| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // A btree implementation of the STL set and map interfaces. A btree is smaller |
| // and generally also faster than STL set/map (refer to the benchmarks below). |
| // The red-black tree implementation of STL set/map has an overhead of 3 |
| // pointers (left, right and parent) plus the node color information for each |
| // stored value. So a set<int32_t> consumes 40 bytes for each value stored in |
| // 64-bit mode. This btree implementation stores multiple values on fixed |
| // size nodes (usually 256 bytes) and doesn't store child pointers for leaf |
| // nodes. The result is that a btree_set<int32_t> may use much less memory per |
| // stored value. For the random insertion benchmark in btree_bench.cc, a |
| // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value. |
| // |
| // The packing of multiple values on to each node of a btree has another effect |
| // besides better space utilization: better cache locality due to fewer cache |
| // lines being accessed. Better cache locality translates into faster |
| // operations. |
| // |
| // CAVEATS |
| // |
| // Insertions and deletions on a btree can cause splitting, merging or |
| // rebalancing of btree nodes. And even without these operations, insertions |
| // and deletions on a btree will move values around within a node. In both |
| // cases, the result is that insertions and deletions can invalidate iterators |
| // pointing to values other than the one being inserted/deleted. Therefore, this |
| // container does not provide pointer stability. This is notably different from |
| // STL set/map which takes care to not invalidate iterators on insert/erase |
| // except, of course, for iterators pointing to the value being erased. A |
| // partial workaround when erasing is available: erase() returns an iterator |
| // pointing to the item just after the one that was erased (or end() if none |
| // exists). |
| |
| #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_ |
| #define ABSL_CONTAINER_INTERNAL_BTREE_H_ |
| |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <functional> |
| #include <iterator> |
| #include <limits> |
| #include <new> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/macros.h" |
| #include "absl/container/internal/common.h" |
| #include "absl/container/internal/compressed_tuple.h" |
| #include "absl/container/internal/container_memory.h" |
| #include "absl/container/internal/layout.h" |
| #include "absl/memory/memory.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/strings/cord.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/compare.h" |
| #include "absl/utility/utility.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace container_internal { |
| |
| // A helper class that indicates if the Compare parameter is a key-compare-to |
| // comparator. |
| template <typename Compare, typename T> |
| using btree_is_key_compare_to = |
| std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>, |
| absl::weak_ordering>; |
| |
| struct StringBtreeDefaultLess { |
| using is_transparent = void; |
| |
| StringBtreeDefaultLess() = default; |
| |
| // Compatibility constructor. |
| StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT |
| StringBtreeDefaultLess(std::less<string_view>) {} // NOLINT |
| |
| absl::weak_ordering operator()(absl::string_view lhs, |
| absl::string_view rhs) const { |
| return compare_internal::compare_result_as_ordering(lhs.compare(rhs)); |
| } |
| StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT |
| absl::weak_ordering operator()(const absl::Cord &lhs, |
| const absl::Cord &rhs) const { |
| return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); |
| } |
| absl::weak_ordering operator()(const absl::Cord &lhs, |
| absl::string_view rhs) const { |
| return compare_internal::compare_result_as_ordering(lhs.Compare(rhs)); |
| } |
| absl::weak_ordering operator()(absl::string_view lhs, |
| const absl::Cord &rhs) const { |
| return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs)); |
| } |
| }; |
| |
| struct StringBtreeDefaultGreater { |
| using is_transparent = void; |
| |
| StringBtreeDefaultGreater() = default; |
| |
| StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT |
| StringBtreeDefaultGreater(std::greater<string_view>) {} // NOLINT |
| |
| absl::weak_ordering operator()(absl::string_view lhs, |
| absl::string_view rhs) const { |
| return compare_internal::compare_result_as_ordering(rhs.compare(lhs)); |
| } |
| StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT |
| absl::weak_ordering operator()(const absl::Cord &lhs, |
| const absl::Cord &rhs) const { |
| return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); |
| } |
| absl::weak_ordering operator()(const absl::Cord &lhs, |
| absl::string_view rhs) const { |
| return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs)); |
| } |
| absl::weak_ordering operator()(absl::string_view lhs, |
| const absl::Cord &rhs) const { |
| return compare_internal::compare_result_as_ordering(rhs.Compare(lhs)); |
| } |
| }; |
| |
| // A helper class to convert a boolean comparison into a three-way "compare-to" |
| // comparison that returns a negative value to indicate less-than, zero to |
| // indicate equality and a positive value to indicate greater-than. This helper |
| // class is specialized for less<std::string>, greater<std::string>, |
| // less<string_view>, greater<string_view>, less<absl::Cord>, and |
| // greater<absl::Cord>. |
| // |
| // key_compare_to_adapter is provided so that btree users |
| // automatically get the more efficient compare-to code when using common |
| // google string types with common comparison functors. |
| // These string-like specializations also turn on heterogeneous lookup by |
| // default. |
| template <typename Compare> |
| struct key_compare_to_adapter { |
| using type = Compare; |
| }; |
| |
| template <> |
| struct key_compare_to_adapter<std::less<std::string>> { |
| using type = StringBtreeDefaultLess; |
| }; |
| |
| template <> |
| struct key_compare_to_adapter<std::greater<std::string>> { |
| using type = StringBtreeDefaultGreater; |
| }; |
| |
| template <> |
| struct key_compare_to_adapter<std::less<absl::string_view>> { |
| using type = StringBtreeDefaultLess; |
| }; |
| |
| template <> |
| struct key_compare_to_adapter<std::greater<absl::string_view>> { |
| using type = StringBtreeDefaultGreater; |
| }; |
| |
| template <> |
| struct key_compare_to_adapter<std::less<absl::Cord>> { |
| using type = StringBtreeDefaultLess; |
| }; |
| |
| template <> |
| struct key_compare_to_adapter<std::greater<absl::Cord>> { |
| using type = StringBtreeDefaultGreater; |
| }; |
| |
| template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, |
| bool Multi, typename SlotPolicy> |
| struct common_params { |
| // If Compare is a common comparator for a std::string-like type, then we adapt it |
| // to use heterogeneous lookup and to be a key-compare-to comparator. |
| using key_compare = typename key_compare_to_adapter<Compare>::type; |
| // A type which indicates if we have a key-compare-to functor or a plain old |
| // key-compare functor. |
| using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>; |
| |
| using allocator_type = Alloc; |
| using key_type = Key; |
| using size_type = std::make_signed<size_t>::type; |
| using difference_type = ptrdiff_t; |
| |
| // True if this is a multiset or multimap. |
| using is_multi_container = std::integral_constant<bool, Multi>; |
| |
| using slot_policy = SlotPolicy; |
