| // Copyright 2019 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // |
| // ----------------------------------------------------------------------------- |
| // File: inlined_vector.h |
| // ----------------------------------------------------------------------------- |
| // |
| // This header file contains the declaration and definition of an "inlined |
| // vector" which behaves in an equivalent fashion to a `std::vector`, except |
| // that storage for small sequences of the vector are provided inline without |
| // requiring any heap allocation. |
| // |
| // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of |
| // its template parameters. Instances where `size() <= N` hold contained |
| // elements in inline space. Typically `N` is very small so that sequences that |
| // are expected to be short do not require allocations. |
| // |
| // An `absl::InlinedVector` does not usually require a specific allocator. If |
| // the inlined vector grows beyond its initial constraints, it will need to |
| // allocate (as any normal `std::vector` would). This is usually performed with |
| // the default allocator (defined as `std::allocator<T>`). Optionally, a custom |
| // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`. |
| |
| #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_ |
| #define ABSL_CONTAINER_INLINED_VECTOR_H_ |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <cstring> |
| #include <initializer_list> |
| #include <iterator> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/algorithm/algorithm.h" |
| #include "absl/base/internal/throw_delegate.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/optimization.h" |
| #include "absl/base/port.h" |
| #include "absl/container/internal/inlined_vector.h" |
| #include "absl/memory/memory.h" |
| #include "absl/meta/type_traits.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| // ----------------------------------------------------------------------------- |
| // InlinedVector |
| // ----------------------------------------------------------------------------- |
| // |
| // An `absl::InlinedVector` is designed to be a drop-in replacement for |
| // `std::vector` for use cases where the vector's size is sufficiently small |
| // that it can be inlined. If the inlined vector does grow beyond its estimated |
| // capacity, it will trigger an initial allocation on the heap, and will behave |
| // as a `std::vector`. The API of the `absl::InlinedVector` within this file is |
| // designed to cover the same API footprint as covered by `std::vector`. |
| template <typename T, size_t N, typename A = std::allocator<T>> |
| class InlinedVector { |
| static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity."); |
| |
| using Storage = inlined_vector_internal::Storage<T, N, A>; |
| |
| template <typename TheA> |
| using AllocatorTraits = inlined_vector_internal::AllocatorTraits<TheA>; |
| template <typename TheA> |
| using MoveIterator = inlined_vector_internal::MoveIterator<TheA>; |
| template <typename TheA> |
| using IsMoveAssignOk = inlined_vector_internal::IsMoveAssignOk<TheA>; |
| |
| template <typename TheA, typename Iterator> |
| using IteratorValueAdapter = |
| inlined_vector_internal::IteratorValueAdapter<TheA, Iterator>; |
| template <typename TheA> |
| using CopyValueAdapter = inlined_vector_internal::CopyValueAdapter<TheA>; |
| template <typename TheA> |
| using DefaultValueAdapter = |
| inlined_vector_internal::DefaultValueAdapter<TheA>; |
| |
| template <typename Iterator> |
| using EnableIfAtLeastForwardIterator = absl::enable_if_t< |
| inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>; |
| template <typename Iterator> |
| using DisableIfAtLeastForwardIterator = absl::enable_if_t< |
| !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>; |
| |
| using MemcpyPolicy = typename Storage::MemcpyPolicy; |
| using ElementwiseAssignPolicy = typename Storage::ElementwiseAssignPolicy; |
| using ElementwiseConstructPolicy = |
| typename Storage::ElementwiseConstructPolicy; |
| using MoveAssignmentPolicy = typename Storage::MoveAssignmentPolicy; |
| |
| public: |
| using allocator_type = A; |
| using value_type = inlined_vector_internal::ValueType<A>; |
| using pointer = inlined_vector_internal::Pointer<A>; |
| using const_pointer = inlined_vector_internal::ConstPointer<A>; |
| using size_type = inlined_vector_internal::SizeType<A>; |
| using difference_type = inlined_vector_internal::DifferenceType<A>; |
| using reference = inlined_vector_internal::Reference<A>; |
| using const_reference = inlined_vector_internal::ConstReference<A>; |
| using iterator = inlined_vector_internal::Iterator<A>; |
| using const_iterator = inlined_vector_internal::ConstIterator<A>; |
| using reverse_iterator = inlined_vector_internal::ReverseIterator<A>; |
| using const_reverse_iterator = |
| inlined_vector_internal::ConstReverseIterator<A>; |
| |
