| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/time/time.h" |
| |
| #include <cstdint> |
| #include <ios> |
| |
| #include "absl/time/civil_time.h" |
| |
| #if defined(_MSC_VER) |
| #include <winsock2.h> // for timeval |
| #endif |
| |
| #include <chrono> // NOLINT(build/c++11) |
| |
| #ifdef __cpp_impl_three_way_comparison |
| #include <compare> |
| #endif // __cpp_impl_three_way_comparison |
| |
| #include <cstring> |
| #include <ctime> |
| #include <iomanip> |
| #include <limits> |
| #include <string> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/numeric/int128.h" |
| #include "absl/strings/str_format.h" |
| #include "absl/time/clock.h" |
| #include "absl/time/internal/test_util.h" |
| |
| namespace { |
| |
| #if defined(GTEST_USES_SIMPLE_RE) && GTEST_USES_SIMPLE_RE |
| const char kZoneAbbrRE[] = ".*"; // just punt |
| #else |
| const char kZoneAbbrRE[] = "[A-Za-z]{3,4}|[-+][0-9]{2}([0-9]{2})?"; |
| #endif |
| |
| // This helper is a macro so that failed expectations show up with the |
| // correct line numbers. |
| #define EXPECT_CIVIL_INFO(ci, y, m, d, h, min, s, off, isdst) \ |
| do { \ |
| EXPECT_EQ(y, ci.cs.year()); \ |
| EXPECT_EQ(m, ci.cs.month()); \ |
| EXPECT_EQ(d, ci.cs.day()); \ |
| EXPECT_EQ(h, ci.cs.hour()); \ |
| EXPECT_EQ(min, ci.cs.minute()); \ |
| EXPECT_EQ(s, ci.cs.second()); \ |
| EXPECT_EQ(off, ci.offset); \ |
| EXPECT_EQ(isdst, ci.is_dst); \ |
| EXPECT_THAT(ci.zone_abbr, testing::MatchesRegex(kZoneAbbrRE)); \ |
| } while (0) |
| |
| // A gMock matcher to match timespec values. Use this matcher like: |
| // timespec ts1, ts2; |
| // EXPECT_THAT(ts1, TimespecMatcher(ts2)); |
| MATCHER_P(TimespecMatcher, ts, "") { |
| if (ts.tv_sec == arg.tv_sec && ts.tv_nsec == arg.tv_nsec) return true; |
| *result_listener << "expected: {" << ts.tv_sec << ", " << ts.tv_nsec << "} "; |
| *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_nsec << "}"; |
| return false; |
| } |
| |
| // A gMock matcher to match timeval values. Use this matcher like: |
| // timeval tv1, tv2; |
| // EXPECT_THAT(tv1, TimevalMatcher(tv2)); |
| MATCHER_P(TimevalMatcher, tv, "") { |
| if (tv.tv_sec == arg.tv_sec && tv.tv_usec == arg.tv_usec) return true; |
| *result_listener << "expected: {" << tv.tv_sec << ", " << tv.tv_usec << "} "; |
| *result_listener << "actual: {" << arg.tv_sec << ", " << arg.tv_usec << "}"; |
| return false; |
| } |
| |
| TEST(Time, ConstExpr) { |
| constexpr absl::Time t0 = absl::UnixEpoch(); |
| static_assert(t0 == absl::UnixEpoch(), "UnixEpoch"); |
| constexpr absl::Time t1 = absl::InfiniteFuture(); |
| static_assert(t1 != absl::UnixEpoch(), "InfiniteFuture"); |
| constexpr absl::Time t2 = absl::InfinitePast(); |
| static_assert(t2 != absl::UnixEpoch(), "InfinitePast"); |
| constexpr absl::Time t3 = absl::FromUnixNanos(0); |
| static_assert(t3 == absl::UnixEpoch(), "FromUnixNanos"); |
| constexpr absl::Time t4 = absl::FromUnixMicros(0); |
| static_assert(t4 == absl::UnixEpoch(), "FromUnixMicros"); |
| constexpr absl::Time t5 = absl::FromUnixMillis(0); |
| static_assert(t5 == absl::UnixEpoch(), "FromUnixMillis"); |
| constexpr absl::Time t6 = absl::FromUnixSeconds(0); |
| static_assert(t6 == absl::UnixEpoch(), "FromUnixSeconds"); |
| constexpr absl::Time t7 = absl::FromTimeT(0); |
| static_assert(t7 == absl::UnixEpoch(), "FromTimeT"); |
| } |
| |
| TEST(Time, ValueSemantics) { |
| absl::Time a; // Default construction |
| absl::Time b = a; // Copy construction |
| EXPECT_EQ(a, b); |
| absl::Time c(a); // Copy construction (again) |
| EXPECT_EQ(a, b); |
| EXPECT_EQ(a, c); |
| EXPECT_EQ(b, c); |
| b = c; // Assignment |
| EXPECT_EQ(a, b); |
| EXPECT_EQ(a, c); |
| EXPECT_EQ(b, c); |
| } |
| |
| TEST(Time, UnixEpoch) { |
| const auto ci = absl::UTCTimeZone().At(absl::UnixEpoch()); |
| EXPECT_EQ(absl::CivilSecond(1970, 1, 1, 0, 0, 0), ci.cs); |
| EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); |
| EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs)); |
| } |
| |
| TEST(Time, Breakdown) { |
| absl::TimeZone tz = absl::time_internal::LoadTimeZone("America/New_York"); |
| absl::Time t = absl::UnixEpoch(); |
| |
| // The Unix epoch as seen in NYC. |
| auto ci = tz.At(t); |
| EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 19, 0, 0, -18000, false); |
| EXPECT_EQ(absl::ZeroDuration(), ci.subsecond); |
| EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs)); |
| |
| // Just before the epoch. |
| t -= absl::Nanoseconds(1); |
| ci = tz.At(t); |
| EXPECT_CIVIL_INFO(ci, 1969, 12, 31, 18, 59, 59, -18000, false); |
| EXPECT_EQ(absl::Nanoseconds(999999999), ci.subsecond); |
| EXPECT_EQ(absl::Weekday::wednesday, absl::GetWeekday(ci.cs)); |
| |
| // Some time later. |
| t += absl::Hours(24) * 2735; |
| t += absl::Hours(18) + absl::Minutes(30) + absl::Seconds(15) + |
| absl::Nanoseconds(9); |
| ci = tz.At(t); |
| EXPECT_CIVIL_INFO(ci, 1977, 6, 28, 14, 30, 15, -14400, true); |
| EXPECT_EQ(8, ci.subsecond / absl::Nanoseconds(1)); |
| EXPECT_EQ(absl::Weekday::tuesday, absl::GetWeekday(ci.cs)); |
| } |
| |
| TEST(Time, AdditiveOperators) { |
| const absl::Duration d = absl::Nanoseconds(1); |
| const absl::Time t0; |
| const absl::Time t1 = t0 + d; |
| |
| EXPECT_EQ(d, t1 - t0); |
| EXPECT_EQ(-d, t0 - t1); |
| EXPECT_EQ(t0, t1 - d); |
| |
| absl::Time t(t0); |
| EXPECT_EQ(t0, t); |
| t += d; |
| EXPECT_EQ(t0 + d, t); |
| EXPECT_EQ(d, t - t0); |
| t -= d; |
| EXPECT_EQ(t0, t); |
| |
| // Tests overflow between subseconds and seconds. |
| t = absl::UnixEpoch(); |
| t += absl::Milliseconds(500); |
| EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); |
| t += absl::Milliseconds(600); |
| EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(1100), t); |
| t -= absl::Milliseconds(600); |
| EXPECT_EQ(absl::UnixEpoch() + absl::Milliseconds(500), t); |
| t -= absl::Milliseconds(500); |
| EXPECT_EQ(absl::UnixEpoch(), t); |
| } |
| |
| TEST(Time, RelationalOperators) { |
| constexpr absl::Time t1 = absl::FromUnixNanos(0); |
| constexpr absl::Time t2 = absl::FromUnixNanos(1); |
| constexpr absl::Time t3 = absl::FromUnixNanos(2); |
| |
| static_assert(absl::UnixEpoch() == t1, ""); |
| static_assert(t1 == t1, ""); |
| static_assert(t2 == t2, ""); |
| static_assert(t3 == t3, ""); |
| |
| static_assert(t1 < t2, ""); |
| static_assert(t2 < t3, ""); |
| static_assert(t1 < t3, ""); |
| |
| static_assert(t1 <= t1, ""); |
| static_assert(t1 <= t2, ""); |
| static_assert(t2 <= t2, ""); |
| static_assert(t2 <= t3, ""); |
| static_assert(t3 <= t3, ""); |
| static_assert(t1 <= t3, ""); |
| |