| using slot_type = typename slot_policy::slot_type; |
| using value_type = typename slot_policy::value_type; |
| using init_type = typename slot_policy::mutable_value_type; |
| using pointer = value_type *; |
| using const_pointer = const value_type *; |
| using reference = value_type &; |
| using const_reference = const value_type &; |
| |
| enum { |
| kTargetNodeSize = TargetNodeSize, |
| |
| // Upper bound for the available space for values. This is largest for leaf |
| // nodes, which have overhead of at least a pointer + 4 bytes (for storing |
| // 3 field_types and an enum). |
| kNodeValueSpace = |
| TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4), |
| }; |
| |
| // This is an integral type large enough to hold as many |
| // ValueSize-values as will fit a node of TargetNodeSize bytes. |
| using node_count_type = |
| absl::conditional_t<(kNodeValueSpace / sizeof(value_type) > |
| (std::numeric_limits<uint8_t>::max)()), |
| uint16_t, uint8_t>; // NOLINT |
| |
| // The following methods are necessary for passing this struct as PolicyTraits |
| // for node_handle and/or are used within btree. |
| static value_type &element(slot_type *slot) { |
| return slot_policy::element(slot); |
| } |
| static const value_type &element(const slot_type *slot) { |
| return slot_policy::element(slot); |
| } |
| template <class... Args> |
| static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { |
| slot_policy::construct(alloc, slot, std::forward<Args>(args)...); |
| } |
| static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { |
| slot_policy::construct(alloc, slot, other); |
| } |
| static void destroy(Alloc *alloc, slot_type *slot) { |
| slot_policy::destroy(alloc, slot); |
| } |
| static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) { |
| construct(alloc, new_slot, old_slot); |
| destroy(alloc, old_slot); |
| } |
| static void swap(Alloc *alloc, slot_type *a, slot_type *b) { |
| slot_policy::swap(alloc, a, b); |
| } |
| static void move(Alloc *alloc, slot_type *src, slot_type *dest) { |
| slot_policy::move(alloc, src, dest); |
| } |
| static void move(Alloc *alloc, slot_type *first, slot_type *last, |
| slot_type *result) { |
| slot_policy::move(alloc, first, last, result); |
| } |
| }; |
| |
| // A parameters structure for holding the type parameters for a btree_map. |
| // Compare and Alloc should be nothrow copy-constructible. |
| template <typename Key, typename Data, typename Compare, typename Alloc, |
| int TargetNodeSize, bool Multi> |
| struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, |
| map_slot_policy<Key, Data>> { |
| using super_type = typename map_params::common_params; |
| using mapped_type = Data; |
| // This type allows us to move keys when it is safe to do so. It is safe |
| // for maps in which value_type and mutable_value_type are layout compatible. |
| using slot_policy = typename super_type::slot_policy; |
| using slot_type = typename super_type::slot_type; |
| using value_type = typename super_type::value_type; |
| using init_type = typename super_type::init_type; |
| |
| using key_compare = typename super_type::key_compare; |
| // Inherit from key_compare for empty base class optimization. |
| struct value_compare : private key_compare { |
| value_compare() = default; |
| explicit value_compare(const key_compare &cmp) : key_compare(cmp) {} |
| |
| template <typename T, typename U> |
| auto operator()(const T &left, const U &right) const |
| -> decltype(std::declval<key_compare>()(left.first, right.first)) { |
| return key_compare::operator()(left.first, right.first); |
| } |
| }; |
| using is_map_container = std::true_type; |
| |
| static const Key &key(const value_type &value) { return value.first; } |
| static const Key &key(const init_type &init) { return init.first; } |
| static const Key &key(const slot_type *s) { return slot_policy::key(s); } |
| static mapped_type &value(value_type *value) { return value->second; } |
| }; |
| |
| // This type implements the necessary functions from the |
| // absl::container_internal::slot_type interface. |
| template <typename Key> |
| struct set_slot_policy { |
| using slot_type = Key; |
| using value_type = Key; |
| using mutable_value_type = Key; |
| |
| static value_type &element(slot_type *slot) { return *slot; } |
| static const value_type &element(const slot_type *slot) { return *slot; } |
| |
| template <typename Alloc, class... Args> |
| static void construct(Alloc *alloc, slot_type *slot, Args &&... args) { |
| absl::allocator_traits<Alloc>::construct(*alloc, slot, |
| std::forward<Args>(args)...); |
| } |
| |
| template <typename Alloc> |
| static void construct(Alloc *alloc, slot_type *slot, slot_type *other) { |
| absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other)); |
| } |
| |
| template <typename Alloc> |
| static void destroy(Alloc *alloc, slot_type *slot) { |
| absl::allocator_traits<Alloc>::destroy(*alloc, slot); |
| } |
| |
| template <typename Alloc> |
| static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) { |
| using std::swap; |
| swap(*a, *b); |
| } |
| |
| template <typename Alloc> |
| static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) { |
| *dest = std::move(*src); |
| } |
| |
| template <typename Alloc> |
| static void move(Alloc *alloc, slot_type *first, slot_type *last, |
| slot_type *result) { |
| for (slot_type *src = first, *dest = result; src != last; ++src, ++dest) |
| move(alloc, src, dest); |
| } |
| }; |
| |
| // A parameters structure for holding the type parameters for a btree_set. |
| // Compare and Alloc should be nothrow copy-constructible. |
| template <typename Key, typename Compare, typename Alloc, int TargetNodeSize, |
| bool Multi> |
| struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi, |
| set_slot_policy<Key>> { |
| using value_type = Key; |
| using slot_type = typename set_params::common_params::slot_type; |
| using value_compare = typename set_params::common_params::key_compare; |
| using is_map_container = std::false_type; |
| |
| static const Key &key(const value_type &value) { return value; } |
| static const Key &key(const slot_type *slot) { return *slot; } |
| }; |
| |
| // An adapter class that converts a lower-bound compare into an upper-bound |
| // compare. Note: there is no need to make a version of this adapter specialized |
| // for key-compare-to functors because the upper-bound (the first value greater |
| // than the input) is never an exact match. |
| template <typename Compare> |
| struct upper_bound_adapter { |
| explicit upper_bound_adapter(const Compare &c) : comp(c) {} |
| template <typename K1, typename K2> |
| bool operator()(const K1 &a, const K2 &b) const { |
| // Returns true when a is not greater than b. |
| return !compare_internal::compare_result_as_less_than(comp(b, a)); |
| } |
| |
| private: |
| Compare comp; |
| }; |
| |
| enum class MatchKind : uint8_t { kEq, kNe }; |
| |
| template <typename V, bool IsCompareTo> |
| struct SearchResult { |
| V value; |
| MatchKind match; |
| |
| static constexpr bool HasMatch() { return true; } |
| bool IsEq() const { return match == MatchKind::kEq; } |
| }; |
| |
| // When we don't use CompareTo, `match` is not present. |
| // This ensures that callers can't use it accidentally when it provides no |
| // useful information. |
| template <typename V> |
| struct SearchResult<V, false> { |
| V value; |
| |
| static constexpr bool HasMatch() { return false; } |
| static constexpr bool IsEq() { return false; } |
| }; |
| |
| // A node in the btree holding. The same node type is used for both internal |
