| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/time/clock.h" |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/optimization.h" |
| |
| #ifdef _WIN32 |
| #include <windows.h> |
| #endif |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <cerrno> |
| #include <cstdint> |
| #include <ctime> |
| #include <limits> |
| |
| #include "absl/base/internal/spinlock.h" |
| #include "absl/base/internal/unscaledcycleclock.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/port.h" |
| #include "absl/base/thread_annotations.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| Time Now() { |
| // TODO(bww): Get a timespec instead so we don't have to divide. |
| int64_t n = absl::GetCurrentTimeNanos(); |
| if (n >= 0) { |
| return time_internal::FromUnixDuration( |
| time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4)); |
| } |
| return time_internal::FromUnixDuration(absl::Nanoseconds(n)); |
| } |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| // Decide if we should use the fast GetCurrentTimeNanos() algorithm based on the |
| // cyclecounter, otherwise just get the time directly from the OS on every call. |
| // By default, the fast algorithm based on the cyclecount is disabled because in |
| // certain situations, for example, if the OS enters a "sleep" mode, it may |
| // produce incorrect values immediately upon waking. |
| // This can be chosen at compile-time via |
| // -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1] |
| #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
| #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0 |
| #endif |
| |
| #if defined(__APPLE__) || defined(_WIN32) |
| #include "absl/time/internal/get_current_time_chrono.inc" |
| #else |
| #include "absl/time/internal/get_current_time_posix.inc" |
| #endif |
| |
| // Allows override by test. |
| #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM |
| #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \ |
| ::absl::time_internal::GetCurrentTimeNanosFromSystem() |
| #endif |
| |
| #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); } |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| #else // Use the cyclecounter-based implementation below. |
| |
| // Allows override by test. |
| #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW |
| #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \ |
| ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now() |
| #endif |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace time_internal { |
| |
| // On some processors, consecutive reads of the cycle counter may yield the |
| // same value (weakly-increasing). In debug mode, clear the least significant |
| // bits to discourage depending on a strictly-increasing Now() value. |
| // In x86-64's debug mode, discourage depending on a strictly-increasing Now() |
| // value. |
| #if !defined(NDEBUG) && defined(__x86_64__) |
| constexpr int64_t kCycleClockNowMask = ~int64_t{0xff}; |
| #else |
| constexpr int64_t kCycleClockNowMask = ~int64_t{0}; |
| #endif |
| |
| // This is a friend wrapper around UnscaledCycleClock::Now() |
| // (needed to access UnscaledCycleClock). |
| class UnscaledCycleClockWrapperForGetCurrentTime { |
| public: |
| static int64_t Now() { |
| return base_internal::UnscaledCycleClock::Now() & kCycleClockNowMask; |
| } |
| }; |
| } // namespace time_internal |
| |
| // uint64_t is used in this module to provide an extra bit in multiplications |
| |
| // --------------------------------------------------------------------- |
| // An implementation of reader-write locks that use no atomic ops in the read |
| // case. This is a generalization of Lamport's method for reading a multiword |
| // clock. Increment a word on each write acquisition, using the low-order bit |
| // as a spinlock; the word is the high word of the "clock". Readers read the |
| // high word, then all other data, then the high word again, and repeat the |
| // read if the reads of the high words yields different answers, or an odd |
| // value (either case suggests possible interference from a writer). |
| // Here we use a spinlock to ensure only one writer at a time, rather than |
| // spinning on the bottom bit of the word to benefit from SpinLock |
| // spin-delay tuning. |
| |
| // Acquire seqlock (*seq) and return the value to be written to unlock. |
