat); |
| } |
| return hash_internal::HashFragmentedCord(std::move(hash_state), c); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Sequence Containers |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::array |
| template <typename H, typename T, size_t N> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::array<T, N>& array) { |
| return H::combine_contiguous(std::move(hash_state), array.data(), |
| array.size()); |
| } |
| |
| // AbslHashValue for hashing std::deque |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::deque<T, Allocator>& deque) { |
| // TODO(gromer): investigate a more efficient implementation taking |
| // advantage of the chunk structure. |
| for (const auto& t : deque) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), deque.size()); |
| } |
| |
| // AbslHashValue for hashing std::forward_list |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::forward_list<T, Allocator>& list) { |
| size_t size = 0; |
| for (const T& t : list) { |
| hash_state = H::combine(std::move(hash_state), t); |
| ++size; |
| } |
| return H::combine(std::move(hash_state), size); |
| } |
| |
| // AbslHashValue for hashing std::list |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const std::list<T, Allocator>& list) { |
| for (const auto& t : list) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), list.size()); |
| } |
| |
| // AbslHashValue for hashing std::vector |
| // |
| // Do not use this for vector<bool>. It does not have a .data(), and a fallback |
| // for std::hash<> is most likely faster. |
| template <typename H, typename T, typename Allocator> |
| typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
| return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), |
| vector.size()), |
| vector.size()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Ordered Associative Containers |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::map |
| template <typename H, typename Key, typename T, typename Compare, |
| typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
| H>::type |
| AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) { |
| for (const auto& t : map) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), map.size()); |
| } |
| |
| // AbslHashValue for hashing std::multimap |
| template <typename H, typename Key, typename T, typename Compare, |
| typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
| H>::type |
| AbslHashValue(H hash_state, |
| const std::multimap<Key, T, Compare, Allocator>& map) { |
| for (const auto& t : map) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), map.size()); |
| } |
| |
| // AbslHashValue for hashing std::set |
| template <typename H, typename Key, typename Compare, typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
| H hash_state, const std::set<Key, Compare, Allocator>& set) { |
| for (const auto& t : set) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), set.size()); |
| } |
| |
| // AbslHashValue for hashing std::multiset |
| template <typename H, typename Key, typename Compare, typename Allocator> |
| typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
| H hash_state, const std::multiset<Key, Compare, Allocator>& set) { |
| for (const auto& t : set) { |
| hash_state = H::combine(std::move(hash_state), t); |
| } |
| return H::combine(std::move(hash_state), set.size()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Wrapper Types |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing absl::optional |
| template <typename H, typename T> |
| typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
| H hash_state, const absl::optional<T>& opt) { |
| if (opt) hash_state = H::combine(std::move(hash_state), *opt); |
| return H::combine(std::move(hash_state), opt.has_value()); |
| } |
| |
| // VariantVisitor |
| template <typename H> |
| struct VariantVisitor { |
| H&& hash_state; |
| template <typename T> |
| H operator()(const T& t) const { |
| return H::combine(std::move(hash_state), t); |
| } |
| }; |
| |
| // AbslHashValue for hashing absl::variant |
| template <typename H, typename... T> |
| typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type |
| AbslHashValue(H hash_state, const absl::variant<T...>& v) { |
| if (!v.valueless_by_exception()) { |
| hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v); |
| } |
| return H::combine(std::move(hash_state), v.index()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // AbslHashValue for Other Types |
| // ----------------------------------------------------------------------------- |
| |
| // AbslHashValue for hashing std::bitset is not defined, for the same reason as |
| // for vector<bool> (see std::vector above): It does not expose the raw bytes, |