| // and leaf nodes in the btree, though the nodes are allocated in such a way |
| // that the children array is only valid in internal nodes. |
| template <typename Params> |
| class btree_node { |
| using is_key_compare_to = typename Params::is_key_compare_to; |
| using is_multi_container = typename Params::is_multi_container; |
| using field_type = typename Params::node_count_type; |
| using allocator_type = typename Params::allocator_type; |
| using slot_type = typename Params::slot_type; |
| |
| public: |
| using params_type = Params; |
| using key_type = typename Params::key_type; |
| using value_type = typename Params::value_type; |
| using pointer = typename Params::pointer; |
| using const_pointer = typename Params::const_pointer; |
| using reference = typename Params::reference; |
| using const_reference = typename Params::const_reference; |
| using key_compare = typename Params::key_compare; |
| using size_type = typename Params::size_type; |
| using difference_type = typename Params::difference_type; |
| |
| // Btree decides whether to use linear node search as follows: |
| // - If the key is arithmetic and the comparator is std::less or |
| // std::greater, choose linear. |
| // - Otherwise, choose binary. |
| // TODO(ezb): Might make sense to add condition(s) based on node-size. |
| using use_linear_search = std::integral_constant< |
| bool, |
| std::is_arithmetic<key_type>::value && |
| (std::is_same<std::less<key_type>, key_compare>::value || |
| std::is_same<std::greater<key_type>, key_compare>::value)>; |
| |
| // This class is organized by gtl::Layout as if it had the following |
| // structure: |
| // // A pointer to the node's parent. |
| // btree_node *parent; |
| // |
| // // The position of the node in the node's parent. |
| // field_type position; |
| // // The index of the first populated value in `values`. |
| // // TODO(ezb): right now, `start` is always 0. Update insertion/merge |
| // // logic to allow for floating storage within nodes. |
| // field_type start; |
| // // The index after the last populated value in `values`. Currently, this |
| // // is the same as the count of values. |
| // field_type finish; |
| // // The maximum number of values the node can hold. This is an integer in |
| // // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf |
| // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal |
| // // nodes (even though there are still kNodeValues values in the node). |
| // // TODO(ezb): make max_count use only 4 bits and record log2(capacity) |
| // // to free extra bits for is_root, etc. |
| // field_type max_count; |
| // |
| // // The array of values. The capacity is `max_count` for leaf nodes and |
| // // kNodeValues for internal nodes. Only the values in |
| // // [start, finish) have been initialized and are valid. |
| // slot_type values[max_count]; |
| // |
| // // The array of child pointers. The keys in children[i] are all less |
| // // than key(i). The keys in children[i + 1] are all greater than key(i). |
| // // There are 0 children for leaf nodes and kNodeValues + 1 children for |
| // // internal nodes. |
| // btree_node *children[kNodeValues + 1]; |
| // |
| // This class is only constructed by EmptyNodeType. Normally, pointers to the |
| // layout above are allocated, cast to btree_node*, and de-allocated within |
| // the btree implementation. |
| ~btree_node() = default; |
| btree_node(btree_node const &) = delete; |
| btree_node &operator=(btree_node const &) = delete; |
| |
| // Public for EmptyNodeType. |
| constexpr static size_type Alignment() { |
| static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(), |
| "Alignment of all nodes must be equal."); |
| return InternalLayout().Alignment(); |
| } |
| |
| protected: |
| btree_node() = default; |
| |
| private: |
| using layout_type = absl::container_internal::Layout<btree_node *, field_type, |
| slot_type, btree_node *>; |
| constexpr static size_type SizeWithNValues(size_type n) { |
| return layout_type(/*parent*/ 1, |
| /*position, start, finish, max_count*/ 4, |
| /*values*/ n, |
| /*children*/ 0) |
| .AllocSize(); |
| } |
| // A lower bound for the overhead of fields other than values in a leaf node. |
| constexpr static size_type MinimumOverhead() { |
| return SizeWithNValues(1) - sizeof(value_type); |
| } |
| |
| // Compute how many values we can fit onto a leaf node taking into account |
| // padding. |
| constexpr static size_type NodeTargetValues(const int begin, const int end) { |
| return begin == end ? begin |
| : SizeWithNValues((begin + end) / 2 + 1) > |
| params_type::kTargetNodeSize |
| ? NodeTargetValues(begin, (begin + end) / 2) |
| : NodeTargetValues((begin + end) / 2 + 1, end); |
| } |
| |
| enum { |
| kTargetNodeSize = params_type::kTargetNodeSize, |
| kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize), |
| |
| // We need a minimum of 3 values per internal node in order to perform |
| // splitting (1 value for the two nodes involved in the split and 1 value |
| // propagated to the parent as the delimiter for the split). |
| kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3, |
| |
| // The node is internal (i.e. is not a leaf node) if and only if `max_count` |
| // has this value. |
| kInternalNodeMaxCount = 0, |
| }; |
| |
| // Leaves can have less than kNodeValues values. |
| constexpr static layout_type LeafLayout(const int max_values = kNodeValues) { |
| return layout_type(/*parent*/ 1, |
| /*position, start, finish, max_count*/ 4, |
| /*values*/ max_values, |
| /*children*/ 0); |
| } |
| constexpr static layout_type InternalLayout() { |
| return layout_type(/*parent*/ 1, |
| /*position, start, finish, max_count*/ 4, |
| /*values*/ kNodeValues, |
| /*children*/ kNodeValues + 1); |
| } |
| constexpr static size_type LeafSize(const int max_values = kNodeValues) { |
| return LeafLayout(max_values).AllocSize(); |
| } |
| constexpr static size_type InternalSize() { |
| return InternalLayout().AllocSize(); |
| } |
| |
| // N is the index of the type in the Layout definition. |
| // ElementType<N> is the Nth type in the Layout definition. |
| template <size_type N> |
| inline typename layout_type::template ElementType<N> *GetField() { |
| // We assert that we don't read from values that aren't there. |
| assert(N < 3 || !leaf()); |
| return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this)); |
| } |
| template <size_type N> |
| inline const typename layout_type::template ElementType<N> *GetField() const { |
| assert(N < 3 || !leaf()); |
| return InternalLayout().template Pointer<N>( |
| reinterpret_cast<const char *>(this)); |
| } |
| void set_parent(btree_node *p) { *GetField<0>() = p; } |
| field_type &mutable_finish() { return GetField<1>()[2]; } |
| slot_type *slot(int i) { return &GetField<2>()[i]; } |
| slot_type *start_slot() { return slot(start()); } |
| slot_type *finish_slot() { return slot(finish()); } |
| const slot_type *slot(int i) const { return &GetField<2>()[i]; } |
| void set_position(field_type v) { GetField<1>()[0] = v; } |
| void set_start(field_type v) { GetField<1>()[1] = v; } |
| void set_finish(field_type v) { GetField<1>()[2] = v; } |
| // This method is only called by the node init methods. |
| void set_max_count(field_type v) { GetField<1>()[3] = v; } |
| |
| public: |
| // Whether this is a leaf node or not. This value doesn't change after the |
| // node is created. |
| bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; } |
| |
| // Getter for the position of this node in its parent. |
| field_type position() const { return GetField<1>()[0]; } |