| static_assert(t2 > t1, ""); |
| static_assert(t3 > t2, ""); |
| static_assert(t3 > t1, ""); |
| |
| static_assert(t2 >= t2, ""); |
| static_assert(t2 >= t1, ""); |
| static_assert(t3 >= t3, ""); |
| static_assert(t3 >= t2, ""); |
| static_assert(t1 >= t1, ""); |
| static_assert(t3 >= t1, ""); |
| |
| #ifdef __cpp_impl_three_way_comparison |
| |
| static_assert((t1 <=> t1) == std::strong_ordering::equal, ""); |
| static_assert((t2 <=> t2) == std::strong_ordering::equal, ""); |
| static_assert((t3 <=> t3) == std::strong_ordering::equal, ""); |
| |
| static_assert((t1 <=> t2) == std::strong_ordering::less, ""); |
| static_assert((t2 <=> t3) == std::strong_ordering::less, ""); |
| static_assert((t1 <=> t3) == std::strong_ordering::less, ""); |
| |
| static_assert((t2 <=> t1) == std::strong_ordering::greater, ""); |
| static_assert((t3 <=> t2) == std::strong_ordering::greater, ""); |
| static_assert((t3 <=> t1) == std::strong_ordering::greater, ""); |
| |
| #endif // __cpp_impl_three_way_comparison |
| } |
| |
| TEST(Time, Infinity) { |
| constexpr absl::Time ifuture = absl::InfiniteFuture(); |
| constexpr absl::Time ipast = absl::InfinitePast(); |
| |
| static_assert(ifuture == ifuture, ""); |
| static_assert(ipast == ipast, ""); |
| static_assert(ipast < ifuture, ""); |
| static_assert(ifuture > ipast, ""); |
| |
| #ifdef __cpp_impl_three_way_comparison |
| |
| static_assert((ifuture <=> ifuture) == std::strong_ordering::equal, ""); |
| static_assert((ipast <=> ipast) == std::strong_ordering::equal, ""); |
| static_assert((ipast <=> ifuture) == std::strong_ordering::less, ""); |
| static_assert((ifuture <=> ipast) == std::strong_ordering::greater, ""); |
| |
| #endif // __cpp_impl_three_way_comparison |
| |
| // Arithmetic saturates |
| EXPECT_EQ(ifuture, ifuture + absl::Seconds(1)); |
| EXPECT_EQ(ifuture, ifuture - absl::Seconds(1)); |
| EXPECT_EQ(ipast, ipast + absl::Seconds(1)); |
| EXPECT_EQ(ipast, ipast - absl::Seconds(1)); |
| |
| EXPECT_EQ(absl::InfiniteDuration(), ifuture - ifuture); |
| EXPECT_EQ(absl::InfiniteDuration(), ifuture - ipast); |
| EXPECT_EQ(-absl::InfiniteDuration(), ipast - ifuture); |
| EXPECT_EQ(-absl::InfiniteDuration(), ipast - ipast); |
| |
| constexpr absl::Time t = absl::UnixEpoch(); // Any finite time. |
| static_assert(t < ifuture, ""); |
| static_assert(t > ipast, ""); |
| |
| #ifdef __cpp_impl_three_way_comparison |
| |
| static_assert((t <=> ifuture) == std::strong_ordering::less, ""); |
| static_assert((t <=> ipast) == std::strong_ordering::greater, ""); |
| static_assert((ipast <=> t) == std::strong_ordering::less, ""); |
| static_assert((ifuture <=> t) == std::strong_ordering::greater, ""); |
| |
| #endif // __cpp_impl_three_way_comparison |
| |
| EXPECT_EQ(ifuture, t + absl::InfiniteDuration()); |
| EXPECT_EQ(ipast, t - absl::InfiniteDuration()); |
| } |
| |
| TEST(Time, FloorConversion) { |
| #define TEST_FLOOR_CONVERSION(TO, FROM) \ |
| EXPECT_EQ(1, TO(FROM(1001))); \ |
| EXPECT_EQ(1, TO(FROM(1000))); \ |
| EXPECT_EQ(0, TO(FROM(999))); \ |
| EXPECT_EQ(0, TO(FROM(1))); \ |
| EXPECT_EQ(0, TO(FROM(0))); \ |
| EXPECT_EQ(-1, TO(FROM(-1))); \ |
| EXPECT_EQ(-1, TO(FROM(-999))); \ |
| EXPECT_EQ(-1, TO(FROM(-1000))); \ |
| EXPECT_EQ(-2, TO(FROM(-1001))); |
| |
| TEST_FLOOR_CONVERSION(absl::ToUnixMicros, absl::FromUnixNanos); |
| TEST_FLOOR_CONVERSION(absl::ToUnixMillis, absl::FromUnixMicros); |
| TEST_FLOOR_CONVERSION(absl::ToUnixSeconds, absl::FromUnixMillis); |
| TEST_FLOOR_CONVERSION(absl::ToTimeT, absl::FromUnixMillis); |
| |
| #undef TEST_FLOOR_CONVERSION |
| |
| // Tests ToUnixNanos. |
| EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(3) / 2)); |
| EXPECT_EQ(1, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1))); |
| EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::Nanoseconds(1) / 2)); |
| EXPECT_EQ(0, absl::ToUnixNanos(absl::UnixEpoch() + absl::ZeroDuration())); |
| EXPECT_EQ(-1, |
| absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1) / 2)); |
| EXPECT_EQ(-1, absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(1))); |
| EXPECT_EQ(-2, |
| absl::ToUnixNanos(absl::UnixEpoch() - absl::Nanoseconds(3) / 2)); |
| |
| // Tests ToUniversal, which uses a different epoch than the tests above. |
| EXPECT_EQ(1, |
| absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(101))); |
| EXPECT_EQ(1, |
| absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(100))); |
| EXPECT_EQ(0, |
| absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(99))); |
| EXPECT_EQ(0, |
| absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(1))); |
| EXPECT_EQ(0, |
| absl::ToUniversal(absl::UniversalEpoch() + absl::ZeroDuration())); |
| EXPECT_EQ(-1, |
| absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-1))); |
| EXPECT_EQ(-1, |
| absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-99))); |
| EXPECT_EQ( |
| -1, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-100))); |
| EXPECT_EQ( |
| -2, absl::ToUniversal(absl::UniversalEpoch() + absl::Nanoseconds(-101))); |
| |
| // Tests ToTimespec()/TimeFromTimespec() |
| const struct { |
| absl::Time t; |
| timespec ts; |
| } to_ts[] = { |
| {absl::FromUnixSeconds(1) + absl::Nanoseconds(1), {1, 1}}, |
| {absl::FromUnixSeconds(1) + absl::Nanoseconds(1) / 2, {1, 0}}, |
| {absl::FromUnixSeconds(1) + absl::ZeroDuration(), {1, 0}}, |
| {absl::FromUnixSeconds(0) + absl::ZeroDuration(), {0, 0}}, |
| {absl::FromUnixSeconds(0) - absl::Nanoseconds(1) / 2, {-1, 999999999}}, |
| {absl::FromUnixSeconds(0) - absl::Nanoseconds(1), {-1, 999999999}}, |
| {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1), {-1, 1}}, |
| {absl::FromUnixSeconds(-1) + absl::Nanoseconds(1) / 2, {-1, 0}}, |
| {absl::FromUnixSeconds(-1) + absl::ZeroDuration(), {-1, 0}}, |
| {absl::FromUnixSeconds(-1) - absl::Nanoseconds(1) / 2, {-2, 999999999}}, |
| }; |
| for (const auto& test : to_ts) { |
| EXPECT_THAT(absl::ToTimespec(test.t), TimespecMatcher(test.ts)); |
| } |
| const struct { |
| timespec ts; |
| absl::Time t; |
| } from_ts[] = { |
| {{1, 1}, absl::FromUnixSeconds(1) + absl::Nanoseconds(1)}, |
| {{1, 0}, absl::FromUnixSeconds(1) + absl::ZeroDuration()}, |
| {{0, 0}, absl::FromUnixSeconds(0) + absl::ZeroDuration()}, |
| {{0, -1}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, |
| {{-1, 999999999}, absl::FromUnixSeconds(0) - absl::Nanoseconds(1)}, |
| {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Nanoseconds(1)}, |
| {{-1, 0}, absl::FromUnixSeconds(-1) + absl::ZeroDuration()}, |
| {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, |