| static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) { |
| uint64_t x = seq->fetch_add(1, std::memory_order_relaxed); |
| |
| // We put a release fence between update to *seq and writes to shared data. |
| // Thus all stores to shared data are effectively release operations and |
| // update to *seq above cannot be re-ordered past any of them. Note that |
| // this barrier is not for the fetch_add above. A release barrier for the |
| // fetch_add would be before it, not after. |
| std::atomic_thread_fence(std::memory_order_release); |
| |
| return x + 2; // original word plus 2 |
| } |
| |
| // Release seqlock (*seq) by writing x to it---a value previously returned by |
| // SeqAcquire. |
| static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) { |
| // The unlock store to *seq must have release ordering so that all |
| // updates to shared data must finish before this store. |
| seq->store(x, std::memory_order_release); // release lock for readers |
| } |
| |
| // --------------------------------------------------------------------- |
| |
| // "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond. |
| enum { kScale = 30 }; |
| |
| // The minimum interval between samples of the time base. |
| // We pick enough time to amortize the cost of the sample, |
| // to get a reasonably accurate cycle counter rate reading, |
| // and not so much that calculations will overflow 64-bits. |
| static const uint64_t kMinNSBetweenSamples = 2000 << 20; |
| |
| // We require that kMinNSBetweenSamples shifted by kScale |
| // have at least a bit left over for 64-bit calculations. |
| static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) == |
| kMinNSBetweenSamples, |
| "cannot represent kMaxBetweenSamplesNSScaled"); |
| |
| // data from a sample of the kernel's time value |
| struct TimeSampleAtomic { |
| std::atomic<uint64_t> raw_ns{0}; // raw kernel time |
| std::atomic<uint64_t> base_ns{0}; // our estimate of time |
| std::atomic<uint64_t> base_cycles{0}; // cycle counter reading |
| std::atomic<uint64_t> nsscaled_per_cycle{0}; // cycle period |
| // cycles before we'll sample again (a scaled reciprocal of the period, |
| // to avoid a division on the fast path). |
| std::atomic<uint64_t> min_cycles_per_sample{0}; |
| }; |
| // Same again, but with non-atomic types |
| struct TimeSample { |
| uint64_t raw_ns = 0; // raw kernel time |
| uint64_t base_ns = 0; // our estimate of time |
| uint64_t base_cycles = 0; // cycle counter reading |
| uint64_t nsscaled_per_cycle = 0; // cycle period |
| uint64_t min_cycles_per_sample = 0; // approx cycles before next sample |
| }; |
| |
| struct ABSL_CACHELINE_ALIGNED TimeState { |
| std::atomic<uint64_t> seq{0}; |
| TimeSampleAtomic last_sample; // the last sample; under seq |
| |
| // The following counters are used only by the test code. |
| int64_t stats_initializations{0}; |
| int64_t stats_reinitializations{0}; |
| int64_t stats_calibrations{0}; |
| int64_t stats_slow_paths{0}; |
| int64_t stats_fast_slow_paths{0}; |
| |
| uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0}; |
| |
| // Used by GetCurrentTimeNanosFromKernel(). |
| // We try to read clock values at about the same time as the kernel clock. |
| // This value gets adjusted up or down as estimate of how long that should |
| // take, so we can reject attempts that take unusually long. |
| std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000}; |
| // Number of times in a row we've seen a kernel time call take substantially |
| // less than approx_syscall_time_in_cycles. |
| std::atomic<uint32_t> kernel_time_seen_smaller{0}; |
| |
| // A reader-writer lock protecting the static locations below. |
| // See SeqAcquire() and SeqRelease() above. |
| absl::base_internal::SpinLock lock{absl::kConstInit, |
| base_internal::SCHEDULE_KERNEL_ONLY}; |
| }; |
| ABSL_CONST_INIT static TimeState time_state; |
| |
| // Return the time in ns as told by the kernel interface. Place in *cycleclock |
| // the value of the cycleclock at about the time of the syscall. |
| // This call represents the time base that this module synchronizes to. |
| // Ensures that *cycleclock does not step back by up to (1 << 16) from |
| // last_cycleclock, to discard small backward counter steps. (Larger steps are |
| // assumed to be complete resyncs, which shouldn't happen. If they do, a full |