| |
| // Getter for the offset of the first value in the `values` array. |
| field_type start() const { |
| // TODO(ezb): when floating storage is implemented, return GetField<1>()[1]; |
| assert(GetField<1>()[1] == 0); |
| return 0; |
| } |
| |
| // Getter for the offset after the last value in the `values` array. |
| field_type finish() const { return GetField<1>()[2]; } |
| |
| // Getters for the number of values stored in this node. |
| field_type count() const { |
| assert(finish() >= start()); |
| return finish() - start(); |
| } |
| field_type max_count() const { |
| // Internal nodes have max_count==kInternalNodeMaxCount. |
| // Leaf nodes have max_count in [1, kNodeValues]. |
| const field_type max_count = GetField<1>()[3]; |
| return max_count == field_type{kInternalNodeMaxCount} |
| ? field_type{kNodeValues} |
| : max_count; |
| } |
| |
| // Getter for the parent of this node. |
| btree_node *parent() const { return *GetField<0>(); } |
| // Getter for whether the node is the root of the tree. The parent of the |
| // root of the tree is the leftmost node in the tree which is guaranteed to |
| // be a leaf. |
| bool is_root() const { return parent()->leaf(); } |
| void make_root() { |
| assert(parent()->is_root()); |
| set_parent(parent()->parent()); |
| } |
| |
| // Getters for the key/value at position i in the node. |
| const key_type &key(int i) const { return params_type::key(slot(i)); } |
| reference value(int i) { return params_type::element(slot(i)); } |
| const_reference value(int i) const { return params_type::element(slot(i)); } |
| |
| // Getters/setter for the child at position i in the node. |
| btree_node *child(int i) const { return GetField<3>()[i]; } |
| btree_node *start_child() const { return child(start()); } |
| btree_node *&mutable_child(int i) { return GetField<3>()[i]; } |
| void clear_child(int i) { |
| absl::container_internal::SanitizerPoisonObject(&mutable_child(i)); |
| } |
| void set_child(int i, btree_node *c) { |
| absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i)); |
| mutable_child(i) = c; |
| c->set_position(i); |
| } |
| void init_child(int i, btree_node *c) { |
| set_child(i, c); |
| c->set_parent(this); |
| } |
| |
| // Returns the position of the first value whose key is not less than k. |
| template <typename K> |
| SearchResult<int, is_key_compare_to::value> lower_bound( |
| const K &k, const key_compare &comp) const { |
| return use_linear_search::value ? linear_search(k, comp) |
| : binary_search(k, comp); |
| } |
| // Returns the position of the first value whose key is greater than k. |
| template <typename K> |
| int upper_bound(const K &k, const key_compare &comp) const { |
| auto upper_compare = upper_bound_adapter<key_compare>(comp); |
| return use_linear_search::value ? linear_search(k, upper_compare).value |
| : binary_search(k, upper_compare).value; |
| } |
| |
| template <typename K, typename Compare> |
| SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> |
| linear_search(const K &k, const Compare &comp) const { |
| return linear_search_impl(k, start(), finish(), comp, |
| btree_is_key_compare_to<Compare, key_type>()); |
| } |
| |
| template <typename K, typename Compare> |
| SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value> |
| binary_search(const K &k, const Compare &comp) const { |
| return binary_search_impl(k, start(), finish(), comp, |
| btree_is_key_compare_to<Compare, key_type>()); |
| } |
| |
| // Returns the position of the first value whose key is not less than k using |
| // linear search performed using plain compare. |
| template <typename K, typename Compare> |
| SearchResult<int, false> linear_search_impl( |
| const K &k, int s, const int e, const Compare &comp, |
| std::false_type /* IsCompareTo */) const { |
| while (s < e) { |
| if (!comp(key(s), k)) { |
| break; |
| } |
| ++s; |
| } |
| return {s}; |
| } |
| |
| // Returns the position of the first value whose key is not less than k using |
| // linear search performed using compare-to. |
| template <typename K, typename Compare> |
| SearchResult<int, true> linear_search_impl( |
| const K &k, int s, const int e, const Compare &comp, |
| std::true_type /* IsCompareTo */) const { |
| while (s < e) { |
| const absl::weak_ordering c = comp(key(s), k); |
| if (c == 0) { |
| return {s, MatchKind::kEq}; |
| } else if (c > 0) { |
| break; |
| } |
| ++s; |
| } |
| return {s, MatchKind::kNe}; |
| } |
| |
| // Returns the position of the first value whose key is not less than k using |
| // binary search performed using plain compare. |
| template <typename K, typename Compare> |
| SearchResult<int, false> binary_search_impl( |
| const K &k, int s, int e, const Compare &comp, |
| std::false_type /* IsCompareTo */) const { |
| while (s != e) { |
| const int mid = (s + e) >> 1; |
| if (comp(key(mid), k)) { |
| s = mid + 1; |
| } else { |
| e = mid; |
| } |
| } |
| return {s}; |
| } |
| |
| // Returns the position of the first value whose key is not less than k using |
| // binary search performed using compare-to. |
| template <typename K, typename CompareTo> |
| SearchResult<int, true> binary_search_impl( |
| const K &k, int s, int e, const CompareTo &comp, |
| std::true_type /* IsCompareTo */) const { |
| if (is_multi_container::value) { |
| MatchKind exact_match = MatchKind::kNe; |
| while (s != e) { |
| const int mid = (s + e) >> 1; |
| const absl::weak_ordering c = comp(key(mid), k); |
| if (c < 0) { |
| s = mid + 1; |
| } else { |
| e = mid; |
| if (c == 0) { |
| // Need to return the first value whose key is not less than k, |
| // which requires continuing the binary search if this is a |
| // multi-container. |
| exact_match = MatchKind::kEq; |
| } |
| } |
| } |
| return {s, exact_match}; |
| } else { // Not a multi-container. |
| while (s != e) { |
| const int mid = (s + e) >> 1; |
| const absl::weak_ordering c = comp(key(mid), k); |
| if (c < 0) { |
| s = mid + 1; |
| } else if (c > 0) { |
| e = mid; |
| } else { |
| return {mid, MatchKind::kEq}; |
| } |
| } |
| return {s, MatchKind::kNe}; |
| } |
| } |
| |
| // Emplaces a value at position i, shifting all existing values and |
| // children at positions >= i to the right by 1. |
| template <typename... Args> |
| void emplace_value(size_type i, allocator_type *alloc, Args &&... args); |
| |
| // Removes the value at position i, shifting all existing values and children |
| // at positions > i to the left by 1. |
| void remove_value(int i, allocator_type *alloc); |
| |
| // Removes the values at positions [i, i + to_erase), shifting all values |
| // after that range to the left by to_erase. Does not change children at all. |
| void remove_values_ignore_children(int i, int to_erase, |
| allocator_type *alloc); |
| |
| // Rebalances a node with its right sibling. |
| void rebalance_right_to_left(int to_move, btree_node *right, |
| allocator_type *alloc); |
| void rebalance_left_to_right(int to_move, btree_node *right, |
| allocator_type *alloc); |
| |
| // Splits a node, moving a portion of the node's values to its right sibling. |
| void split(int insert_position, btree_node *dest, allocator_type *alloc); |
| |
| // Merges a node with its right sibling, moving all of the values and the |
| // delimiting key in the parent node onto itself. |
| void merge(btree_node *src, allocator_type *alloc); |
| |
| // Swaps the contents of `this` and `other`. |
| void swap(btree_node *other, allocator_type *alloc); |
| |
| // Node allocation/deletion routines. |
| void init_leaf(btree_node *parent, int max_count) { |