| {{-2, 999999999}, absl::FromUnixSeconds(-1) - absl::Nanoseconds(1)}, |
| }; |
| for (const auto& test : from_ts) { |
| EXPECT_EQ(test.t, absl::TimeFromTimespec(test.ts)); |
| } |
| |
| // Tests absl::ToTimeval()/TimeFromTimeval() (same as timespec above) |
| const struct { |
| absl::Time t; |
| timeval tv; |
| } to_tv[] = { |
| {absl::FromUnixSeconds(1) + absl::Microseconds(1), {1, 1}}, |
| {absl::FromUnixSeconds(1) + absl::Microseconds(1) / 2, {1, 0}}, |
| {absl::FromUnixSeconds(1) + absl::ZeroDuration(), {1, 0}}, |
| {absl::FromUnixSeconds(0) + absl::ZeroDuration(), {0, 0}}, |
| {absl::FromUnixSeconds(0) - absl::Microseconds(1) / 2, {-1, 999999}}, |
| {absl::FromUnixSeconds(0) - absl::Microseconds(1), {-1, 999999}}, |
| {absl::FromUnixSeconds(-1) + absl::Microseconds(1), {-1, 1}}, |
| {absl::FromUnixSeconds(-1) + absl::Microseconds(1) / 2, {-1, 0}}, |
| {absl::FromUnixSeconds(-1) + absl::ZeroDuration(), {-1, 0}}, |
| {absl::FromUnixSeconds(-1) - absl::Microseconds(1) / 2, {-2, 999999}}, |
| }; |
| for (const auto& test : to_tv) { |
| EXPECT_THAT(absl::ToTimeval(test.t), TimevalMatcher(test.tv)); |
| } |
| const struct { |
| timeval tv; |
| absl::Time t; |
| } from_tv[] = { |
| {{1, 1}, absl::FromUnixSeconds(1) + absl::Microseconds(1)}, |
| {{1, 0}, absl::FromUnixSeconds(1) + absl::ZeroDuration()}, |
| {{0, 0}, absl::FromUnixSeconds(0) + absl::ZeroDuration()}, |
| {{0, -1}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, |
| {{-1, 999999}, absl::FromUnixSeconds(0) - absl::Microseconds(1)}, |
| {{-1, 1}, absl::FromUnixSeconds(-1) + absl::Microseconds(1)}, |
| {{-1, 0}, absl::FromUnixSeconds(-1) + absl::ZeroDuration()}, |
| {{-1, -1}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, |
| {{-2, 999999}, absl::FromUnixSeconds(-1) - absl::Microseconds(1)}, |
| }; |
| for (const auto& test : from_tv) { |
| EXPECT_EQ(test.t, absl::TimeFromTimeval(test.tv)); |
| } |
| |
| // Tests flooring near negative infinity. |
| const int64_t min_plus_1 = std::numeric_limits<int64_t>::min() + 1; |
| EXPECT_EQ(min_plus_1, absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1))); |
| EXPECT_EQ(std::numeric_limits<int64_t>::min(), |
| absl::ToUnixSeconds(absl::FromUnixSeconds(min_plus_1) - |
| absl::Nanoseconds(1) / 2)); |
| |
| // Tests flooring near positive infinity. |
| EXPECT_EQ(std::numeric_limits<int64_t>::max(), |
| absl::ToUnixSeconds( |
| absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) + |
| absl::Nanoseconds(1) / 2)); |
| EXPECT_EQ(std::numeric_limits<int64_t>::max(), |
| absl::ToUnixSeconds( |
| absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()))); |
| EXPECT_EQ(std::numeric_limits<int64_t>::max() - 1, |
| absl::ToUnixSeconds( |
| absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()) - |
| absl::Nanoseconds(1) / 2)); |
| } |
| |
| TEST(Time, RoundtripConversion) { |
| #define TEST_CONVERSION_ROUND_TRIP(SOURCE, FROM, TO, MATCHER) \ |
| EXPECT_THAT(TO(FROM(SOURCE)), MATCHER(SOURCE)) |
| |
| // FromUnixNanos() and ToUnixNanos() |
| int64_t now_ns = absl::GetCurrentTimeNanos(); |
| TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixNanos, absl::ToUnixNanos, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixNanos, absl::ToUnixNanos, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixNanos, absl::ToUnixNanos, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(now_ns, absl::FromUnixNanos, absl::ToUnixNanos, |
| testing::Eq) |
| << now_ns; |
| |
| // FromUnixMicros() and ToUnixMicros() |
| int64_t now_us = absl::GetCurrentTimeNanos() / 1000; |
| TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMicros, absl::ToUnixMicros, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMicros, absl::ToUnixMicros, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMicros, absl::ToUnixMicros, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(now_us, absl::FromUnixMicros, absl::ToUnixMicros, |
| testing::Eq) |
| << now_us; |
| |
| // FromUnixMillis() and ToUnixMillis() |
| int64_t now_ms = absl::GetCurrentTimeNanos() / 1000000; |
| TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixMillis, absl::ToUnixMillis, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixMillis, absl::ToUnixMillis, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixMillis, absl::ToUnixMillis, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(now_ms, absl::FromUnixMillis, absl::ToUnixMillis, |
| testing::Eq) |
| << now_ms; |
| |
| // FromUnixSeconds() and ToUnixSeconds() |
| int64_t now_s = std::time(nullptr); |
| TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(0, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(1, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(now_s, absl::FromUnixSeconds, absl::ToUnixSeconds, |
| testing::Eq) |
| << now_s; |
| |
| // FromTimeT() and ToTimeT() |
| time_t now_time_t = std::time(nullptr); |
| TEST_CONVERSION_ROUND_TRIP(-1, absl::FromTimeT, absl::ToTimeT, testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(0, absl::FromTimeT, absl::ToTimeT, testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(1, absl::FromTimeT, absl::ToTimeT, testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(now_time_t, absl::FromTimeT, absl::ToTimeT, |
| testing::Eq) |
| << now_time_t; |
| |
| // TimeFromTimeval() and absl::ToTimeval() |
| timeval tv; |
| tv.tv_sec = -1; |
| tv.tv_usec = 0; |
| TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| TimevalMatcher); |
| tv.tv_sec = -1; |
| tv.tv_usec = 999999; |
| TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| TimevalMatcher); |
| tv.tv_sec = 0; |
| tv.tv_usec = 0; |
| TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| TimevalMatcher); |
| tv.tv_sec = 0; |
| tv.tv_usec = 1; |
| TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| TimevalMatcher); |
| tv.tv_sec = 1; |
| tv.tv_usec = 0; |
| TEST_CONVERSION_ROUND_TRIP(tv, absl::TimeFromTimeval, absl::ToTimeval, |
| TimevalMatcher); |
| |
| // TimeFromTimespec() and ToTimespec() |
| timespec ts; |
| ts.tv_sec = -1; |
| ts.tv_nsec = 0; |
| TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| TimespecMatcher); |
| ts.tv_sec = -1; |
| ts.tv_nsec = 999999999; |
| TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| TimespecMatcher); |
| ts.tv_sec = 0; |
| ts.tv_nsec = 0; |
| TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| TimespecMatcher); |
| ts.tv_sec = 0; |
| ts.tv_nsec = 1; |
| TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| TimespecMatcher); |
| ts.tv_sec = 1; |
| ts.tv_nsec = 0; |