| // --------------------------------------------------------------------------- |
| // InlinedVector Constructors and Destructor |
| // --------------------------------------------------------------------------- |
| |
| // Creates an empty inlined vector with a value-initialized allocator. |
| InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {} |
| |
| // Creates an empty inlined vector with a copy of `allocator`. |
| explicit InlinedVector(const allocator_type& allocator) noexcept |
| : storage_(allocator) {} |
| |
| // Creates an inlined vector with `n` copies of `value_type()`. |
| explicit InlinedVector(size_type n, |
| const allocator_type& allocator = allocator_type()) |
| : storage_(allocator) { |
| storage_.Initialize(DefaultValueAdapter<A>(), n); |
| } |
| |
| // Creates an inlined vector with `n` copies of `v`. |
| InlinedVector(size_type n, const_reference v, |
| const allocator_type& allocator = allocator_type()) |
| : storage_(allocator) { |
| storage_.Initialize(CopyValueAdapter<A>(std::addressof(v)), n); |
| } |
| |
| // Creates an inlined vector with copies of the elements of `list`. |
| InlinedVector(std::initializer_list<value_type> list, |
| const allocator_type& allocator = allocator_type()) |
| : InlinedVector(list.begin(), list.end(), allocator) {} |
| |
| // Creates an inlined vector with elements constructed from the provided |
| // forward iterator range [`first`, `last`). |
| // |
| // NOTE: the `enable_if` prevents ambiguous interpretation between a call to |
| // this constructor with two integral arguments and a call to the above |
| // `InlinedVector(size_type, const_reference)` constructor. |
| template <typename ForwardIterator, |
| EnableIfAtLeastForwardIterator<ForwardIterator> = 0> |
| InlinedVector(ForwardIterator first, ForwardIterator last, |
| const allocator_type& allocator = allocator_type()) |
| : storage_(allocator) { |
| storage_.Initialize(IteratorValueAdapter<A, ForwardIterator>(first), |
| static_cast<size_t>(std::distance(first, last))); |
| } |
| |
| // Creates an inlined vector with elements constructed from the provided input |
| // iterator range [`first`, `last`). |
| template <typename InputIterator, |
| DisableIfAtLeastForwardIterator<InputIterator> = 0> |
| InlinedVector(InputIterator first, InputIterator last, |
| const allocator_type& allocator = allocator_type()) |
| : storage_(allocator) { |
| std::copy(first, last, std::back_inserter(*this)); |
| } |
| |
| // Creates an inlined vector by copying the contents of `other` using |
| // `other`'s allocator. |
| InlinedVector(const InlinedVector& other) |
| : InlinedVector(other, other.storage_.GetAllocator()) {} |
| |
| // Creates an inlined vector by copying the contents of `other` using the |
| // provided `allocator`. |
| InlinedVector(const InlinedVector& other, const allocator_type& allocator) |
| : storage_(allocator) { |
| // Fast path: if the other vector is empty, there's nothing for us to do. |
| if (other.empty()) { |
| return; |
| } |
| |
| // Fast path: if the value type is trivially copy constructible, we know the |
| // allocator doesn't do anything fancy, and there is nothing on the heap |
| // then we know it is legal for us to simply memcpy the other vector's |
| // inlined bytes to form our copy of its elements. |
| if (absl::is_trivially_copy_constructible<value_type>::value && |
| std::is_same<A, std::allocator<value_type>>::value && |
| !other.storage_.GetIsAllocated()) { |
| storage_.MemcpyFrom(other.storage_); |
| return; |
| } |
| |
| storage_.InitFrom(other.storage_); |
| } |
| |
| // Creates an inlined vector by moving in the contents of `other` without |
| // allocating. If `other` contains allocated memory, the newly-created inlined |
| // vector will take ownership of that memory. However, if `other` does not |
| // contain allocated memory, the newly-created inlined vector will perform |
| // element-wise move construction of the contents of `other`. |
| // |
| // NOTE: since no allocation is performed for the inlined vector in either |
| // case, the `noexcept(...)` specification depends on whether moving the |
| // underlying objects can throw. It is assumed assumed that... |
| // a) move constructors should only throw due to allocation failure. |
| // b) if `value_type`'s move constructor allocates, it uses the same |
| // allocation function as the inlined vector's allocator. |
| // Thus, the move constructor is non-throwing if the allocator is non-throwing |
| // or `value_type`'s move constructor is specified as `noexcept`. |
| InlinedVector(InlinedVector&& other) noexcept( |
| absl::allocator_is_nothrow<allocator_type>::value || |
| std::is_nothrow_move_constructible<value_type>::value) |
| : storage_(other.storage_.GetAllocator()) { |
| // Fast path: if the value type can be trivially relocated (i.e. moved from |
| // and destroyed), and we know the allocator doesn't do anything fancy, then |