| set_parent(parent); |
| set_position(0); |
| set_start(0); |
| set_finish(0); |
| set_max_count(max_count); |
| absl::container_internal::SanitizerPoisonMemoryRegion( |
| start_slot(), max_count * sizeof(slot_type)); |
| } |
| void init_internal(btree_node *parent) { |
| init_leaf(parent, kNodeValues); |
| // Set `max_count` to a sentinel value to indicate that this node is |
| // internal. |
| set_max_count(kInternalNodeMaxCount); |
| absl::container_internal::SanitizerPoisonMemoryRegion( |
| &mutable_child(start()), (kNodeValues + 1) * sizeof(btree_node *)); |
| } |
| void destroy(allocator_type *alloc) { |
| for (int i = start(); i < finish(); ++i) { |
| value_destroy(i, alloc); |
| } |
| } |
| |
| public: |
| // Exposed only for tests. |
| static bool testonly_uses_linear_node_search() { |
| return use_linear_search::value; |
| } |
| |
| private: |
| template <typename... Args> |
| void value_init(const size_type i, allocator_type *alloc, Args &&... args) { |
| absl::container_internal::SanitizerUnpoisonObject(slot(i)); |
| params_type::construct(alloc, slot(i), std::forward<Args>(args)...); |
| } |
| void value_destroy(const size_type i, allocator_type *alloc) { |
| params_type::destroy(alloc, slot(i)); |
| absl::container_internal::SanitizerPoisonObject(slot(i)); |
| } |
| |
| // Move n values starting at value i in this node into the values starting at |
| // value j in dest_node. |
| void uninitialized_move_n(const size_type n, const size_type i, |
| const size_type j, btree_node *dest_node, |
| allocator_type *alloc) { |
| absl::container_internal::SanitizerUnpoisonMemoryRegion( |
| dest_node->slot(j), n * sizeof(slot_type)); |
| for (slot_type *src = slot(i), *end = src + n, *dest = dest_node->slot(j); |
| src != end; ++src, ++dest) { |
| params_type::construct(alloc, dest, src); |
| } |
| } |
| |
| // Destroys a range of n values, starting at index i. |
| void value_destroy_n(const size_type i, const size_type n, |
| allocator_type *alloc) { |
| for (int j = 0; j < n; ++j) { |
| value_destroy(i + j, alloc); |
| } |
| } |
| |
| template <typename P> |
| friend class btree; |
| template <typename N, typename R, typename P> |
| friend struct btree_iterator; |
| friend class BtreeNodePeer; |
| }; |
| |
| template <typename Node, typename Reference, typename Pointer> |
| struct btree_iterator { |
| private: |
| using key_type = typename Node::key_type; |
| using size_type = typename Node::size_type; |
| using params_type = typename Node::params_type; |
| |
| using node_type = Node; |
| using normal_node = typename std::remove_const<Node>::type; |
| using const_node = const Node; |
| using normal_pointer = typename params_type::pointer; |
| using normal_reference = typename params_type::reference; |
| using const_pointer = typename params_type::const_pointer; |
| using const_reference = typename params_type::const_reference; |
| using slot_type = typename params_type::slot_type; |
| |
| using iterator = |
| btree_iterator<normal_node, normal_reference, normal_pointer>; |
| using const_iterator = |
| btree_iterator<const_node, const_reference, const_pointer>; |
| |
| public: |
| // These aliases are public for std::iterator_traits. |
| using difference_type = typename Node::difference_type; |
| using value_type = typename params_type::value_type; |
| using pointer = Pointer; |
| using reference = Reference; |
| using iterator_category = std::bidirectional_iterator_tag; |
| |
| btree_iterator() : node(nullptr), position(-1) {} |
| explicit btree_iterator(Node *n) : node(n), position(n->start()) {} |
| btree_iterator(Node *n, int p) : node(n), position(p) {} |
| |
| // NOTE: this SFINAE allows for implicit conversions from iterator to |
| // const_iterator, but it specifically avoids defining copy constructors so |
| // that btree_iterator can be trivially copyable. This is for performance and |
| // binary size reasons. |
| template <typename N, typename R, typename P, |
| absl::enable_if_t< |
| std::is_same<btree_iterator<N, R, P>, iterator>::value && |
| std::is_same<btree_iterator, const_iterator>::value, |
| int> = 0> |
| btree_iterator(const btree_iterator<N, R, P> &other) // NOLINT |
| : node(other.node), position(other.position) {} |
| |
| private: |
| // This SFINAE allows explicit conversions from const_iterator to |
| // iterator, but also avoids defining a copy constructor. |
| // NOTE: the const_cast is safe because this constructor is only called by |
| // non-const methods and the container owns the nodes. |
| template <typename N, typename R, typename P, |
| absl::enable_if_t< |
| std::is_same<btree_iterator<N, R, P>, const_iterator>::value && |
| std::is_same<btree_iterator, iterator>::value, |
| int> = 0> |
| explicit btree_iterator(const btree_iterator<N, R, P> &other) |
| : node(const_cast<node_type *>(other.node)), position(other.position) {} |
| |
| // Increment/decrement the iterator. |
| void increment() { |
| if (node->leaf() && ++position < node->finish()) { |
| return; |
| } |
| increment_slow(); |
| } |
| void increment_slow(); |
| |
| void decrement() { |
| if (node->leaf() && --position >= node->start()) { |
| return; |
| } |
| decrement_slow(); |
| } |
| void decrement_slow(); |
| |
| public: |
| bool operator==(const const_iterator &other) const { |
| return node == other.node && position == other.position; |
| } |
| bool operator!=(const const_iterator &other) const { |
| return node != other.node || position != other.position; |
| } |
| |
| // Accessors for the key/value the iterator is pointing at. |
| reference operator*() const { return node->value(position); } |
| pointer operator->() const { return &node->value(position); } |
| |
| btree_iterator &operator++() { |
| increment(); |
| return *this; |
| } |
| btree_iterator &operator--() { |
| decrement(); |
| return *this; |
| } |
| btree_iterator operator++(int) { |
| btree_iterator tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| btree_iterator operator--(int) { |
| btree_iterator tmp = *this; |
| --*this; |
| return tmp; |
| } |
| |
| private: |
| template <typename Params> |
| friend class btree; |
| template <typename Tree> |
| friend class btree_container; |
| template <typename Tree> |
| friend class btree_set_container; |
| template <typename Tree> |
| friend class btree_map_container; |
| template <typename Tree> |
| friend class btree_multiset_container; |
| template <typename N, typename R, typename P> |
| friend struct btree_iterator; |
| template <typename TreeType, typename CheckerType> |
| friend class base_checker; |
| |
| const key_type &key() const { return node->key(position); } |
| slot_type *slot() { return node->slot(position); } |
| |
| // The node in the tree the iterator is pointing at. |
| Node *node; |
| // The position within the node of the tree the iterator is pointing at. |
| // NOTE: this is an int rather than a field_type because iterators can point |
| // to invalid positions (such as -1) in certain circumstances. |
| int position; |
| }; |
| |
| template <typename Params> |
| class btree { |
| using node_type = btree_node<Params>; |
| using is_key_compare_to = typename Params::is_key_compare_to; |
| |
| // We use a static empty node for the root/leftmost/rightmost of empty btrees |
| // in order to avoid branching in begin()/end(). |
| struct alignas(node_type::Alignment()) EmptyNodeType : node_type { |
| using field_type = typename node_type::field_type; |
| node_type *parent; |
| field_type position = 0; |
| field_type start = 0; |
| field_type finish = 0; |