| TEST_CONVERSION_ROUND_TRIP(ts, absl::TimeFromTimespec, absl::ToTimespec, |
| TimespecMatcher); |
| |
| // FromUDate() and ToUDate() |
| double now_ud = absl::GetCurrentTimeNanos() / 1000000; |
| TEST_CONVERSION_ROUND_TRIP(-1.5, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq); |
| TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq); |
| TEST_CONVERSION_ROUND_TRIP(-0.5, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq); |
| TEST_CONVERSION_ROUND_TRIP(0, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq); |
| TEST_CONVERSION_ROUND_TRIP(0.5, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq); |
| TEST_CONVERSION_ROUND_TRIP(1, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq); |
| TEST_CONVERSION_ROUND_TRIP(1.5, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq); |
| TEST_CONVERSION_ROUND_TRIP(now_ud, absl::FromUDate, absl::ToUDate, |
| testing::DoubleEq) |
| << std::fixed << std::setprecision(17) << now_ud; |
| |
| // FromUniversal() and ToUniversal() |
| int64_t now_uni = ((719162LL * (24 * 60 * 60)) * (1000 * 1000 * 10)) + |
| (absl::GetCurrentTimeNanos() / 100); |
| TEST_CONVERSION_ROUND_TRIP(-1, absl::FromUniversal, absl::ToUniversal, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(0, absl::FromUniversal, absl::ToUniversal, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(1, absl::FromUniversal, absl::ToUniversal, |
| testing::Eq); |
| TEST_CONVERSION_ROUND_TRIP(now_uni, absl::FromUniversal, absl::ToUniversal, |
| testing::Eq) |
| << now_uni; |
| |
| #undef TEST_CONVERSION_ROUND_TRIP |
| } |
| |
| template <typename Duration> |
| std::chrono::system_clock::time_point MakeChronoUnixTime(const Duration& d) { |
| return std::chrono::system_clock::from_time_t(0) + d; |
| } |
| |
| TEST(Time, FromChrono) { |
| EXPECT_EQ(absl::FromTimeT(-1), |
| absl::FromChrono(std::chrono::system_clock::from_time_t(-1))); |
| EXPECT_EQ(absl::FromTimeT(0), |
| absl::FromChrono(std::chrono::system_clock::from_time_t(0))); |
| EXPECT_EQ(absl::FromTimeT(1), |
| absl::FromChrono(std::chrono::system_clock::from_time_t(1))); |
| |
| EXPECT_EQ( |
| absl::FromUnixMillis(-1), |
| absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(-1)))); |
| EXPECT_EQ(absl::FromUnixMillis(0), |
| absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(0)))); |
| EXPECT_EQ(absl::FromUnixMillis(1), |
| absl::FromChrono(MakeChronoUnixTime(std::chrono::milliseconds(1)))); |
| |
| // Chrono doesn't define exactly its range and precision (neither does |
| // absl::Time), so let's simply test +/- ~100 years to make sure things work. |
| const auto century_sec = 60 * 60 * 24 * 365 * int64_t{100}; |
| const auto century = std::chrono::seconds(century_sec); |
| const auto chrono_future = MakeChronoUnixTime(century); |
| const auto chrono_past = MakeChronoUnixTime(-century); |
| EXPECT_EQ(absl::FromUnixSeconds(century_sec), |
| absl::FromChrono(chrono_future)); |
| EXPECT_EQ(absl::FromUnixSeconds(-century_sec), absl::FromChrono(chrono_past)); |
| |
| // Roundtrip them both back to chrono. |
| EXPECT_EQ(chrono_future, |
| absl::ToChronoTime(absl::FromUnixSeconds(century_sec))); |
| EXPECT_EQ(chrono_past, |
| absl::ToChronoTime(absl::FromUnixSeconds(-century_sec))); |
| } |
| |
| TEST(Time, ToChronoTime) { |
| EXPECT_EQ(std::chrono::system_clock::from_time_t(-1), |
| absl::ToChronoTime(absl::FromTimeT(-1))); |
| EXPECT_EQ(std::chrono::system_clock::from_time_t(0), |
| absl::ToChronoTime(absl::FromTimeT(0))); |
| EXPECT_EQ(std::chrono::system_clock::from_time_t(1), |
| absl::ToChronoTime(absl::FromTimeT(1))); |
| |
| EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(-1)), |
| absl::ToChronoTime(absl::FromUnixMillis(-1))); |
| EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(0)), |
| absl::ToChronoTime(absl::FromUnixMillis(0))); |
| EXPECT_EQ(MakeChronoUnixTime(std::chrono::milliseconds(1)), |
| absl::ToChronoTime(absl::FromUnixMillis(1))); |
| |
| // Time before the Unix epoch should floor, not trunc. |
| const auto tick = absl::Nanoseconds(1) / 4; |
| EXPECT_EQ(std::chrono::system_clock::from_time_t(0) - |
| std::chrono::system_clock::duration(1), |
| absl::ToChronoTime(absl::UnixEpoch() - tick)); |
| } |
| |
| // Check that absl::int128 works as a std::chrono::duration representation. |
| TEST(Time, Chrono128) { |
| // Define a std::chrono::time_point type whose time[sic]_since_epoch() is |
| // a signed 128-bit count of attoseconds. This has a range and resolution |
| // (currently) beyond those of absl::Time, and undoubtedly also beyond those |
| // of std::chrono::system_clock::time_point. |
| // |
| // Note: The to/from-chrono support should probably be updated to handle |
| // such wide representations. |
| using Timestamp = |
| std::chrono::time_point<std::chrono::system_clock, |
| std::chrono::duration<absl::int128, std::atto>>; |
| |
| // Expect that we can round-trip the std::chrono::system_clock::time_point |
| // extremes through both absl::Time and Timestamp, and that Timestamp can |
| // handle the (current) absl::Time extremes. |
| // |
| // Note: We should use std::chrono::floor() instead of time_point_cast(), |
| // but floor() is only available since c++17. |
| for (const auto tp : {std::chrono::system_clock::time_point::min(), |
| std::chrono::system_clock::time_point::max()}) { |
| EXPECT_EQ(tp, absl::ToChronoTime(absl::FromChrono(tp))); |
| EXPECT_EQ(tp, std::chrono::time_point_cast< |
| std::chrono::system_clock::time_point::duration>( |
| std::chrono::time_point_cast<Timestamp::duration>(tp))); |
| } |
| Timestamp::duration::rep v = std::numeric_limits<int64_t>::min(); |
| v *= Timestamp::duration::period::den; |
| auto ts = Timestamp(Timestamp::duration(v)); |
| ts += std::chrono::duration<int64_t, std::atto>(0); |
| EXPECT_EQ(std::numeric_limits<int64_t>::min(), |
| ts.time_since_epoch().count() / Timestamp::duration::period::den); |
| EXPECT_EQ(0, |
| ts.time_since_epoch().count() % Timestamp::duration::period::den); |
| v = std::numeric_limits<int64_t>::max(); |
| v *= Timestamp::duration::period::den; |
| ts = Timestamp(Timestamp::duration(v)); |
| ts += std::chrono::duration<int64_t, std::atto>(999999999750000000); |
| EXPECT_EQ(std::numeric_limits<int64_t>::max(), |
| ts.time_since_epoch().count() / Timestamp::duration::period::den); |
| EXPECT_EQ(999999999750000000, |
| ts.time_since_epoch().count() % Timestamp::duration::period::den); |
| } |
| |
| TEST(Time, TimeZoneAt) { |
| const absl::TimeZone nyc = |
| absl::time_internal::LoadTimeZone("America/New_York"); |