| // reinitialization of the outer algorithm should occur.) |
| static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock, |
| uint64_t *cycleclock) |
| ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { |
| uint64_t local_approx_syscall_time_in_cycles = // local copy |
| time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed); |
| |
| int64_t current_time_nanos_from_system; |
| uint64_t before_cycles; |
| uint64_t after_cycles; |
| uint64_t elapsed_cycles; |
| int loops = 0; |
| do { |
| before_cycles = |
| static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); |
| current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); |
| after_cycles = |
| static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); |
| // elapsed_cycles is unsigned, so is large on overflow |
| elapsed_cycles = after_cycles - before_cycles; |
| if (elapsed_cycles >= local_approx_syscall_time_in_cycles && |
| ++loops == 20) { // clock changed frequencies? Back off. |
| loops = 0; |
| if (local_approx_syscall_time_in_cycles < 1000 * 1000) { |
| local_approx_syscall_time_in_cycles = |
| (local_approx_syscall_time_in_cycles + 1) << 1; |
| } |
| time_state.approx_syscall_time_in_cycles.store( |
| local_approx_syscall_time_in_cycles, std::memory_order_relaxed); |
| } |
| } while (elapsed_cycles >= local_approx_syscall_time_in_cycles || |
| last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16)); |
| |
| // Adjust approx_syscall_time_in_cycles to be within a factor of 2 |
| // of the typical time to execute one iteration of the loop above. |
| if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) { |
| // measured time is no smaller than half current approximation |
| time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); |
| } else if (time_state.kernel_time_seen_smaller.fetch_add( |
| 1, std::memory_order_relaxed) >= 3) { |
| // smaller delays several times in a row; reduce approximation by 12.5% |
| const uint64_t new_approximation = |
| local_approx_syscall_time_in_cycles - |
| (local_approx_syscall_time_in_cycles >> 3); |
| time_state.approx_syscall_time_in_cycles.store(new_approximation, |
| std::memory_order_relaxed); |
| time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); |
| } |
| |
| *cycleclock = after_cycles; |
| return current_time_nanos_from_system; |
| } |
| |
| static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD; |
| |
| // Read the contents of *atomic into *sample. |
| // Each field is read atomically, but to maintain atomicity between fields, |
| // the access must be done under a lock. |
| static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic, |
| struct TimeSample *sample) { |
| sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed); |
| sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed); |
| sample->nsscaled_per_cycle = |
| atomic->nsscaled_per_cycle.load(std::memory_order_relaxed); |
| sample->min_cycles_per_sample = |
| atomic->min_cycles_per_sample.load(std::memory_order_relaxed); |
| sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed); |
| } |
| |
| // Public routine. |
| // Algorithm: We wish to compute real time from a cycle counter. In normal |
| // operation, we construct a piecewise linear approximation to the kernel time |
| // source, using the cycle counter value. The start of each line segment is at |
| // the same point as the end of the last, but may have a different slope (that |
| // is, a different idea of the cycle counter frequency). Every couple of |
| // seconds, the kernel time source is sampled and compared with the current |
| // approximation. A new slope is chosen that, if followed for another couple |
| // of seconds, will correct the error at the current position. The information |
| // for a sample is in the "last_sample" struct. The linear approximation is |
| // estimated_time = last_sample.base_ns + |
| // last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles) |
| // (ns_per_cycle is actually stored in different units and scaled, to avoid |
| // overflow). The base_ns of the next linear approximation is the |
| // estimated_time using the last approximation; the base_cycles is the cycle |
| // counter value at that time; the ns_per_cycle is the number of ns per cycle |
| // measured since the last sample, but adjusted so that most of the difference |