| // max_count must be != kInternalNodeMaxCount (so that this node is regarded |
| // as a leaf node). max_count() is never called when the tree is empty. |
| field_type max_count = node_type::kInternalNodeMaxCount + 1; |
| |
| #ifdef _MSC_VER |
| // MSVC has constexpr code generations bugs here. |
| EmptyNodeType() : parent(this) {} |
| #else |
| constexpr EmptyNodeType(node_type *p) : parent(p) {} |
| #endif |
| }; |
| |
| static node_type *EmptyNode() { |
| #ifdef _MSC_VER |
| static EmptyNodeType *empty_node = new EmptyNodeType; |
| // This assert fails on some other construction methods. |
| assert(empty_node->parent == empty_node); |
| return empty_node; |
| #else |
| static constexpr EmptyNodeType empty_node( |
| const_cast<EmptyNodeType *>(&empty_node)); |
| return const_cast<EmptyNodeType *>(&empty_node); |
| #endif |
| } |
| |
| enum { |
| kNodeValues = node_type::kNodeValues, |
| kMinNodeValues = kNodeValues / 2, |
| }; |
| |
| struct node_stats { |
| using size_type = typename Params::size_type; |
| |
| node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {} |
| |
| node_stats &operator+=(const node_stats &other) { |
| leaf_nodes += other.leaf_nodes; |
| internal_nodes += other.internal_nodes; |
| return *this; |
| } |
| |
| size_type leaf_nodes; |
| size_type internal_nodes; |
| }; |
| |
| public: |
| using key_type = typename Params::key_type; |
| using value_type = typename Params::value_type; |
| using size_type = typename Params::size_type; |
| using difference_type = typename Params::difference_type; |
| using key_compare = typename Params::key_compare; |
| using value_compare = typename Params::value_compare; |
| using allocator_type = typename Params::allocator_type; |
| using reference = typename Params::reference; |
| using const_reference = typename Params::const_reference; |
| using pointer = typename Params::pointer; |
| using const_pointer = typename Params::const_pointer; |
| using iterator = btree_iterator<node_type, reference, pointer>; |
| using const_iterator = typename iterator::const_iterator; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| using node_handle_type = node_handle<Params, Params, allocator_type>; |
| |
| // Internal types made public for use by btree_container types. |
| using params_type = Params; |
| using slot_type = typename Params::slot_type; |
| |
| private: |
| // For use in copy_or_move_values_in_order. |
| const value_type &maybe_move_from_iterator(const_iterator it) { return *it; } |
| value_type &&maybe_move_from_iterator(iterator it) { return std::move(*it); } |
| |
| // Copies or moves (depending on the template parameter) the values in |
| // other into this btree in their order in other. This btree must be empty |
| // before this method is called. This method is used in copy construction, |
| // copy assignment, and move assignment. |
| template <typename Btree> |
| void copy_or_move_values_in_order(Btree *other); |
| |
| // Validates that various assumptions/requirements are true at compile time. |
| constexpr static bool static_assert_validation(); |
| |
| public: |
| btree(const key_compare &comp, const allocator_type &alloc); |
| |
| btree(const btree &other); |
| btree(btree &&other) noexcept |
| : root_(std::move(other.root_)), |
| rightmost_(absl::exchange(other.rightmost_, EmptyNode())), |
| size_(absl::exchange(other.size_, 0)) { |
| other.mutable_root() = EmptyNode(); |
| } |
| |
| ~btree() { |
| // Put static_asserts in destructor to avoid triggering them before the type |
| // is complete. |
| static_assert(static_assert_validation(), "This call must be elided."); |
| clear(); |
| } |
| |
| // Assign the contents of other to *this. |
| btree &operator=(const btree &other); |
| btree &operator=(btree &&other) noexcept; |
| |
| iterator begin() { return iterator(leftmost()); } |
| const_iterator begin() const { return const_iterator(leftmost()); } |
| iterator end() { return iterator(rightmost_, rightmost_->finish()); } |
| const_iterator end() const { |
| return const_iterator(rightmost_, rightmost_->finish()); |
| } |
| reverse_iterator rbegin() { return reverse_iterator(end()); } |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator(end()); |
| } |
| reverse_iterator rend() { return reverse_iterator(begin()); } |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(begin()); |
| } |
| |
| // Finds the first element whose key is not less than key. |
| template <typename K> |
| iterator lower_bound(const K &key) { |
| return internal_end(internal_lower_bound(key)); |
| } |
| template <typename K> |
| const_iterator lower_bound(const K &key) const { |
| return internal_end(internal_lower_bound(key)); |
| } |
| |
| // Finds the first element whose key is greater than key. |
| template <typename K> |
| iterator upper_bound(const K &key) { |
| return internal_end(internal_upper_bound(key)); |
| } |
| template <typename K> |
| const_iterator upper_bound(const K &key) const { |
| return internal_end(internal_upper_bound(key)); |
| } |
| |
| // Finds the range of values which compare equal to key. The first member of |
| // the returned pair is equal to lower_bound(key). The second member pair of |
| // the pair is equal to upper_bound(key). |
| template <typename K> |
| std::pair<iterator, iterator> equal_range(const K &key) { |
| return {lower_bound(key), upper_bound(key)}; |
| } |
| template <typename K> |
| std::pair<const_iterator, const_iterator> equal_range(const K &key) const { |
| return {lower_bound(key), upper_bound(key)}; |
| } |
| |
| // Inserts a value into the btree only if it does not already exist. The |
| // boolean return value indicates whether insertion succeeded or failed. |
| // Requirement: if `key` already exists in the btree, does not consume `args`. |
| // Requirement: `key` is never referenced after consuming `args`. |
| template <typename... Args> |
| std::pair<iterator, bool> insert_unique(const key_type &key, Args &&... args); |
| |
| // Inserts with hint. Checks to see if the value should be placed immediately |
| // before `position` in the tree. If so, then the insertion will take |
| // amortized constant time. If not, the insertion will take amortized |
| // logarithmic time as if a call to insert_unique() were made. |
| // Requirement: if `key` already exists in the btree, does not consume `args`. |
| // Requirement: `key` is never referenced after consuming `args`. |
| template <typename... Args> |
| std::pair<iterator, bool> insert_hint_unique(iterator position, |
| const key_type &key, |
| Args &&... args); |
| |
| // Insert a range of values into the btree. |
| template <typename InputIterator> |
| void insert_iterator_unique(InputIterator b, InputIterator e); |
| |
| // Inserts a value into the btree. |
| template <typename ValueType> |
| iterator insert_multi(const key_type &key, ValueType &&v); |
| |
| // Inserts a value into the btree. |
| template <typename ValueType> |
| iterator insert_multi(ValueType &&v) { |
| return insert_multi(params_type::key(v), std::forward<ValueType>(v)); |
| } |
| |
| // Insert with hint. Check to see if the value should be placed immediately |
| // before position in the tree. If it does, then the insertion will take |
| // amortized constant time. If not, the insertion will take amortized |
| // logarithmic time as if a call to insert_multi(v) were made. |
| template <typename ValueType> |
| iterator insert_hint_multi(iterator position, ValueType &&v); |
| |
| // Insert a range of values into the btree. |
| template <typename InputIterator> |
| void insert_iterator_multi(InputIterator b, InputIterator e); |