| const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; |
| |
| // A non-transition where the civil time is unique. |
| absl::CivilSecond nov01(2013, 11, 1, 8, 30, 0); |
| const auto nov01_ci = nyc.At(nov01); |
| EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, nov01_ci.kind); |
| EXPECT_EQ("Fri, 1 Nov 2013 08:30:00 -0400 (EDT)", |
| absl::FormatTime(fmt, nov01_ci.pre, nyc)); |
| EXPECT_EQ(nov01_ci.pre, nov01_ci.trans); |
| EXPECT_EQ(nov01_ci.pre, nov01_ci.post); |
| EXPECT_EQ(nov01_ci.pre, absl::FromCivil(nov01, nyc)); |
| |
| // A Spring DST transition, when there is a gap in civil time |
| // and we prefer the later of the possible interpretations of a |
| // non-existent time. |
| absl::CivilSecond mar13(2011, 3, 13, 2, 15, 0); |
| const auto mar_ci = nyc.At(mar13); |
| EXPECT_EQ(absl::TimeZone::TimeInfo::SKIPPED, mar_ci.kind); |
| EXPECT_EQ("Sun, 13 Mar 2011 03:15:00 -0400 (EDT)", |
| absl::FormatTime(fmt, mar_ci.pre, nyc)); |
| EXPECT_EQ("Sun, 13 Mar 2011 03:00:00 -0400 (EDT)", |
| absl::FormatTime(fmt, mar_ci.trans, nyc)); |
| EXPECT_EQ("Sun, 13 Mar 2011 01:15:00 -0500 (EST)", |
| absl::FormatTime(fmt, mar_ci.post, nyc)); |
| EXPECT_EQ(mar_ci.trans, absl::FromCivil(mar13, nyc)); |
| |
| // A Fall DST transition, when civil times are repeated and |
| // we prefer the earlier of the possible interpretations of an |
| // ambiguous time. |
| absl::CivilSecond nov06(2011, 11, 6, 1, 15, 0); |
| const auto nov06_ci = nyc.At(nov06); |
| EXPECT_EQ(absl::TimeZone::TimeInfo::REPEATED, nov06_ci.kind); |
| EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0400 (EDT)", |
| absl::FormatTime(fmt, nov06_ci.pre, nyc)); |
| EXPECT_EQ("Sun, 6 Nov 2011 01:00:00 -0500 (EST)", |
| absl::FormatTime(fmt, nov06_ci.trans, nyc)); |
| EXPECT_EQ("Sun, 6 Nov 2011 01:15:00 -0500 (EST)", |
| absl::FormatTime(fmt, nov06_ci.post, nyc)); |
| EXPECT_EQ(nov06_ci.pre, absl::FromCivil(nov06, nyc)); |
| |
| // Check that (time_t) -1 is handled correctly. |
| absl::CivilSecond minus1(1969, 12, 31, 18, 59, 59); |
| const auto minus1_cl = nyc.At(minus1); |
| EXPECT_EQ(absl::TimeZone::TimeInfo::UNIQUE, minus1_cl.kind); |
| EXPECT_EQ(-1, absl::ToTimeT(minus1_cl.pre)); |
| EXPECT_EQ("Wed, 31 Dec 1969 18:59:59 -0500 (EST)", |
| absl::FormatTime(fmt, minus1_cl.pre, nyc)); |
| EXPECT_EQ("Wed, 31 Dec 1969 23:59:59 +0000 (UTC)", |
| absl::FormatTime(fmt, minus1_cl.pre, absl::UTCTimeZone())); |
| } |
| |
| // FromCivil(CivilSecond(year, mon, day, hour, min, sec), UTCTimeZone()) |
| // has a specialized fastpath implementation, which we exercise here. |
| TEST(Time, FromCivilUTC) { |
| const absl::TimeZone utc = absl::UTCTimeZone(); |
| const std::string fmt = "%a, %e %b %Y %H:%M:%S %z (%Z)"; |
| const int kMax = std::numeric_limits<int>::max(); |
| const int kMin = std::numeric_limits<int>::min(); |
| absl::Time t; |
| |
| // 292091940881 is the last positive year to use the fastpath. |
| t = absl::FromCivil( |
| absl::CivilSecond(292091940881, kMax, kMax, kMax, kMax, kMax), utc); |
| EXPECT_EQ("Fri, 25 Nov 292277026596 12:21:07 +0000 (UTC)", |
| absl::FormatTime(fmt, t, utc)); |
| t = absl::FromCivil( |
| absl::CivilSecond(292091940882, kMax, kMax, kMax, kMax, kMax), utc); |
| EXPECT_EQ("infinite-future", absl::FormatTime(fmt, t, utc)); // no overflow |
| |
| // -292091936940 is the last negative year to use the fastpath. |
| t = absl::FromCivil( |
| absl::CivilSecond(-292091936940, kMin, kMin, kMin, kMin, kMin), utc); |
| EXPECT_EQ("Fri, 1 Nov -292277022657 10:37:52 +0000 (UTC)", |
| absl::FormatTime(fmt, t, utc)); |
| t = absl::FromCivil( |
| absl::CivilSecond(-292091936941, kMin, kMin, kMin, kMin, kMin), utc); |
| EXPECT_EQ("infinite-past", absl::FormatTime(fmt, t, utc)); // no underflow |
| |
| // Check that we're counting leap years correctly. |
| t = absl::FromCivil(absl::CivilSecond(1900, 2, 28, 23, 59, 59), utc); |
| EXPECT_EQ("Wed, 28 Feb 1900 23:59:59 +0000 (UTC)", |
| absl::FormatTime(fmt, t, utc)); |
| t = absl::FromCivil(absl::CivilSecond(1900, 3, 1, 0, 0, 0), utc); |
| EXPECT_EQ("Thu, 1 Mar 1900 00:00:00 +0000 (UTC)", |
| absl::FormatTime(fmt, t, utc)); |
| t = absl::FromCivil(absl::CivilSecond(2000, 2, 29, 23, 59, 59), utc); |
| EXPECT_EQ("Tue, 29 Feb 2000 23:59:59 +0000 (UTC)", |
| absl::FormatTime(fmt, t, utc)); |
| t = absl::FromCivil(absl::CivilSecond(2000, 3, 1, 0, 0, 0), utc); |
| EXPECT_EQ("Wed, 1 Mar 2000 00:00:00 +0000 (UTC)", |
| absl::FormatTime(fmt, t, utc)); |
| } |
| |
| TEST(Time, ToTM) { |
| const absl::TimeZone utc = absl::UTCTimeZone(); |
| |
| // Compares the results of absl::ToTM() to gmtime_r() for lots of times over |
| // the course of a few days. |
| const absl::Time start = |
| absl::FromCivil(absl::CivilSecond(2014, 1, 2, 3, 4, 5), utc); |
| const absl::Time end = |
| absl::FromCivil(absl::CivilSecond(2014, 1, 5, 3, 4, 5), utc); |
| for (absl::Time t = start; t < end; t += absl::Seconds(30)) { |
| const struct tm tm_bt = absl::ToTM(t, utc); |
| const time_t tt = absl::ToTimeT(t); |
| struct tm tm_lc; |
| #ifdef _WIN32 |
| gmtime_s(&tm_lc, &tt); |
| #else |
| gmtime_r(&tt, &tm_lc); |
| #endif |
| EXPECT_EQ(tm_lc.tm_year, tm_bt.tm_year); |
| EXPECT_EQ(tm_lc.tm_mon, tm_bt.tm_mon); |
| EXPECT_EQ(tm_lc.tm_mday, tm_bt.tm_mday); |
| EXPECT_EQ(tm_lc.tm_hour, tm_bt.tm_hour); |
| EXPECT_EQ(tm_lc.tm_min, tm_bt.tm_min); |
| EXPECT_EQ(tm_lc.tm_sec, tm_bt.tm_sec); |
| EXPECT_EQ(tm_lc.tm_wday, tm_bt.tm_wday); |
| EXPECT_EQ(tm_lc.tm_yday, tm_bt.tm_yday); |
| EXPECT_EQ(tm_lc.tm_isdst, tm_bt.tm_isdst); |
| |
| ASSERT_FALSE(HasFailure()); |
| } |
| |
| // Checks that the tm_isdst field is correct when in standard time. |
| const absl::TimeZone nyc = |
| absl::time_internal::LoadTimeZone("America/New_York"); |
| absl::Time t = absl::FromCivil(absl::CivilSecond(2014, 3, 1, 0, 0, 0), nyc); |
| struct tm tm = absl::ToTM(t, nyc); |
| EXPECT_FALSE(tm.tm_isdst); |
| |
| // Checks that the tm_isdst field is correct when in daylight time. |
| t = absl::FromCivil(absl::CivilSecond(2014, 4, 1, 0, 0, 0), nyc); |
| tm = absl::ToTM(t, nyc); |
| EXPECT_TRUE(tm.tm_isdst); |
| |
| // Checks overflow. |
| tm = absl::ToTM(absl::InfiniteFuture(), nyc); |
| EXPECT_EQ(std::numeric_limits<int>::max() - 1900, tm.tm_year); |
| EXPECT_EQ(11, tm.tm_mon); |
| EXPECT_EQ(31, tm.tm_mday); |
| EXPECT_EQ(23, tm.tm_hour); |
| EXPECT_EQ(59, tm.tm_min); |
| EXPECT_EQ(59, tm.tm_sec); |
| EXPECT_EQ(4, tm.tm_wday); |
| EXPECT_EQ(364, tm.tm_yday); |
| EXPECT_FALSE(tm.tm_isdst); |
| |
| // Checks underflow. |
| tm = absl::ToTM(absl::InfinitePast(), nyc); |