| // it's safe for us to simply adopt the contents of the storage for `other` |
| // and remove its own reference to them. It's as if we had individually |
| // move-constructed each value and then destroyed the original. |
| if (absl::is_trivially_relocatable<value_type>::value && |
| std::is_same<A, std::allocator<value_type>>::value) { |
| storage_.MemcpyFrom(other.storage_); |
| other.storage_.SetInlinedSize(0); |
| return; |
| } |
| |
| // Fast path: if the other vector is on the heap, we can simply take over |
| // its allocation. |
| if (other.storage_.GetIsAllocated()) { |
| storage_.SetAllocation({other.storage_.GetAllocatedData(), |
| other.storage_.GetAllocatedCapacity()}); |
| storage_.SetAllocatedSize(other.storage_.GetSize()); |
| |
| other.storage_.SetInlinedSize(0); |
| return; |
| } |
| |
| // Otherwise we must move each element individually. |
| IteratorValueAdapter<A, MoveIterator<A>> other_values( |
| MoveIterator<A>(other.storage_.GetInlinedData())); |
| |
| inlined_vector_internal::ConstructElements<A>( |
| storage_.GetAllocator(), storage_.GetInlinedData(), other_values, |
| other.storage_.GetSize()); |
| |
| storage_.SetInlinedSize(other.storage_.GetSize()); |
| } |
| |
| // Creates an inlined vector by moving in the contents of `other` with a copy |
| // of `allocator`. |
| // |
| // NOTE: if `other`'s allocator is not equal to `allocator`, even if `other` |
| // contains allocated memory, this move constructor will still allocate. Since |
| // allocation is performed, this constructor can only be `noexcept` if the |
| // specified allocator is also `noexcept`. |
| InlinedVector( |
| InlinedVector&& other, |
| const allocator_type& |
| allocator) noexcept(absl::allocator_is_nothrow<allocator_type>::value) |
| : storage_(allocator) { |
| // Fast path: if the value type can be trivially relocated (i.e. moved from |
| // and destroyed), and we know the allocator doesn't do anything fancy, then |
| // it's safe for us to simply adopt the contents of the storage for `other` |
| // and remove its own reference to them. It's as if we had individually |
| // move-constructed each value and then destroyed the original. |
| if (absl::is_trivially_relocatable<value_type>::value && |
| std::is_same<A, std::allocator<value_type>>::value) { |
| storage_.MemcpyFrom(other.storage_); |
| other.storage_.SetInlinedSize(0); |
| return; |
| } |
| |
| // Fast path: if the other vector is on the heap and shared the same |
| // allocator, we can simply take over its allocation. |
| if ((storage_.GetAllocator() == other.storage_.GetAllocator()) && |
| other.storage_.GetIsAllocated()) { |
| storage_.SetAllocation({other.storage_.GetAllocatedData(), |
| other.storage_.GetAllocatedCapacity()}); |
| storage_.SetAllocatedSize(other.storage_.GetSize()); |
| |
| other.storage_.SetInlinedSize(0); |
| return; |
| } |
| |
| // Otherwise we must move each element individually. |
| storage_.Initialize( |
| IteratorValueAdapter<A, MoveIterator<A>>(MoveIterator<A>(other.data())), |
| other.size()); |
| } |
| |
| ~InlinedVector() {} |
| |
| // --------------------------------------------------------------------------- |
| // InlinedVector Member Accessors |
| // --------------------------------------------------------------------------- |
| |
| // `InlinedVector::empty()` |
| // |
| // Returns whether the inlined vector contains no elements. |
| bool empty() const noexcept { return !size(); } |
| |
| // `InlinedVector::size()` |
| // |
| // Returns the number of elements in the inlined vector. |
| size_type size() const noexcept { return storage_.GetSize(); } |
| |
| // `InlinedVector::max_size()` |
| // |
| // Returns the maximum number of elements the inlined vector can hold. |
| size_type max_size() const noexcept { |
| // One bit of the size storage is used to indicate whether the inlined |
| // vector contains allocated memory. As a result, the maximum size that the |
| // inlined vector can express is the minimum of the limit of how many |
| // objects we can allocate and std::numeric_limits<size_type>::max() / 2. |
| return (std::min)(AllocatorTraits<A>::max_size(storage_.GetAllocator()), |
| (std::numeric_limits<size_type>::max)() / 2); |
| } |
| |
| // `InlinedVector::capacity()` |
| // |
| // Returns the number of elements that could be stored in the inlined vector |
| // without requiring a reallocation. |
| // |
| // NOTE: for most inlined vectors, `capacity()` should be equal to the |
| // template parameter `N`. For inlined vectors which exceed this capacity, |
| // they will no longer be inlined and `capacity()` will equal the capactity of |
| // the allocated memory. |
| size_type capacity() const noexcept { |
| return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity() |
| : storage_.GetInlinedCapacity(); |
| } |
| |
| // `InlinedVector::data()` |
| // |
| // Returns a `pointer` to the elements of the inlined vector. This pointer |