| // between the estimated_time and the kernel time will be corrected by the |
| // estimated time to the next sample. In normal operation, this algorithm |
| // relies on: |
| // - the cycle counter and kernel time rates not changing a lot in a few |
| // seconds. |
| // - the client calling into the code often compared to a couple of seconds, so |
| // the time to the next correction can be estimated. |
| // Any time ns_per_cycle is not known, a major error is detected, or the |
| // assumption about frequent calls is violated, the implementation returns the |
| // kernel time. It records sufficient data that a linear approximation can |
| // resume a little later. |
| |
| int64_t GetCurrentTimeNanos() { |
| // read the data from the "last_sample" struct (but don't need raw_ns yet) |
| // The reads of "seq" and test of the values emulate a reader lock. |
| uint64_t base_ns; |
| uint64_t base_cycles; |
| uint64_t nsscaled_per_cycle; |
| uint64_t min_cycles_per_sample; |
| uint64_t seq_read0; |
| uint64_t seq_read1; |
| |
| // If we have enough information to interpolate, the value returned will be |
| // derived from this cycleclock-derived time estimate. On some platforms |
| // (POWER) the function to retrieve this value has enough complexity to |
| // contribute to register pressure - reading it early before initializing |
| // the other pieces of the calculation minimizes spill/restore instructions, |
| // minimizing icache cost. |
| uint64_t now_cycles = |
| static_cast<uint64_t>(GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW()); |
| |
| // Acquire pairs with the barrier in SeqRelease - if this load sees that |
| // store, the shared-data reads necessarily see that SeqRelease's updates |
| // to the same shared data. |
| seq_read0 = time_state.seq.load(std::memory_order_acquire); |
| |
| base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed); |
| base_cycles = |
| time_state.last_sample.base_cycles.load(std::memory_order_relaxed); |
| nsscaled_per_cycle = |
| time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed); |
| min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load( |
| std::memory_order_relaxed); |
| |
| // This acquire fence pairs with the release fence in SeqAcquire. Since it |
| // is sequenced between reads of shared data and seq_read1, the reads of |
| // shared data are effectively acquiring. |
| std::atomic_thread_fence(std::memory_order_acquire); |
| |
| // The shared-data reads are effectively acquire ordered, and the |
| // shared-data writes are effectively release ordered. Therefore if our |
| // shared-data reads see any of a particular update's shared-data writes, |
| // seq_read1 is guaranteed to see that update's SeqAcquire. |
| seq_read1 = time_state.seq.load(std::memory_order_relaxed); |
| |
| // Fast path. Return if min_cycles_per_sample has not yet elapsed since the |
| // last sample, and we read a consistent sample. The fast path activates |
| // only when min_cycles_per_sample is non-zero, which happens when we get an |
| // estimate for the cycle time. The predicate will fail if now_cycles < |
| // base_cycles, or if some other thread is in the slow path. |
| // |
| // Since we now read now_cycles before base_ns, it is possible for now_cycles |
| // to be less than base_cycles (if we were interrupted between those loads and |
| // last_sample was updated). This is harmless, because delta_cycles will wrap |
| // and report a time much much bigger than min_cycles_per_sample. In that case |
| // we will take the slow path. |
| uint64_t delta_cycles; |
| if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 && |
| (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) { |
| return static_cast<int64_t>( |
| base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale)); |
| } |
| return GetCurrentTimeNanosSlowPath(); |
| } |
| |
| // Return (a << kScale)/b. |
| // Zero is returned if b==0. Scaling is performed internally to |
| // preserve precision without overflow. |
| static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) { |
| // Find maximum safe_shift so that |
| // 0 <= safe_shift <= kScale and (a << safe_shift) does not overflow. |
| int safe_shift = kScale; |
| while (((a << safe_shift) >> safe_shift) != a) { |
| safe_shift--; |
| } |
| uint64_t scaled_b = b >> (kScale - safe_shift); |