| EXPECT_EQ(std::numeric_limits<int>::min(), tm.tm_year); |
| EXPECT_EQ(0, tm.tm_mon); |
| EXPECT_EQ(1, tm.tm_mday); |
| EXPECT_EQ(0, tm.tm_hour); |
| EXPECT_EQ(0, tm.tm_min); |
| EXPECT_EQ(0, tm.tm_sec); |
| EXPECT_EQ(0, tm.tm_wday); |
| EXPECT_EQ(0, tm.tm_yday); |
| EXPECT_FALSE(tm.tm_isdst); |
| } |
| |
| TEST(Time, FromTM) { |
| const absl::TimeZone nyc = |
| absl::time_internal::LoadTimeZone("America/New_York"); |
| |
| // Verifies that tm_isdst doesn't affect anything when the time is unique. |
| struct tm tm; |
| std::memset(&tm, 0, sizeof(tm)); |
| tm.tm_year = 2014 - 1900; |
| tm.tm_mon = 6 - 1; |
| tm.tm_mday = 28; |
| tm.tm_hour = 1; |
| tm.tm_min = 2; |
| tm.tm_sec = 3; |
| tm.tm_isdst = -1; |
| absl::Time t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST |
| tm.tm_isdst = 0; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST |
| tm.tm_isdst = 1; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-06-28T01:02:03-04:00", absl::FormatTime(t, nyc)); // DST |
| |
| // Adjusts tm to refer to an ambiguous time. |
| tm.tm_year = 2014 - 1900; |
| tm.tm_mon = 11 - 1; |
| tm.tm_mday = 2; |
| tm.tm_hour = 1; |
| tm.tm_min = 30; |
| tm.tm_sec = 42; |
| tm.tm_isdst = -1; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| tm.tm_isdst = 0; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-11-02T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD |
| tm.tm_isdst = 1; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-11-02T01:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| |
| // Adjusts tm to refer to a skipped time. |
| tm.tm_year = 2014 - 1900; |
| tm.tm_mon = 3 - 1; |
| tm.tm_mday = 9; |
| tm.tm_hour = 2; |
| tm.tm_min = 30; |
| tm.tm_sec = 42; |
| tm.tm_isdst = -1; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| tm.tm_isdst = 0; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-03-09T01:30:42-05:00", absl::FormatTime(t, nyc)); // STD |
| tm.tm_isdst = 1; |
| t = absl::FromTM(tm, nyc); |
| EXPECT_EQ("2014-03-09T03:30:42-04:00", absl::FormatTime(t, nyc)); // DST |
| |
| // Adjusts tm to refer to a time with a year larger than 2147483647. |
| tm.tm_year = 2147483647 - 1900 + 1; |
| tm.tm_mon = 6 - 1; |
| tm.tm_mday = 28; |
| tm.tm_hour = 1; |
| tm.tm_min = 2; |
| tm.tm_sec = 3; |
| tm.tm_isdst = -1; |
| t = absl::FromTM(tm, absl::UTCTimeZone()); |
| EXPECT_EQ("2147483648-06-28T01:02:03+00:00", |
| absl::FormatTime(t, absl::UTCTimeZone())); |
| |
| // Adjusts tm to refer to a time with a very large month. |
| tm.tm_year = 2019 - 1900; |
| tm.tm_mon = 2147483647; |
| tm.tm_mday = 28; |
| tm.tm_hour = 1; |
| tm.tm_min = 2; |
| tm.tm_sec = 3; |
| tm.tm_isdst = -1; |
| t = absl::FromTM(tm, absl::UTCTimeZone()); |
| EXPECT_EQ("178958989-08-28T01:02:03+00:00", |
| absl::FormatTime(t, absl::UTCTimeZone())); |
| } |
| |
| TEST(Time, TMRoundTrip) { |
| const absl::TimeZone nyc = |
| absl::time_internal::LoadTimeZone("America/New_York"); |
| |
| // Test round-tripping across a skipped transition |
| absl::Time start = absl::FromCivil(absl::CivilHour(2014, 3, 9, 0), nyc); |
| absl::Time end = absl::FromCivil(absl::CivilHour(2014, 3, 9, 4), nyc); |
| for (absl::Time t = start; t < end; t += absl::Minutes(1)) { |
| struct tm tm = absl::ToTM(t, nyc); |
| absl::Time rt = absl::FromTM(tm, nyc); |
| EXPECT_EQ(rt, t); |
| } |
| |
| // Test round-tripping across an ambiguous transition |
| start = absl::FromCivil(absl::CivilHour(2014, 11, 2, 0), nyc); |
| end = absl::FromCivil(absl::CivilHour(2014, 11, 2, 4), nyc); |
| for (absl::Time t = start; t < end; t += absl::Minutes(1)) { |
| struct tm tm = absl::ToTM(t, nyc); |
| absl::Time rt = absl::FromTM(tm, nyc); |
| EXPECT_EQ(rt, t); |
| } |
| |
| // Test round-tripping of unique instants crossing a day boundary |
| start = absl::FromCivil(absl::CivilHour(2014, 6, 27, 22), nyc); |
| end = absl::FromCivil(absl::CivilHour(2014, 6, 28, 4), nyc); |
| for (absl::Time t = start; t < end; t += absl::Minutes(1)) { |
| struct tm tm = absl::ToTM(t, nyc); |
| absl::Time rt = absl::FromTM(tm, nyc); |
| EXPECT_EQ(rt, t); |
| } |
| } |
| |
| TEST(Time, Range) { |
| // The API's documented range is +/- 100 billion years. |
| const absl::Duration range = absl::Hours(24) * 365.2425 * 100000000000; |
| |
| // Arithmetic and comparison still works at +/-range around base values. |
| absl::Time bases[2] = {absl::UnixEpoch(), absl::Now()}; |
| for (const auto base : bases) { |
| absl::Time bottom = base - range; |
| EXPECT_GT(bottom, bottom - absl::Nanoseconds(1)); |
| EXPECT_LT(bottom, bottom + absl::Nanoseconds(1)); |
| absl::Time top = base + range; |
| EXPECT_GT(top, top - absl::Nanoseconds(1)); |
| EXPECT_LT(top, top + absl::Nanoseconds(1)); |
| absl::Duration full_range = 2 * range; |
| EXPECT_EQ(full_range, top - bottom); |
| EXPECT_EQ(-full_range, bottom - top); |
| } |
| } |
| |
| TEST(Time, Limits) { |
| // It is an implementation detail that Time().rep_ == ZeroDuration(), |
| // and that the resolution of a Duration is 1/4 of a nanosecond. |
| const absl::Time zero; |
| const absl::Time max = |
| zero + absl::Seconds(std::numeric_limits<int64_t>::max()) + |
| absl::Nanoseconds(999999999) + absl::Nanoseconds(3) / 4; |
| const absl::Time min = |
| zero + absl::Seconds(std::numeric_limits<int64_t>::min()); |
| |
| // Some simple max/min bounds checks. |
| EXPECT_LT(max, absl::InfiniteFuture()); |
| EXPECT_GT(min, absl::InfinitePast()); |
| EXPECT_LT(zero, max); |
| EXPECT_GT(zero, min); |
| EXPECT_GE(absl::UnixEpoch(), min); |
| EXPECT_LT(absl::UnixEpoch(), max); |
| |
| // Check sign of Time differences. |
| EXPECT_LT(absl::ZeroDuration(), max - zero); |
| EXPECT_LT(absl::ZeroDuration(), |
| zero - absl::Nanoseconds(1) / 4 - min); // avoid zero - min |
| |
| // Arithmetic works at max - 0.25ns and min + 0.25ns. |
| EXPECT_GT(max, max - absl::Nanoseconds(1) / 4); |
| EXPECT_LT(min, min + absl::Nanoseconds(1) / 4); |
| } |
| |
| TEST(Time, ConversionSaturation) { |
| const absl::TimeZone utc = absl::UTCTimeZone(); |
| absl::Time t; |
| |
| const auto max_time_t = std::numeric_limits<time_t>::max(); |
| const auto min_time_t = std::numeric_limits<time_t>::min(); |
| time_t tt = max_time_t - 1; |
| t = absl::FromTimeT(tt); |
| tt = absl::ToTimeT(t); |
| EXPECT_EQ(max_time_t - 1, tt); |
| t += absl::Seconds(1); |
| tt = absl::ToTimeT(t); |
| EXPECT_EQ(max_time_t, tt); |
| t += absl::Seconds(1); // no effect |
| tt = absl::ToTimeT(t); |
| EXPECT_EQ(max_time_t, tt); |
| |
| tt = min_time_t + 1; |
| t = absl::FromTimeT(tt); |
| tt = absl::ToTimeT(t); |