| |
| // Erase the specified iterator from the btree. The iterator must be valid |
| // (i.e. not equal to end()). Return an iterator pointing to the node after |
| // the one that was erased (or end() if none exists). |
| // Requirement: does not read the value at `*iter`. |
| iterator erase(iterator iter); |
| |
| // Erases range. Returns the number of keys erased and an iterator pointing |
| // to the element after the last erased element. |
| std::pair<size_type, iterator> erase_range(iterator begin, iterator end); |
| |
| // Erases the specified key from the btree. Returns 1 if an element was |
| // erased and 0 otherwise. |
| template <typename K> |
| size_type erase_unique(const K &key); |
| |
| // Erases all of the entries matching the specified key from the |
| // btree. Returns the number of elements erased. |
| template <typename K> |
| size_type erase_multi(const K &key); |
| |
| // Finds the iterator corresponding to a key or returns end() if the key is |
| // not present. |
| template <typename K> |
| iterator find(const K &key) { |
| return internal_end(internal_find(key)); |
| } |
| template <typename K> |
| const_iterator find(const K &key) const { |
| return internal_end(internal_find(key)); |
| } |
| |
| // Returns a count of the number of times the key appears in the btree. |
| template <typename K> |
| size_type count_unique(const K &key) const { |
| const iterator begin = internal_find(key); |
| if (begin.node == nullptr) { |
| // The key doesn't exist in the tree. |
| return 0; |
| } |
| return 1; |
| } |
| // Returns a count of the number of times the key appears in the btree. |
| template <typename K> |
| size_type count_multi(const K &key) const { |
| const auto range = equal_range(key); |
| return std::distance(range.first, range.second); |
| } |
| |
| // Clear the btree, deleting all of the values it contains. |
| void clear(); |
| |
| // Swaps the contents of `this` and `other`. |
| void swap(btree &other); |
| |
| const key_compare &key_comp() const noexcept { |
| return root_.template get<0>(); |
| } |
| template <typename K1, typename K2> |
| bool compare_keys(const K1 &a, const K2 &b) const { |
| return compare_internal::compare_result_as_less_than(key_comp()(a, b)); |
| } |
| |
| value_compare value_comp() const { return value_compare(key_comp()); } |
| |
| // Verifies the structure of the btree. |
| void verify() const; |
| |
| // Size routines. |
| size_type size() const { return size_; } |
| size_type max_size() const { return (std::numeric_limits<size_type>::max)(); } |
| bool empty() const { return size_ == 0; } |
| |
| // The height of the btree. An empty tree will have height 0. |
| size_type height() const { |
| size_type h = 0; |
| if (!empty()) { |
| // Count the length of the chain from the leftmost node up to the |
| // root. We actually count from the root back around to the level below |
| // the root, but the calculation is the same because of the circularity |
| // of that traversal. |
| const node_type *n = root(); |
| do { |
| ++h; |
| n = n->parent(); |
| } while (n != root()); |
| } |
| return h; |
| } |
| |
| // The number of internal, leaf and total nodes used by the btree. |
| size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; } |
| size_type internal_nodes() const { |
| return internal_stats(root()).internal_nodes; |
| } |
| size_type nodes() const { |
| node_stats stats = internal_stats(root()); |
| return stats.leaf_nodes + stats.internal_nodes; |
| } |
| |
| // The total number of bytes used by the btree. |
| size_type bytes_used() const { |
| node_stats stats = internal_stats(root()); |
| if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { |
| return sizeof(*this) + node_type::LeafSize(root()->max_count()); |
| } else { |
| return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() + |
| stats.internal_nodes * node_type::InternalSize(); |
| } |
| } |
| |
| // The average number of bytes used per value stored in the btree. |
| static double average_bytes_per_value() { |
| // Returns the number of bytes per value on a leaf node that is 75% |
| // full. Experimentally, this matches up nicely with the computed number of |
| // bytes per value in trees that had their values inserted in random order. |
| return node_type::LeafSize() / (kNodeValues * 0.75); |
| } |
| |
| // The fullness of the btree. Computed as the number of elements in the btree |
| // divided by the maximum number of elements a tree with the current number |
| // of nodes could hold. A value of 1 indicates perfect space |
| // utilization. Smaller values indicate space wastage. |
| // Returns 0 for empty trees. |
| double fullness() const { |
| if (empty()) return 0.0; |
| return static_cast<double>(size()) / (nodes() * kNodeValues); |
| } |
| // The overhead of the btree structure in bytes per node. Computed as the |
| // total number of bytes used by the btree minus the number of bytes used for |
| // storing elements divided by the number of elements. |
| // Returns 0 for empty trees. |
| double overhead() const { |
| if (empty()) return 0.0; |
| return (bytes_used() - size() * sizeof(value_type)) / |
| static_cast<double>(size()); |
| } |
| |
| // The allocator used by the btree. |
| allocator_type get_allocator() const { return allocator(); } |
| |
| private: |
| // Internal accessor routines. |
| node_type *root() { return root_.template get<2>(); } |
| const node_type *root() const { return root_.template get<2>(); } |
| node_type *&mutable_root() noexcept { return root_.template get<2>(); } |
| key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); } |
| |
| // The leftmost node is stored as the parent of the root node. |
| node_type *leftmost() { return root()->parent(); } |
| const node_type *leftmost() const { return root()->parent(); } |
| |
| // Allocator routines. |
| allocator_type *mutable_allocator() noexcept { |
| return &root_.template get<1>(); |
| } |
| const allocator_type &allocator() const noexcept { |
| return root_.template get<1>(); |
| } |
| |
| // Allocates a correctly aligned node of at least size bytes using the |
| // allocator. |
| node_type *allocate(const size_type size) { |
| return reinterpret_cast<node_type *>( |
| absl::container_internal::Allocate<node_type::Alignment()>( |
| mutable_allocator(), size)); |
| } |
| |
| // Node creation/deletion routines. |
| node_type *new_internal_node(node_type *parent) { |
| node_type *n = allocate(node_type::InternalSize()); |
| n->init_internal(parent); |
| return n; |
| } |
| node_type *new_leaf_node(node_type *parent) { |
| node_type *n = allocate(node_type::LeafSize()); |
| n->init_leaf(parent, kNodeValues); |
| return n; |
| } |
| node_type *new_leaf_root_node(const int max_count) { |
| node_type *n = allocate(node_type::LeafSize(max_count)); |
| n->init_leaf(/*parent=*/n, max_count); |
| return n; |
| } |
| |
| // Deletion helper routines. |
| void erase_same_node(iterator begin, iterator end); |
| iterator erase_from_leaf_node(iterator begin, size_type to_erase); |
| iterator rebalance_after_delete(iterator iter); |
| |
| // Deallocates a node of a certain size in bytes using the allocator. |
| void deallocate(const size_type size, node_type *node) { |
| absl::container_internal::Deallocate<node_type::Alignment()>( |
| mutable_allocator(), node, size); |
| } |
| |
| void delete_internal_node(node_type *node) { |
| node->destroy(mutable_allocator()); |
| deallocate(node_type::InternalSize(), node); |
| } |
| void delete_leaf_node(node_type *node) { |
| node->destroy(mutable_allocator()); |