| // and a fallback to std::hash<> is most likely faster. |
| |
| // ----------------------------------------------------------------------------- |
| |
| // hash_range_or_bytes() |
| // |
| // Mixes all values in the range [data, data+size) into the hash state. |
| // This overload accepts only uniquely-represented types, and hashes them by |
| // hashing the entire range of bytes. |
| template <typename H, typename T> |
| typename std::enable_if<is_uniquely_represented<T>::value, H>::type |
| hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
| const auto* bytes = reinterpret_cast<const unsigned char*>(data); |
| return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); |
| } |
| |
| // hash_range_or_bytes() |
| template <typename H, typename T> |
| typename std::enable_if<!is_uniquely_represented<T>::value, H>::type |
| hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
| for (const auto end = data + size; data < end; ++data) { |
| hash_state = H::combine(std::move(hash_state), *data); |
| } |
| return hash_state; |
| } |
| |
| #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ |
| ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 |
| #else |
| #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0 |
| #endif |
| |
| // HashSelect |
| // |
| // Type trait to select the appropriate hash implementation to use. |
| // HashSelect::type<T> will give the proper hash implementation, to be invoked |
| // as: |
| // HashSelect::type<T>::Invoke(state, value) |
| // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a |
| // valid `Invoke` function. Types that are not hashable will have a ::value of |
| // `false`. |
| struct HashSelect { |
| private: |
| struct State : HashStateBase<State> { |
| static State combine_contiguous(State hash_state, const unsigned char*, |
| size_t); |
| using State::HashStateBase::combine_contiguous; |
| }; |
| |
| struct UniquelyRepresentedProbe { |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) |
| -> absl::enable_if_t<is_uniquely_represented<T>::value, H> { |
| return hash_internal::hash_bytes(std::move(state), value); |
| } |
| }; |
| |
| struct HashValueProbe { |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
| std::is_same<H, |
| decltype(AbslHashValue(std::move(state), value))>::value, |
| H> { |
| return AbslHashValue(std::move(state), value); |
| } |
| }; |
| |
| struct LegacyHashProbe { |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
| std::is_convertible< |
| decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)), |
| size_t>::value, |
| H> { |
| return hash_internal::hash_bytes( |
| std::move(state), |
| ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value)); |
| } |
| #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| }; |
| |
| struct StdHashProbe { |
| template <typename H, typename T> |
| static auto Invoke(H state, const T& value) |
| -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> { |
| return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value)); |
| } |
| }; |
| |
| template <typename Hash, typename T> |
| struct Probe : Hash { |
| private: |
| template <typename H, typename = decltype(H::Invoke( |
| std::declval<State>(), std::declval<const T&>()))> |
| static std::true_type Test(int); |
| template <typename U> |
| static std::false_type Test(char); |
| |
| public: |
| static constexpr bool value = decltype(Test<Hash>(0))::value; |
| }; |
| |
| public: |
| // Probe each implementation in order. |
| // disjunction provides short circuiting wrt instantiation. |
| template <typename T> |
| using Apply = absl::disjunction< // |
| Probe<UniquelyRepresentedProbe, T>, // |
| Probe<HashValueProbe, T>, // |
| Probe<LegacyHashProbe, T>, // |
| Probe<StdHashProbe, T>, // |
| std::false_type>; |
| }; |
| |
| template <typename T> |
| struct is_hashable |
| : std::integral_constant<bool, HashSelect::template Apply<T>::value> {}; |
| |
| // CityHashState |
| class ABSL_DLL CityHashState |
| : public HashStateBase<CityHashState> { |
| // absl::uint128 is not an alias or a thin wrapper around the intrinsic. |
| // We use the intrinsic when available to improve performance. |
| #ifdef ABSL_HAVE_INTRINSIC_INT128 |
| using uint128 = __uint128_t; |
| #else // ABSL_HAVE_INTRINSIC_INT128 |
| using uint128 = absl::uint128; |
| #endif // ABSL_HAVE_INTRINSIC_INT128 |
| |
| static constexpr uint64_t kMul = |
| sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} |
| : uint64_t{0x9ddfea08eb382d69}; |
| |
| template <typename T> |
| using IntegralFastPath = |
| conjunction<std::is_integral<T>, is_uniquely_represented<T>>; |
| |
| public: |
| // Move only |
| CityHashState(CityHashState&&) = default; |
| CityHashState& operator=(CityHashState&&) = default; |
| |