| // can be used to access and modify the contained elements. |
| // |
| // NOTE: only elements within [`data()`, `data() + size()`) are valid. |
| pointer data() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return storage_.GetIsAllocated() ? storage_.GetAllocatedData() |
| : storage_.GetInlinedData(); |
| } |
| |
| // Overload of `InlinedVector::data()` that returns a `const_pointer` to the |
| // elements of the inlined vector. This pointer can be used to access but not |
| // modify the contained elements. |
| // |
| // NOTE: only elements within [`data()`, `data() + size()`) are valid. |
| const_pointer data() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return storage_.GetIsAllocated() ? storage_.GetAllocatedData() |
| : storage_.GetInlinedData(); |
| } |
| |
| // `InlinedVector::operator[](...)` |
| // |
| // Returns a `reference` to the `i`th element of the inlined vector. |
| reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(i < size()); |
| return data()[i]; |
| } |
| |
| // Overload of `InlinedVector::operator[](...)` that returns a |
| // `const_reference` to the `i`th element of the inlined vector. |
| const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(i < size()); |
| return data()[i]; |
| } |
| |
| // `InlinedVector::at(...)` |
| // |
| // Returns a `reference` to the `i`th element of the inlined vector. |
| // |
| // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`, |
| // in both debug and non-debug builds, `std::out_of_range` will be thrown. |
| reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| if (ABSL_PREDICT_FALSE(i >= size())) { |
| base_internal::ThrowStdOutOfRange( |
| "`InlinedVector::at(size_type)` failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // Overload of `InlinedVector::at(...)` that returns a `const_reference` to |
| // the `i`th element of the inlined vector. |
| // |
| // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`, |
| // in both debug and non-debug builds, `std::out_of_range` will be thrown. |
| const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| if (ABSL_PREDICT_FALSE(i >= size())) { |
| base_internal::ThrowStdOutOfRange( |
| "`InlinedVector::at(size_type) const` failed bounds check"); |
| } |
| return data()[i]; |
| } |
| |
| // `InlinedVector::front()` |
| // |
| // Returns a `reference` to the first element of the inlined vector. |
| reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(!empty()); |
| return data()[0]; |
| } |
| |
| // Overload of `InlinedVector::front()` that returns a `const_reference` to |
| // the first element of the inlined vector. |
| const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(!empty()); |
| return data()[0]; |
| } |
| |
| // `InlinedVector::back()` |
| // |
| // Returns a `reference` to the last element of the inlined vector. |
| reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(!empty()); |
| return data()[size() - 1]; |
| } |
| |
| // Overload of `InlinedVector::back()` that returns a `const_reference` to the |
| // last element of the inlined vector. |
| const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(!empty()); |
| return data()[size() - 1]; |
| } |
| |
| // `InlinedVector::begin()` |
| // |
| // Returns an `iterator` to the beginning of the inlined vector. |
| iterator begin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); } |
| |
| // Overload of `InlinedVector::begin()` that returns a `const_iterator` to |
| // the beginning of the inlined vector. |
| const_iterator begin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return data(); |
| } |
| |
| // `InlinedVector::end()` |
| // |
| // Returns an `iterator` to the end of the inlined vector. |
| iterator end() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return data() + size(); |
| } |
| |
| // Overload of `InlinedVector::end()` that returns a `const_iterator` to the |
| // end of the inlined vector. |
| const_iterator end() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return data() + size(); |
| } |
| |
| // `InlinedVector::cbegin()` |
| // |
| // Returns a `const_iterator` to the beginning of the inlined vector. |
| const_iterator cbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return begin(); |
| } |
| |
| // `InlinedVector::cend()` |
| // |
| // Returns a `const_iterator` to the end of the inlined vector. |
| const_iterator cend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return end(); |
| } |
| |
| // `InlinedVector::rbegin()` |
| // |
| // Returns a `reverse_iterator` from the end of the inlined vector. |
| reverse_iterator rbegin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return reverse_iterator(end()); |
| } |
| |
| // Overload of `InlinedVector::rbegin()` that returns a |
| // `const_reverse_iterator` from the end of the inlined vector. |
| const_reverse_iterator rbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return const_reverse_iterator(end()); |
| } |
| |
| // `InlinedVector::rend()` |