| uint64_t quotient = 0; |
| if (scaled_b != 0) { |
| quotient = (a << safe_shift) / scaled_b; |
| } |
| return quotient; |
| } |
| |
| static uint64_t UpdateLastSample( |
| uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles, |
| const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD; |
| |
| // The slow path of GetCurrentTimeNanos(). This is taken while gathering |
| // initial samples, when enough time has elapsed since the last sample, and if |
| // any other thread is writing to last_sample. |
| // |
| // Manually mark this 'noinline' to minimize stack frame size of the fast |
| // path. Without this, sometimes a compiler may inline this big block of code |
| // into the fast path. That causes lots of register spills and reloads that |
| // are unnecessary unless the slow path is taken. |
| // |
| // TODO(absl-team): Remove this attribute when our compiler is smart enough |
| // to do the right thing. |
| ABSL_ATTRIBUTE_NOINLINE |
| static int64_t GetCurrentTimeNanosSlowPath() |
| ABSL_LOCKS_EXCLUDED(time_state.lock) { |
| // Serialize access to slow-path. Fast-path readers are not blocked yet, and |
| // code below must not modify last_sample until the seqlock is acquired. |
| time_state.lock.Lock(); |
| |
| // Sample the kernel time base. This is the definition of |
| // "now" if we take the slow path. |
| uint64_t now_cycles; |
| uint64_t now_ns = static_cast<uint64_t>( |
| GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles)); |
| time_state.last_now_cycles = now_cycles; |
| |
| uint64_t estimated_base_ns; |
| |
| // ---------- |
| // Read the "last_sample" values again; this time holding the write lock. |
| struct TimeSample sample; |
| ReadTimeSampleAtomic(&time_state.last_sample, &sample); |
| |
| // ---------- |
| // Try running the fast path again; another thread may have updated the |
| // sample between our run of the fast path and the sample we just read. |
| uint64_t delta_cycles = now_cycles - sample.base_cycles; |
| if (delta_cycles < sample.min_cycles_per_sample) { |
| // Another thread updated the sample. This path does not take the seqlock |
| // so that blocked readers can make progress without blocking new readers. |
| estimated_base_ns = sample.base_ns + |
| ((delta_cycles * sample.nsscaled_per_cycle) >> kScale); |
| time_state.stats_fast_slow_paths++; |
| } else { |
| estimated_base_ns = |
| UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample); |
| } |
| |
| time_state.lock.Unlock(); |
| |
| return static_cast<int64_t>(estimated_base_ns); |
| } |
| |
| // Main part of the algorithm. Locks out readers, updates the approximation |
| // using the new sample from the kernel, and stores the result in last_sample |
| // for readers. Returns the new estimated time. |
| static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns, |
| uint64_t delta_cycles, |
| const struct TimeSample *sample) |
| ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { |
| uint64_t estimated_base_ns = now_ns; |
| uint64_t lock_value = |
| SeqAcquire(&time_state.seq); // acquire seqlock to block readers |
| |
| // The 5s in the next if-statement limits the time for which we will trust |
| // the cycle counter and our last sample to give a reasonable result. |
| // Errors in the rate of the source clock can be multiplied by the ratio |
| // between this limit and kMinNSBetweenSamples. |
| if (sample->raw_ns == 0 || // no recent sample, or clock went backwards |
| sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns || |
| now_ns < sample->raw_ns || now_cycles < sample->base_cycles) { |
| // record this sample, and forget any previously known slope. |
| time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); |
| time_state.last_sample.base_ns.store(estimated_base_ns, |
| std::memory_order_relaxed); |
| time_state.last_sample.base_cycles.store(now_cycles, |
| std::memory_order_relaxed); |
| time_state.last_sample.nsscaled_per_cycle.store(0, |
| std::memory_order_relaxed); |
| time_state.last_sample.min_cycles_per_sample.store( |
| 0, std::memory_order_relaxed); |
| time_state.stats_initializations++; |
| } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns && |
| sample->base_cycles + 50 < now_cycles) { |
| // Enough time has passed to compute the cycle time. |
| if (sample->nsscaled_per_cycle != 0) { // Have a cycle time estimate. |