| // CityHashState::combine_contiguous() |
| // |
| // Fundamental base case for hash recursion: mixes the given range of bytes |
| // into the hash state. |
| static CityHashState combine_contiguous(CityHashState hash_state, |
| const unsigned char* first, |
| size_t size) { |
| return CityHashState( |
| CombineContiguousImpl(hash_state.state_, first, size, |
| std::integral_constant<int, sizeof(size_t)>{})); |
| } |
| using CityHashState::HashStateBase::combine_contiguous; |
| |
| // CityHashState::hash() |
| // |
| // For performance reasons in non-opt mode, we specialize this for |
| // integral types. |
| // Otherwise we would be instantiating and calling dozens of functions for |
| // something that is just one multiplication and a couple xor's. |
| // The result should be the same as running the whole algorithm, but faster. |
| template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0> |
| static size_t hash(T value) { |
| return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value))); |
| } |
| |
| // Overload of CityHashState::hash() |
| template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0> |
| static size_t hash(const T& value) { |
| return static_cast<size_t>(combine(CityHashState{}, value).state_); |
| } |
| |
| private: |
| // Invoked only once for a given argument; that plus the fact that this is |
| // move-only ensures that there is only one non-moved-from object. |
| CityHashState() : state_(Seed()) {} |
| |
| // Workaround for MSVC bug. |
| // We make the type copyable to fix the calling convention, even though we |
| // never actually copy it. Keep it private to not affect the public API of the |
| // type. |
| CityHashState(const CityHashState&) = default; |
| |
| explicit CityHashState(uint64_t state) : state_(state) {} |
| |
| // Implementation of the base case for combine_contiguous where we actually |
| // mix the bytes into the state. |
| // Dispatch to different implementations of the combine_contiguous depending |
| // on the value of `sizeof(size_t)`. |
| static uint64_t CombineContiguousImpl(uint64_t state, |
| const unsigned char* first, size_t len, |
| std::integral_constant<int, 4> |
| /* sizeof_size_t */); |
| static uint64_t CombineContiguousImpl(uint64_t state, |
| const unsigned char* first, size_t len, |
| std::integral_constant<int, 8> |
| /* sizeof_size_t*/); |
| |
| // Slow dispatch path for calls to CombineContiguousImpl with a size argument |
| // larger than PiecewiseChunkSize(). Has the same effect as calling |
| // CombineContiguousImpl() repeatedly with the chunk stride size. |
| static uint64_t CombineLargeContiguousImpl32(uint64_t state, |
| const unsigned char* first, |
| size_t len); |
| static uint64_t CombineLargeContiguousImpl64(uint64_t state, |
| const unsigned char* first, |
| size_t len); |
| |
| // Reads 9 to 16 bytes from p. |
| // The first 8 bytes are in .first, the rest (zero padded) bytes are in |
| // .second. |
| static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p, |
| size_t len) { |
| uint64_t high = little_endian::Load64(p + len - 8); |
| return {little_endian::Load64(p), high >> (128 - len * 8)}; |
| } |
| |
| // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t. |
| static uint64_t Read4To8(const unsigned char* p, size_t len) { |
| return (static_cast<uint64_t>(little_endian::Load32(p + len - 4)) |
| << (len - 4) * 8) | |
| little_endian::Load32(p); |
| } |
| |
| // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t. |
| static uint32_t Read1To3(const unsigned char* p, size_t len) { |
| return static_cast<uint32_t>((p[0]) | // |
| (p[len / 2] << (len / 2 * 8)) | // |
| (p[len - 1] << ((len - 1) * 8))); |
| } |
| |
| ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) { |
| using MultType = |
| absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>; |
| // We do the addition in 64-bit space to make sure the 128-bit |
| // multiplication is fast. If we were to do it as MultType the compiler has |
| // to assume that the high word is non-zero and needs to perform 2 |
| // multiplications instead of one. |
| MultType m = state + v; |
| m *= kMul; |
| return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2))); |
| } |
| |
| // Seed() |
| // |
| // A non-deterministic seed. |
| // |
| // The current purpose of this seed is to generate non-deterministic results |
| // and prevent having users depend on the particular hash values. |
| // It is not meant as a security feature right now, but it leaves the door |
| // open to upgrade it to a true per-process random seed. A true random seed |
| // costs more and we don't need to pay for that right now. |
| // |
| // On platforms with ASLR, we take advantage of it to make a per-process |