| // |
| // Returns a `reverse_iterator` from the beginning of the inlined vector. |
| reverse_iterator rend() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return reverse_iterator(begin()); |
| } |
| |
| // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator` |
| // from the beginning of the inlined vector. |
| const_reverse_iterator rend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return const_reverse_iterator(begin()); |
| } |
| |
| // `InlinedVector::crbegin()` |
| // |
| // Returns a `const_reverse_iterator` from the end of the inlined vector. |
| const_reverse_iterator crbegin() const noexcept |
| ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return rbegin(); |
| } |
| |
| // `InlinedVector::crend()` |
| // |
| // Returns a `const_reverse_iterator` from the beginning of the inlined |
| // vector. |
| const_reverse_iterator crend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return rend(); |
| } |
| |
| // `InlinedVector::get_allocator()` |
| // |
| // Returns a copy of the inlined vector's allocator. |
| allocator_type get_allocator() const { return storage_.GetAllocator(); } |
| |
| // --------------------------------------------------------------------------- |
| // InlinedVector Member Mutators |
| // --------------------------------------------------------------------------- |
| |
| // `InlinedVector::operator=(...)` |
| // |
| // Replaces the elements of the inlined vector with copies of the elements of |
| // `list`. |
| InlinedVector& operator=(std::initializer_list<value_type> list) { |
| assign(list.begin(), list.end()); |
| |
| return *this; |
| } |
| |
| // Overload of `InlinedVector::operator=(...)` that replaces the elements of |
| // the inlined vector with copies of the elements of `other`. |
| InlinedVector& operator=(const InlinedVector& other) { |
| if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { |
| const_pointer other_data = other.data(); |
| assign(other_data, other_data + other.size()); |
| } |
| |
| return *this; |
| } |
| |
| // Overload of `InlinedVector::operator=(...)` that moves the elements of |
| // `other` into the inlined vector. |
| // |
| // NOTE: as a result of calling this overload, `other` is left in a valid but |
| // unspecified state. |
| InlinedVector& operator=(InlinedVector&& other) { |
| if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { |
| MoveAssignment(MoveAssignmentPolicy{}, std::move(other)); |
| } |
| |
| return *this; |
| } |
| |
| // `InlinedVector::assign(...)` |
| // |
| // Replaces the contents of the inlined vector with `n` copies of `v`. |
| void assign(size_type n, const_reference v) { |
| storage_.Assign(CopyValueAdapter<A>(std::addressof(v)), n); |
| } |
| |
| // Overload of `InlinedVector::assign(...)` that replaces the contents of the |
| // inlined vector with copies of the elements of `list`. |
| void assign(std::initializer_list<value_type> list) { |
| assign(list.begin(), list.end()); |
| } |
| |
| // Overload of `InlinedVector::assign(...)` to replace the contents of the |
| // inlined vector with the range [`first`, `last`). |
| // |
| // NOTE: this overload is for iterators that are "forward" category or better. |
| template <typename ForwardIterator, |
| EnableIfAtLeastForwardIterator<ForwardIterator> = 0> |
| void assign(ForwardIterator first, ForwardIterator last) { |
| storage_.Assign(IteratorValueAdapter<A, ForwardIterator>(first), |
| static_cast<size_t>(std::distance(first, last))); |
| } |
| |
| // Overload of `InlinedVector::assign(...)` to replace the contents of the |
| // inlined vector with the range [`first`, `last`). |
| // |
| // NOTE: this overload is for iterators that are "input" category. |
| template <typename InputIterator, |
| DisableIfAtLeastForwardIterator<InputIterator> = 0> |
| void assign(InputIterator first, InputIterator last) { |
| size_type i = 0; |
| for (; i < size() && first != last; ++i, static_cast<void>(++first)) { |
| data()[i] = *first; |
| } |
| |
| erase(data() + i, data() + size()); |
| std::copy(first, last, std::back_inserter(*this)); |
| } |
| |
| // `InlinedVector::resize(...)` |
| // |
| // Resizes the inlined vector to contain `n` elements. |
| // |
| // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n` |
| // is larger than `size()`, new elements are value-initialized. |
| void resize(size_type n) { |
| ABSL_HARDENING_ASSERT(n <= max_size()); |
| storage_.Resize(DefaultValueAdapter<A>(), n); |
| } |
| |
| // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to |
| // contain `n` elements. |
| // |
| // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n` |
| // is larger than `size()`, new elements are copied-constructed from `v`. |
| void resize(size_type n, const_reference v) { |
| ABSL_HARDENING_ASSERT(n <= max_size()); |
| storage_.Resize(CopyValueAdapter<A>(std::addressof(v)), n); |
| } |
| |
| // `InlinedVector::insert(...)` |
| // |
| // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly |
| // inserted element. |
| iterator insert(const_iterator pos, |
| const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return emplace(pos, v); |
| } |
| |
| // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using |
| // move semantics, returning an `iterator` to the newly inserted element. |
| iterator insert(const_iterator pos, |
| value_type&& v) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return emplace(pos, std::move(v)); |
| } |
| |
| // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies |
| // of `v` starting at `pos`, returning an `iterator` pointing to the first of |
| // the newly inserted elements. |
| iterator insert(const_iterator pos, size_type n, |
| const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(pos >= begin()); |
| ABSL_HARDENING_ASSERT(pos <= end()); |
| |
| if (ABSL_PREDICT_TRUE(n != 0)) { |
| value_type dealias = v; |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2 |
| // It appears that GCC thinks that since `pos` is a const pointer and may |
| // point to uninitialized memory at this point, a warning should be |
| // issued. But `pos` is actually only used to compute an array index to |
| // write to. |
| #if !defined(__clang__) && defined(__GNUC__) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" |
| #endif |
| return storage_.Insert(pos, CopyValueAdapter<A>(std::addressof(dealias)), |
| n); |
| #if !defined(__clang__) && defined(__GNUC__) |
| #pragma GCC diagnostic pop |
| #endif |
| } else { |
| return const_cast<iterator>(pos); |
| } |
| } |
| |
| // Overload of `InlinedVector::insert(...)` that inserts copies of the |
| // elements of `list` starting at `pos`, returning an `iterator` pointing to |
| // the first of the newly inserted elements. |
| iterator insert(const_iterator pos, std::initializer_list<value_type> list) |
| ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return insert(pos, list.begin(), list.end()); |
| } |
| |
| // Overload of `InlinedVector::insert(...)` that inserts the range [`first`, |
| // `last`) starting at `pos`, returning an `iterator` pointing to the first |
| // of the newly inserted elements. |
| // |
| // NOTE: this overload is for iterators that are "forward" category or better. |
| template <typename ForwardIterator, |
| EnableIfAtLeastForwardIterator<ForwardIterator> = 0> |
| iterator insert(const_iterator pos, ForwardIterator first, |
| ForwardIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(pos >= begin()); |
| ABSL_HARDENING_ASSERT(pos <= end()); |
| |
| if (ABSL_PREDICT_TRUE(first != last)) { |
| return storage_.Insert( |
| pos, IteratorValueAdapter<A, ForwardIterator>(first), |
| static_cast<size_type>(std::distance(first, last))); |
| } else { |
| return const_cast<iterator>(pos); |
| } |
| } |
| |
| // Overload of `InlinedVector::insert(...)` that inserts the range [`first`, |
| // `last`) starting at `pos`, returning an `iterator` pointing to the first |
| // of the newly inserted elements. |
| // |
| // NOTE: this overload is for iterators that are "input" category. |
| template <typename InputIterator, |
| DisableIfAtLeastForwardIterator<InputIterator> = 0> |
| iterator insert(const_iterator pos, InputIterator first, |
| InputIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(pos >= begin()); |
| ABSL_HARDENING_ASSERT(pos <= end()); |
| |
| size_type index = static_cast<size_type>(std::distance(cbegin(), pos)); |
| for (size_type i = index; first != last; ++i, static_cast<void>(++first)) { |
| insert(data() + i, *first); |
| } |
| |
| return iterator(data() + index); |
| } |
| |
| // `InlinedVector::emplace(...)` |
| // |
| // Constructs and inserts an element using `args...` in the inlined vector at |
| // `pos`, returning an `iterator` pointing to the newly emplaced element. |
| template <typename... Args> |
| iterator emplace(const_iterator pos, |
| Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(pos >= begin()); |
| ABSL_HARDENING_ASSERT(pos <= end()); |
| |
| value_type dealias(std::forward<Args>(args)...); |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2 |
| // It appears that GCC thinks that since `pos` is a const pointer and may |
| // point to uninitialized memory at this point, a warning should be |
| // issued. But `pos` is actually only used to compute an array index to |
| // write to. |
| #if !defined(__clang__) && defined(__GNUC__) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" |
| #endif |
| return storage_.Insert(pos, |
| IteratorValueAdapter<A, MoveIterator<A>>( |
| MoveIterator<A>(std::addressof(dealias))), |
| 1); |
| #if !defined(__clang__) && defined(__GNUC__) |
| #pragma GCC diagnostic pop |
| #endif |
| } |
| |
| // `InlinedVector::emplace_back(...)` |
| // |
| // Constructs and inserts an element using `args...` in the inlined vector at |
| // `end()`, returning a `reference` to the newly emplaced element. |