| // Compute time from counter reading, but avoiding overflow |
| // delta_cycles may be larger than on the fast path. |
| uint64_t estimated_scaled_ns; |
| int s = -1; |
| do { |
| s++; |
| estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle; |
| } while (estimated_scaled_ns / sample->nsscaled_per_cycle != |
| (delta_cycles >> s)); |
| estimated_base_ns = sample->base_ns + |
| (estimated_scaled_ns >> (kScale - s)); |
| } |
| |
| // Compute the assumed cycle time kMinNSBetweenSamples ns into the future |
| // assuming the cycle counter rate stays the same as the last interval. |
| uint64_t ns = now_ns - sample->raw_ns; |
| uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles); |
| |
| uint64_t assumed_next_sample_delta_cycles = |
| SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle); |
| |
| // Estimate low by this much. |
| int64_t diff_ns = static_cast<int64_t>(now_ns - estimated_base_ns); |
| |
| // We want to set nsscaled_per_cycle so that our estimate of the ns time |
| // at the assumed cycle time is the assumed ns time. |
| // That is, we want to set nsscaled_per_cycle so: |
| // kMinNSBetweenSamples + diff_ns == |
| // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale |
| // But we wish to damp oscillations, so instead correct only most |
| // of our current error, by solving: |
| // kMinNSBetweenSamples + diff_ns - (diff_ns / 16) == |
| // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale |
| ns = static_cast<uint64_t>(static_cast<int64_t>(kMinNSBetweenSamples) + |
| diff_ns - (diff_ns / 16)); |
| uint64_t new_nsscaled_per_cycle = |
| SafeDivideAndScale(ns, assumed_next_sample_delta_cycles); |
| if (new_nsscaled_per_cycle != 0 && |
| diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) { |
| // record the cycle time measurement |
| time_state.last_sample.nsscaled_per_cycle.store( |
| new_nsscaled_per_cycle, std::memory_order_relaxed); |
| uint64_t new_min_cycles_per_sample = |
| SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle); |
| time_state.last_sample.min_cycles_per_sample.store( |
| new_min_cycles_per_sample, std::memory_order_relaxed); |
| time_state.stats_calibrations++; |
| } else { // something went wrong; forget the slope |
| time_state.last_sample.nsscaled_per_cycle.store( |
| 0, std::memory_order_relaxed); |
| time_state.last_sample.min_cycles_per_sample.store( |
| 0, std::memory_order_relaxed); |
| estimated_base_ns = now_ns; |
| time_state.stats_reinitializations++; |
| } |
| time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); |
| time_state.last_sample.base_ns.store(estimated_base_ns, |
| std::memory_order_relaxed); |
| time_state.last_sample.base_cycles.store(now_cycles, |
| std::memory_order_relaxed); |
| } else { |
| // have a sample, but no slope; waiting for enough time for a calibration |
| time_state.stats_slow_paths++; |
| } |
| |
| SeqRelease(&time_state.seq, lock_value); // release the readers |
| |
| return estimated_base_ns; |
| } |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| #endif // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace { |
| |
| // Returns the maximum duration that SleepOnce() can sleep for. |
| constexpr absl::Duration MaxSleep() { |
| #ifdef _WIN32 |
| // Windows Sleep() takes unsigned long argument in milliseconds. |
| return absl::Milliseconds( |
| std::numeric_limits<unsigned long>::max()); // NOLINT(runtime/int) |
| #else |
| return absl::Seconds(std::numeric_limits<time_t>::max()); |
| #endif |
| } |
| |
| // Sleeps for the given duration. |
| // REQUIRES: to_sleep <= MaxSleep(). |
| void SleepOnce(absl::Duration to_sleep) { |
| #ifdef _WIN32 |
| Sleep(static_cast<DWORD>(to_sleep / absl::Milliseconds(1))); |
| #else |
| struct timespec sleep_time = absl::ToTimespec(to_sleep); |
| while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) { |
| // Ignore signals and wait for the full interval to elapse. |
| } |
| #endif |
| } |
| |
| } // namespace |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| extern "C" { |
| |
| ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalSleepFor)( |
| absl::Duration duration) { |
| while (duration > absl::ZeroDuration()) { |
| absl::Duration to_sleep = std::min(duration, absl::MaxSleep()); |
| absl::SleepOnce(to_sleep); |
| duration -= to_sleep; |
| } |
| } |
| |
| } // extern "C" |