| EXPECT_EQ(min_time_t + 1, tt); |
| t -= absl::Seconds(1); |
| tt = absl::ToTimeT(t); |
| EXPECT_EQ(min_time_t, tt); |
| t -= absl::Seconds(1); // no effect |
| tt = absl::ToTimeT(t); |
| EXPECT_EQ(min_time_t, tt); |
| |
| const auto max_timeval_sec = |
| std::numeric_limits<decltype(timeval::tv_sec)>::max(); |
| const auto min_timeval_sec = |
| std::numeric_limits<decltype(timeval::tv_sec)>::min(); |
| timeval tv; |
| tv.tv_sec = max_timeval_sec; |
| tv.tv_usec = 999998; |
| t = absl::TimeFromTimeval(tv); |
| tv = absl::ToTimeval(t); |
| EXPECT_EQ(max_timeval_sec, tv.tv_sec); |
| EXPECT_EQ(999998, tv.tv_usec); |
| t += absl::Microseconds(1); |
| tv = absl::ToTimeval(t); |
| EXPECT_EQ(max_timeval_sec, tv.tv_sec); |
| EXPECT_EQ(999999, tv.tv_usec); |
| t += absl::Microseconds(1); // no effect |
| tv = absl::ToTimeval(t); |
| EXPECT_EQ(max_timeval_sec, tv.tv_sec); |
| EXPECT_EQ(999999, tv.tv_usec); |
| |
| tv.tv_sec = min_timeval_sec; |
| tv.tv_usec = 1; |
| t = absl::TimeFromTimeval(tv); |
| tv = absl::ToTimeval(t); |
| EXPECT_EQ(min_timeval_sec, tv.tv_sec); |
| EXPECT_EQ(1, tv.tv_usec); |
| t -= absl::Microseconds(1); |
| tv = absl::ToTimeval(t); |
| EXPECT_EQ(min_timeval_sec, tv.tv_sec); |
| EXPECT_EQ(0, tv.tv_usec); |
| t -= absl::Microseconds(1); // no effect |
| tv = absl::ToTimeval(t); |
| EXPECT_EQ(min_timeval_sec, tv.tv_sec); |
| EXPECT_EQ(0, tv.tv_usec); |
| |
| const auto max_timespec_sec = |
| std::numeric_limits<decltype(timespec::tv_sec)>::max(); |
| const auto min_timespec_sec = |
| std::numeric_limits<decltype(timespec::tv_sec)>::min(); |
| timespec ts; |
| ts.tv_sec = max_timespec_sec; |
| ts.tv_nsec = 999999998; |
| t = absl::TimeFromTimespec(ts); |
| ts = absl::ToTimespec(t); |
| EXPECT_EQ(max_timespec_sec, ts.tv_sec); |
| EXPECT_EQ(999999998, ts.tv_nsec); |
| t += absl::Nanoseconds(1); |
| ts = absl::ToTimespec(t); |
| EXPECT_EQ(max_timespec_sec, ts.tv_sec); |
| EXPECT_EQ(999999999, ts.tv_nsec); |
| t += absl::Nanoseconds(1); // no effect |
| ts = absl::ToTimespec(t); |
| EXPECT_EQ(max_timespec_sec, ts.tv_sec); |
| EXPECT_EQ(999999999, ts.tv_nsec); |
| |
| ts.tv_sec = min_timespec_sec; |
| ts.tv_nsec = 1; |
| t = absl::TimeFromTimespec(ts); |
| ts = absl::ToTimespec(t); |
| EXPECT_EQ(min_timespec_sec, ts.tv_sec); |
| EXPECT_EQ(1, ts.tv_nsec); |
| t -= absl::Nanoseconds(1); |
| ts = absl::ToTimespec(t); |
| EXPECT_EQ(min_timespec_sec, ts.tv_sec); |
| EXPECT_EQ(0, ts.tv_nsec); |
| t -= absl::Nanoseconds(1); // no effect |
| ts = absl::ToTimespec(t); |
| EXPECT_EQ(min_timespec_sec, ts.tv_sec); |
| EXPECT_EQ(0, ts.tv_nsec); |
| |
| // Checks how TimeZone::At() saturates on infinities. |
| auto ci = utc.At(absl::InfiniteFuture()); |
| EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::max(), 12, 31, 23, 59, 59, |
| 0, false); |
| EXPECT_EQ(absl::InfiniteDuration(), ci.subsecond); |
| EXPECT_EQ(absl::Weekday::thursday, absl::GetWeekday(ci.cs)); |
| EXPECT_EQ(365, absl::GetYearDay(ci.cs)); |
| EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At() |
| ci = utc.At(absl::InfinitePast()); |
| EXPECT_CIVIL_INFO(ci, std::numeric_limits<int64_t>::min(), 1, 1, 0, 0, 0, 0, |
| false); |
| EXPECT_EQ(-absl::InfiniteDuration(), ci.subsecond); |
| EXPECT_EQ(absl::Weekday::sunday, absl::GetWeekday(ci.cs)); |
| EXPECT_EQ(1, absl::GetYearDay(ci.cs)); |
| EXPECT_STREQ("-00", ci.zone_abbr); // artifact of TimeZone::At() |
| |
| // Approach the maximal Time value from below. |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 6), utc); |
| EXPECT_EQ("292277026596-12-04T15:30:06+00:00", |
| absl::FormatTime(absl::RFC3339_full, t, utc)); |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 7), utc); |
| EXPECT_EQ("292277026596-12-04T15:30:07+00:00", |
| absl::FormatTime(absl::RFC3339_full, t, utc)); |
| EXPECT_EQ( |
| absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), |
| t); |
| |
| // Checks that we can also get the maximal Time value for a far-east zone. |
| const absl::TimeZone plus14 = absl::FixedTimeZone(14 * 60 * 60); |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 5, 30, 7), plus14); |
| EXPECT_EQ("292277026596-12-05T05:30:07+14:00", |
| absl::FormatTime(absl::RFC3339_full, t, plus14)); |
| EXPECT_EQ( |
| absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::max()), |
| t); |
| |
| // One second later should push us to infinity. |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 15, 30, 8), utc); |
| EXPECT_EQ("infinite-future", absl::FormatTime(absl::RFC3339_full, t, utc)); |
| |
| // Approach the minimal Time value from above. |
| t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 53), utc); |
| EXPECT_EQ("-292277022657-01-27T08:29:53+00:00", |
| absl::FormatTime(absl::RFC3339_full, t, utc)); |
| t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 52), utc); |
| EXPECT_EQ("-292277022657-01-27T08:29:52+00:00", |
| absl::FormatTime(absl::RFC3339_full, t, utc)); |
| EXPECT_EQ( |
| absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), |
| t); |
| |
| // Checks that we can also get the minimal Time value for a far-west zone. |
| const absl::TimeZone minus12 = absl::FixedTimeZone(-12 * 60 * 60); |
| t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 26, 20, 29, 52), |
| minus12); |
| EXPECT_EQ("-292277022657-01-26T20:29:52-12:00", |
| absl::FormatTime(absl::RFC3339_full, t, minus12)); |
| EXPECT_EQ( |
| absl::UnixEpoch() + absl::Seconds(std::numeric_limits<int64_t>::min()), |
| t); |
| |
| // One second before should push us to -infinity. |
| t = absl::FromCivil(absl::CivilSecond(-292277022657, 1, 27, 8, 29, 51), utc); |
| EXPECT_EQ("infinite-past", absl::FormatTime(absl::RFC3339_full, t, utc)); |
| } |
| |
| // In zones with POSIX-style recurring rules we use special logic to |
| // handle conversions in the distant future. Here we check the limits |
| // of those conversions, particularly with respect to integer overflow. |
| TEST(Time, ExtendedConversionSaturation) { |
| const absl::TimeZone syd = |
| absl::time_internal::LoadTimeZone("Australia/Sydney"); |
| const absl::TimeZone nyc = |
| absl::time_internal::LoadTimeZone("America/New_York"); |
| const absl::Time max = |
| absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()); |
| absl::TimeZone::CivilInfo ci; |
| absl::Time t; |
| |
| // The maximal time converted in each zone. |
| ci = syd.At(max); |
| EXPECT_CIVIL_INFO(ci, 292277026596, 12, 5, 2, 30, 7, 39600, true); |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 7), syd); |
| EXPECT_EQ(max, t); |
| ci = nyc.At(max); |