| template <typename... Args> |
| reference emplace_back(Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| return storage_.EmplaceBack(std::forward<Args>(args)...); |
| } |
| |
| // `InlinedVector::push_back(...)` |
| // |
| // Inserts a copy of `v` in the inlined vector at `end()`. |
| void push_back(const_reference v) { static_cast<void>(emplace_back(v)); } |
| |
| // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()` |
| // using move semantics. |
| void push_back(value_type&& v) { |
| static_cast<void>(emplace_back(std::move(v))); |
| } |
| |
| // `InlinedVector::pop_back()` |
| // |
| // Destroys the element at `back()`, reducing the size by `1`. |
| void pop_back() noexcept { |
| ABSL_HARDENING_ASSERT(!empty()); |
| |
| AllocatorTraits<A>::destroy(storage_.GetAllocator(), data() + (size() - 1)); |
| storage_.SubtractSize(1); |
| } |
| |
| // `InlinedVector::erase(...)` |
| // |
| // Erases the element at `pos`, returning an `iterator` pointing to where the |
| // erased element was located. |
| // |
| // NOTE: may return `end()`, which is not dereferenceable. |
| iterator erase(const_iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(pos >= begin()); |
| ABSL_HARDENING_ASSERT(pos < end()); |
| |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2 |
| // It appears that GCC thinks that since `pos` is a const pointer and may |
| // point to uninitialized memory at this point, a warning should be |
| // issued. But `pos` is actually only used to compute an array index to |
| // write to. |
| #if !defined(__clang__) && defined(__GNUC__) |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" |
| #pragma GCC diagnostic ignored "-Wuninitialized" |
| #endif |
| return storage_.Erase(pos, pos + 1); |
| #if !defined(__clang__) && defined(__GNUC__) |
| #pragma GCC diagnostic pop |
| #endif |
| } |
| |
| // Overload of `InlinedVector::erase(...)` that erases every element in the |
| // range [`from`, `to`), returning an `iterator` pointing to where the first |
| // erased element was located. |
| // |
| // NOTE: may return `end()`, which is not dereferenceable. |
| iterator erase(const_iterator from, |
| const_iterator to) ABSL_ATTRIBUTE_LIFETIME_BOUND { |
| ABSL_HARDENING_ASSERT(from >= begin()); |
| ABSL_HARDENING_ASSERT(from <= to); |
| ABSL_HARDENING_ASSERT(to <= end()); |
| |
| if (ABSL_PREDICT_TRUE(from != to)) { |
| return storage_.Erase(from, to); |
| } else { |
| return const_cast<iterator>(from); |
| } |
| } |
| |
| // `InlinedVector::clear()` |
| // |
| // Destroys all elements in the inlined vector, setting the size to `0` and |
| // deallocating any held memory. |
| void clear() noexcept { |
| inlined_vector_internal::DestroyAdapter<A>::DestroyElements( |
| storage_.GetAllocator(), data(), size()); |
| storage_.DeallocateIfAllocated(); |
| |
| storage_.SetInlinedSize(0); |
| } |
| |
| // `InlinedVector::reserve(...)` |
| // |
| // Ensures that there is enough room for at least `n` elements. |
| void reserve(size_type n) { storage_.Reserve(n); } |
| |
| // `InlinedVector::shrink_to_fit()` |
| // |
| // Attempts to reduce memory usage by moving elements to (or keeping elements |
| // in) the smallest available buffer sufficient for containing `size()` |
| // elements. |
| // |
| // If `size()` is sufficiently small, the elements will be moved into (or kept |
| // in) the inlined space. |
| void shrink_to_fit() { |
| if (storage_.GetIsAllocated()) { |
| storage_.ShrinkToFit(); |
| } |
| } |
| |
| // `InlinedVector::swap(...)` |
| // |
| // Swaps the contents of the inlined vector with `other`. |
| void swap(InlinedVector& other) { |
| if (ABSL_PREDICT_TRUE(this != std::addressof(other))) { |
| storage_.Swap(std::addressof(other.storage_)); |
| } |
| } |
| |
| private: |
| template <typename H, typename TheT, size_t TheN, typename TheA> |
| friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a); |
| |
| void MoveAssignment(MemcpyPolicy, InlinedVector&& other) { |
| // Assumption check: we shouldn't be told to use memcpy to implement move |
| // assignment unless we have trivially destructible elements and an |
| // allocator that does nothing fancy. |
| static_assert(absl::is_trivially_destructible<value_type>::value, ""); |
| static_assert(std::is_same<A, std::allocator<value_type>>::value, ""); |
| |
| // Throw away our existing heap allocation, if any. There is no need to |
| // destroy the existing elements one by one because we know they are |
| // trivially destructible. |
| storage_.DeallocateIfAllocated(); |
| |
| // Adopt the other vector's inline elements or heap allocation. |
| storage_.MemcpyFrom(other.storage_); |
| other.storage_.SetInlinedSize(0); |
| } |
| |
| // Destroy our existing elements, if any, and adopt the heap-allocated |
| // elements of the other vector. |
| // |
| // REQUIRES: other.storage_.GetIsAllocated() |
| void DestroyExistingAndAdopt(InlinedVector&& other) { |