| // random value. |
| // See https://en.wikipedia.org/wiki/Address_space_layout_randomization |
| // |
| // On other platforms this is still going to be non-deterministic but most |
| // probably per-build and not per-process. |
| ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() { |
| return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed)); |
| } |
| static const void* const kSeed; |
| |
| uint64_t state_; |
| }; |
| |
| // CityHashState::CombineContiguousImpl() |
| inline uint64_t CityHashState::CombineContiguousImpl( |
| uint64_t state, const unsigned char* first, size_t len, |
| std::integral_constant<int, 4> /* sizeof_size_t */) { |
| // For large values we use CityHash, for small ones we just use a |
| // multiplicative hash. |
| uint64_t v; |
| if (len > 8) { |
| if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
| return CombineLargeContiguousImpl32(state, first, len); |
| } |
| v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len); |
| } else if (len >= 4) { |
| v = Read4To8(first, len); |
| } else if (len > 0) { |
| v = Read1To3(first, len); |
| } else { |
| // Empty ranges have no effect. |
| return state; |
| } |
| return Mix(state, v); |
| } |
| |
| // Overload of CityHashState::CombineContiguousImpl() |
| inline uint64_t CityHashState::CombineContiguousImpl( |
| uint64_t state, const unsigned char* first, size_t len, |
| std::integral_constant<int, 8> /* sizeof_size_t */) { |
| // For large values we use CityHash, for small ones we just use a |
| // multiplicative hash. |
| uint64_t v; |
| if (len > 16) { |
| if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
| return CombineLargeContiguousImpl64(state, first, len); |
| } |
| v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len); |
| } else if (len > 8) { |
| auto p = Read9To16(first, len); |
| state = Mix(state, p.first); |
| v = p.second; |
| } else if (len >= 4) { |
| v = Read4To8(first, len); |
| } else if (len > 0) { |
| v = Read1To3(first, len); |
| } else { |
| // Empty ranges have no effect. |
| return state; |
| } |
| return Mix(state, v); |
| } |
| |
| struct AggregateBarrier {}; |
| |
| // HashImpl |
| |
| // Add a private base class to make sure this type is not an aggregate. |
| // Aggregates can be aggregate initialized even if the default constructor is |
| // deleted. |
| struct PoisonedHash : private AggregateBarrier { |
| PoisonedHash() = delete; |
| PoisonedHash(const PoisonedHash&) = delete; |
| PoisonedHash& operator=(const PoisonedHash&) = delete; |
| }; |
| |
| template <typename T> |
| struct HashImpl { |
| size_t operator()(const T& value) const { return CityHashState::hash(value); } |
| }; |
| |
| template <typename T> |
| struct Hash |
| : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {}; |
| |
| template <typename H> |
| template <typename T, typename... Ts> |
| H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) { |
| return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke( |
| std::move(state), value), |
| values...); |
| } |
| |
| // HashStateBase::combine_contiguous() |
| template <typename H> |
| template <typename T> |
| H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) { |
| return hash_internal::hash_range_or_bytes(std::move(state), data, size); |
| } |
| |
| // HashStateBase::PiecewiseCombiner::add_buffer() |
| template <typename H> |
| H PiecewiseCombiner::add_buffer(H state, const unsigned char* data, |
| size_t size) { |
| if (position_ + size < PiecewiseChunkSize()) { |
| // This partial chunk does not fill our existing buffer |
| memcpy(buf_ + position_, data, size); |
| position_ += size; |
| return state; |
| } |
| |
| // If the buffer is partially filled we need to complete the buffer |
| // and hash it. |
| if (position_ != 0) { |
| const size_t bytes_needed = PiecewiseChunkSize() - position_; |
| memcpy(buf_ + position_, data, bytes_needed); |
| state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize()); |
| data += bytes_needed; |
| size -= bytes_needed; |
| } |
| |
| // Hash whatever chunks we can without copying |
| while (size >= PiecewiseChunkSize()) { |
| state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize()); |
| data += PiecewiseChunkSize(); |
| size -= PiecewiseChunkSize(); |
| } |
| // Fill the buffer with the remainder |
| memcpy(buf_, data, size); |
| position_ = size; |
| return state; |
| } |
| |
| // HashStateBase::PiecewiseCombiner::finalize() |
| template <typename H> |
| H PiecewiseCombiner::finalize(H state) { |
| // Hash the remainder left in the buffer, which may be empty |
| return H::combine_contiguous(std::move(state), buf_, position_); |
| } |
| |
| } // namespace hash_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_HASH_INTERNAL_HASH_H_ |