| EXPECT_CIVIL_INFO(ci, 292277026596, 12, 4, 10, 30, 7, -18000, false); |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 7), nyc); |
| EXPECT_EQ(max, t); |
| |
| // One second later should push us to infinity. |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 8), syd); |
| EXPECT_EQ(absl::InfiniteFuture(), t); |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 8), nyc); |
| EXPECT_EQ(absl::InfiniteFuture(), t); |
| |
| // And we should stick there. |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 5, 2, 30, 9), syd); |
| EXPECT_EQ(absl::InfiniteFuture(), t); |
| t = absl::FromCivil(absl::CivilSecond(292277026596, 12, 4, 10, 30, 9), nyc); |
| EXPECT_EQ(absl::InfiniteFuture(), t); |
| |
| // All the way up to a saturated date/time, without overflow. |
| t = absl::FromCivil(absl::CivilSecond::max(), syd); |
| EXPECT_EQ(absl::InfiniteFuture(), t); |
| t = absl::FromCivil(absl::CivilSecond::max(), nyc); |
| EXPECT_EQ(absl::InfiniteFuture(), t); |
| } |
| |
| TEST(Time, FromCivilAlignment) { |
| const absl::TimeZone utc = absl::UTCTimeZone(); |
| const absl::CivilSecond cs(2015, 2, 3, 4, 5, 6); |
| absl::Time t = absl::FromCivil(cs, utc); |
| EXPECT_EQ("2015-02-03T04:05:06+00:00", absl::FormatTime(t, utc)); |
| t = absl::FromCivil(absl::CivilMinute(cs), utc); |
| EXPECT_EQ("2015-02-03T04:05:00+00:00", absl::FormatTime(t, utc)); |
| t = absl::FromCivil(absl::CivilHour(cs), utc); |
| EXPECT_EQ("2015-02-03T04:00:00+00:00", absl::FormatTime(t, utc)); |
| t = absl::FromCivil(absl::CivilDay(cs), utc); |
| EXPECT_EQ("2015-02-03T00:00:00+00:00", absl::FormatTime(t, utc)); |
| t = absl::FromCivil(absl::CivilMonth(cs), utc); |
| EXPECT_EQ("2015-02-01T00:00:00+00:00", absl::FormatTime(t, utc)); |
| t = absl::FromCivil(absl::CivilYear(cs), utc); |
| EXPECT_EQ("2015-01-01T00:00:00+00:00", absl::FormatTime(t, utc)); |
| } |
| |
| TEST(Time, LegacyDateTime) { |
| const absl::TimeZone utc = absl::UTCTimeZone(); |
| const std::string ymdhms = "%Y-%m-%d %H:%M:%S"; |
| const int kMax = std::numeric_limits<int>::max(); |
| const int kMin = std::numeric_limits<int>::min(); |
| absl::Time t; |
| |
| t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::max(), kMax, |
| kMax, kMax, kMax, kMax, utc); |
| EXPECT_EQ("infinite-future", |
| absl::FormatTime(ymdhms, t, utc)); // no overflow |
| t = absl::FromDateTime(std::numeric_limits<absl::civil_year_t>::min(), kMin, |
| kMin, kMin, kMin, kMin, utc); |
| EXPECT_EQ("infinite-past", absl::FormatTime(ymdhms, t, utc)); // no overflow |
| |
| // Check normalization. |
| EXPECT_TRUE(absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, utc).normalized); |
| t = absl::FromDateTime(2015, 1, 1, 0, 0, 60, utc); |
| EXPECT_EQ("2015-01-01 00:01:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 1, 1, 0, 60, 0, utc); |
| EXPECT_EQ("2015-01-01 01:00:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 1, 1, 24, 0, 0, utc); |
| EXPECT_EQ("2015-01-02 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 1, 32, 0, 0, 0, utc); |
| EXPECT_EQ("2015-02-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 13, 1, 0, 0, 0, utc); |
| EXPECT_EQ("2016-01-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 13, 32, 60, 60, 60, utc); |
| EXPECT_EQ("2016-02-03 13:01:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 1, 1, 0, 0, -1, utc); |
| EXPECT_EQ("2014-12-31 23:59:59", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 1, 1, 0, -1, 0, utc); |
| EXPECT_EQ("2014-12-31 23:59:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 1, 1, -1, 0, 0, utc); |
| EXPECT_EQ("2014-12-31 23:00:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, 1, -1, 0, 0, 0, utc); |
| EXPECT_EQ("2014-12-30 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, -1, 1, 0, 0, 0, utc); |
| EXPECT_EQ("2014-11-01 00:00:00", absl::FormatTime(ymdhms, t, utc)); |
| t = absl::FromDateTime(2015, -1, -1, -1, -1, -1, utc); |
| EXPECT_EQ("2014-10-29 22:58:59", absl::FormatTime(ymdhms, t, utc)); |
| } |
| |
| TEST(Time, NextTransitionUTC) { |
| const auto tz = absl::UTCTimeZone(); |
| absl::TimeZone::CivilTransition trans; |
| |
| auto t = absl::InfinitePast(); |
| EXPECT_FALSE(tz.NextTransition(t, &trans)); |
| |
| t = absl::InfiniteFuture(); |
| EXPECT_FALSE(tz.NextTransition(t, &trans)); |
| } |
| |
| TEST(Time, PrevTransitionUTC) { |
| const auto tz = absl::UTCTimeZone(); |
| absl::TimeZone::CivilTransition trans; |
| |
| auto t = absl::InfiniteFuture(); |
| EXPECT_FALSE(tz.PrevTransition(t, &trans)); |
| |
| t = absl::InfinitePast(); |
| EXPECT_FALSE(tz.PrevTransition(t, &trans)); |
| } |
| |
| TEST(Time, NextTransitionNYC) { |
| const auto tz = absl::time_internal::LoadTimeZone("America/New_York"); |
| absl::TimeZone::CivilTransition trans; |
| |
| auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz); |
| EXPECT_TRUE(tz.NextTransition(t, &trans)); |
| EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 2, 0, 0), trans.from); |
| EXPECT_EQ(absl::CivilSecond(2018, 11, 4, 1, 0, 0), trans.to); |
| |
| t = absl::InfiniteFuture(); |
| EXPECT_FALSE(tz.NextTransition(t, &trans)); |
| |
| t = absl::InfinitePast(); |
| EXPECT_TRUE(tz.NextTransition(t, &trans)); |
| if (trans.from == absl::CivilSecond(1918, 03, 31, 2, 0, 0)) { |
| // It looks like the tzdata is only 32 bit (probably macOS), |
| // which bottoms out at 1901-12-13T20:45:52+00:00. |
| EXPECT_EQ(absl::CivilSecond(1918, 3, 31, 3, 0, 0), trans.to); |
| } else { |
| EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 3, 58), trans.from); |
| EXPECT_EQ(absl::CivilSecond(1883, 11, 18, 12, 0, 0), trans.to); |
| } |
| } |
| |
| TEST(Time, PrevTransitionNYC) { |
| const auto tz = absl::time_internal::LoadTimeZone("America/New_York"); |
| absl::TimeZone::CivilTransition trans; |
| |
| auto t = absl::FromCivil(absl::CivilSecond(2018, 6, 30, 0, 0, 0), tz); |
| EXPECT_TRUE(tz.PrevTransition(t, &trans)); |
| EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 2, 0, 0), trans.from); |
| EXPECT_EQ(absl::CivilSecond(2018, 3, 11, 3, 0, 0), trans.to); |
| |
| t = absl::InfinitePast(); |
| EXPECT_FALSE(tz.PrevTransition(t, &trans)); |
| |
| t = absl::InfiniteFuture(); |
| EXPECT_TRUE(tz.PrevTransition(t, &trans)); |
| // We have a transition but we don't know which one. |
| } |
| |
| TEST(Time, AbslStringify) { |
| // FormatTime is already well tested, so just use one test case here to |
| // verify that StrFormat("%v", t) works as expected. |
| absl::Time t = absl::Now(); |
| EXPECT_EQ(absl::StrFormat("%v", t), absl::FormatTime(t)); |
| } |
| |
| } // namespace |