| ABSL_HARDENING_ASSERT(other.storage_.GetIsAllocated()); |
| |
| inlined_vector_internal::DestroyAdapter<A>::DestroyElements( |
| storage_.GetAllocator(), data(), size()); |
| storage_.DeallocateIfAllocated(); |
| |
| storage_.MemcpyFrom(other.storage_); |
| other.storage_.SetInlinedSize(0); |
| } |
| |
| void MoveAssignment(ElementwiseAssignPolicy, InlinedVector&& other) { |
| // Fast path: if the other vector is on the heap then we don't worry about |
| // actually move-assigning each element. Instead we only throw away our own |
| // existing elements and adopt the heap allocation of the other vector. |
| if (other.storage_.GetIsAllocated()) { |
| DestroyExistingAndAdopt(std::move(other)); |
| return; |
| } |
| |
| storage_.Assign(IteratorValueAdapter<A, MoveIterator<A>>( |
| MoveIterator<A>(other.storage_.GetInlinedData())), |
| other.size()); |
| } |
| |
| void MoveAssignment(ElementwiseConstructPolicy, InlinedVector&& other) { |
| // Fast path: if the other vector is on the heap then we don't worry about |
| // actually move-assigning each element. Instead we only throw away our own |
| // existing elements and adopt the heap allocation of the other vector. |
| if (other.storage_.GetIsAllocated()) { |
| DestroyExistingAndAdopt(std::move(other)); |
| return; |
| } |
| |
| inlined_vector_internal::DestroyAdapter<A>::DestroyElements( |
| storage_.GetAllocator(), data(), size()); |
| storage_.DeallocateIfAllocated(); |
| |
| IteratorValueAdapter<A, MoveIterator<A>> other_values( |
| MoveIterator<A>(other.storage_.GetInlinedData())); |
| inlined_vector_internal::ConstructElements<A>( |
| storage_.GetAllocator(), storage_.GetInlinedData(), other_values, |
| other.storage_.GetSize()); |
| storage_.SetInlinedSize(other.storage_.GetSize()); |
| } |
| |
| Storage storage_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // InlinedVector Non-Member Functions |
| // ----------------------------------------------------------------------------- |
| |
| // `swap(...)` |
| // |
| // Swaps the contents of two inlined vectors. |
| template <typename T, size_t N, typename A> |
| void swap(absl::InlinedVector<T, N, A>& a, |
| absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) { |
| a.swap(b); |
| } |
| |
| // `operator==(...)` |
| // |
| // Tests for value-equality of two inlined vectors. |
| template <typename T, size_t N, typename A> |
| bool operator==(const absl::InlinedVector<T, N, A>& a, |
| const absl::InlinedVector<T, N, A>& b) { |
| auto a_data = a.data(); |
| auto b_data = b.data(); |
| return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size()); |
| } |
| |
| // `operator!=(...)` |
| // |
| // Tests for value-inequality of two inlined vectors. |
| template <typename T, size_t N, typename A> |
| bool operator!=(const absl::InlinedVector<T, N, A>& a, |
| const absl::InlinedVector<T, N, A>& b) { |
| return !(a == b); |
| } |
| |
| // `operator<(...)` |
| // |
| // Tests whether the value of an inlined vector is less than the value of |
| // another inlined vector using a lexicographical comparison algorithm. |
| template <typename T, size_t N, typename A> |
| bool operator<(const absl::InlinedVector<T, N, A>& a, |
| const absl::InlinedVector<T, N, A>& b) { |
| auto a_data = a.data(); |
| auto b_data = b.data(); |
| return std::lexicographical_compare(a_data, a_data + a.size(), b_data, |
| b_data + b.size()); |
| } |
| |
| // `operator>(...)` |
| // |
| // Tests whether the value of an inlined vector is greater than the value of |
| // another inlined vector using a lexicographical comparison algorithm. |
| template <typename T, size_t N, typename A> |
| bool operator>(const absl::InlinedVector<T, N, A>& a, |
| const absl::InlinedVector<T, N, A>& b) { |
| return b < a; |
| } |
| |
| // `operator<=(...)` |
| // |
| // Tests whether the value of an inlined vector is less than or equal to the |
| // value of another inlined vector using a lexicographical comparison algorithm. |
| template <typename T, size_t N, typename A> |
| bool operator<=(const absl::InlinedVector<T, N, A>& a, |
| const absl::InlinedVector<T, N, A>& b) { |
| return !(b < a); |
| } |
| |
| // `operator>=(...)` |
| // |
| // Tests whether the value of an inlined vector is greater than or equal to the |
| // value of another inlined vector using a lexicographical comparison algorithm. |
| template <typename T, size_t N, typename A> |
| bool operator>=(const absl::InlinedVector<T, N, A>& a, |
| const absl::InlinedVector<T, N, A>& b) { |
| return !(a < b); |
| } |
| |
| // `AbslHashValue(...)` |
| // |
| // Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to |
| // call this directly. |
| template <typename H, typename T, size_t N, typename A> |
| H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) { |
| auto size = a.size(); |
| return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size); |
| } |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_CONTAINER_INLINED_VECTOR_H_ |