| deallocate(node_type::LeafSize(node->max_count()), node); |
| } |
| |
| // Rebalances or splits the node iter points to. |
| void rebalance_or_split(iterator *iter); |
| |
| // Merges the values of left, right and the delimiting key on their parent |
| // onto left, removing the delimiting key and deleting right. |
| void merge_nodes(node_type *left, node_type *right); |
| |
| // Tries to merge node with its left or right sibling, and failing that, |
| // rebalance with its left or right sibling. Returns true if a merge |
| // occurred, at which point it is no longer valid to access node. Returns |
| // false if no merging took place. |
| bool try_merge_or_rebalance(iterator *iter); |
| |
| // Tries to shrink the height of the tree by 1. |
| void try_shrink(); |
| |
| iterator internal_end(iterator iter) { |
| return iter.node != nullptr ? iter : end(); |
| } |
| const_iterator internal_end(const_iterator iter) const { |
| return iter.node != nullptr ? iter : end(); |
| } |
| |
| // Emplaces a value into the btree immediately before iter. Requires that |
| // key(v) <= iter.key() and (--iter).key() <= key(v). |
| template <typename... Args> |
| iterator internal_emplace(iterator iter, Args &&... args); |
| |
| // Returns an iterator pointing to the first value >= the value "iter" is |
| // pointing at. Note that "iter" might be pointing to an invalid location such |
| // as iter.position == iter.node->finish(). This routine simply moves iter up |
| // in the tree to a valid location. |
| // Requires: iter.node is non-null. |
| template <typename IterType> |
| static IterType internal_last(IterType iter); |
| |
| // Returns an iterator pointing to the leaf position at which key would |
| // reside in the tree. We provide 2 versions of internal_locate. The first |
| // version uses a less-than comparator and is incapable of distinguishing when |
| // there is an exact match. The second version is for the key-compare-to |
| // specialization and distinguishes exact matches. The key-compare-to |
| // specialization allows the caller to avoid a subsequent comparison to |
| // determine if an exact match was made, which is important for keys with |
| // expensive comparison, such as strings. |
| template <typename K> |
| SearchResult<iterator, is_key_compare_to::value> internal_locate( |
| const K &key) const; |
| |
| template <typename K> |
| SearchResult<iterator, false> internal_locate_impl( |
| const K &key, std::false_type /* IsCompareTo */) const; |
| |
| template <typename K> |
| SearchResult<iterator, true> internal_locate_impl( |
| const K &key, std::true_type /* IsCompareTo */) const; |
| |
| // Internal routine which implements lower_bound(). |
| template <typename K> |
| iterator internal_lower_bound(const K &key) const; |
| |
| // Internal routine which implements upper_bound(). |
| template <typename K> |
| iterator internal_upper_bound(const K &key) const; |
| |
| // Internal routine which implements find(). |
| template <typename K> |
| iterator internal_find(const K &key) const; |
| |
| // Deletes a node and all of its children. |
| void internal_clear(node_type *node); |
| |
| // Verifies the tree structure of node. |
| int internal_verify(const node_type *node, const key_type *lo, |
| const key_type *hi) const; |
| |
| node_stats internal_stats(const node_type *node) const { |
| // The root can be a static empty node. |
| if (node == nullptr || (node == root() && empty())) { |
| return node_stats(0, 0); |
| } |
| if (node->leaf()) { |
| return node_stats(1, 0); |
| } |
| node_stats res(0, 1); |
| for (int i = node->start(); i <= node->finish(); ++i) { |
| res += internal_stats(node->child(i)); |
| } |
| return res; |
| } |
| |
| public: |
| // Exposed only for tests. |
| static bool testonly_uses_linear_node_search() { |
| return node_type::testonly_uses_linear_node_search(); |
| } |
| |
| private: |
| // We use compressed tuple in order to save space because key_compare and |
| // allocator_type are usually empty. |
| absl::container_internal::CompressedTuple<key_compare, allocator_type, |
| node_type *> |
| root_; |
| |
| // A pointer to the rightmost node. Note that the leftmost node is stored as |
| // the root's parent. |
| node_type *rightmost_; |
| |
| // Number of values. |
| size_type size_; |
| }; |
| |
| //// |
| // btree_node methods |
| template <typename P> |
| template <typename... Args> |
| inline void btree_node<P>::emplace_value(const size_type i, |
| allocator_type *alloc, |
| Args &&... args) { |
| assert(i >= start()); |
| assert(i <= finish()); |
| // Shift old values to create space for new value and then construct it in |
| // place. |
| if (i < finish()) { |
| value_init(finish(), alloc, slot(finish() - 1)); |
| for (size_type j = finish() - 1; j > i; --j) |
| params_type::move(alloc, slot(j - 1), slot(j)); |
| value_destroy(i, alloc); |
| } |
| value_init(i, alloc, std::forward<Args>(args)...); |
| set_finish(finish() + 1); |
| |
| if (!leaf() && finish() > i + 1) { |
| for (int j = finish(); j > i + 1; --j) { |
| set_child(j, child(j - 1)); |
| } |
| clear_child(i + 1); |
| } |
| } |
| |
| template <typename P> |
| inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) { |
| if (!leaf() && finish() > i + 1) { |
| assert(child(i + 1)->count() == 0); |
| for (size_type j = i + 1; j < finish(); ++j) { |
| set_child(j, child(j + 1)); |
| } |
| clear_child(finish()); |
| } |
| |
| remove_values_ignore_children(i, /*to_erase=*/1, alloc); |
| } |
| |
| template <typename P> |
| inline void btree_node<P>::remove_values_ignore_children( |
| const int i, const int to_erase, allocator_type *alloc) { |
| params_type::move(alloc, slot(i + to_erase), finish_slot(), slot(i)); |
| value_destroy_n(finish() - to_erase, to_erase, alloc); |
| set_finish(finish() - to_erase); |
| } |
| |
| template <typename P> |
| void btree_node<P>::rebalance_right_to_left(const int to_move, |
| btree_node *right, |
| allocator_type *alloc) { |
| assert(parent() == right->parent()); |
| assert(position() + 1 == right->position()); |
| assert(right->count() >= count()); |
| assert(to_move >= 1); |
| assert(to_move <= right->count()); |
| |
| // 1) Move the delimiting value in the parent to the left node. |
| value_init(finish(), alloc, parent()->slot(position())); |
| |
| // 2) Move the (to_move - 1) values from the right node to the left node. |
| right->uninitialized_move_n(to_move - 1, right->start(), finish() + 1, this, |
| alloc); |
| |
| // 3) Move the new delimiting value to the parent from the right node. |
| params_type::move(alloc, right->slot(to_move - 1), |
| parent()->slot(position())); |
| |
| // 4) Shift the values in the right node to their correct position. |
| params_type::move(alloc, right->slot(to_move), right->finish_slot(), |
| right->start_slot()); |
| |
| // 5) Destroy the now-empty to_move entries in the right node. |
| right->value_destroy_n(right->finish() - to_move, to_move, alloc); |
| |
| if (!leaf()) { |
| // Move the child pointers from the right to the left node. |
| for (int i = 0; i < to_move; ++i) { |
| init_child(finish() + i + 1, right->child(i)); |
| } |
| for (int i = right->start(); i <= right->finish() - to_move; ++i) { |
| assert(i + to_move <= right->max_count()); |
| right->init_child(i, right->child(i + to_move)); |
| right->clear_child(i + to_move); |
| } |
| } |
| |
| // Fixup `finish` on the left and right nodes. |
| set_finish(finish() + to_move); |
| right->set_finish(right->finish() - to_move); |
| } |
| |
| template <typename P> |
| void btree_node<P>::rebalance_left_to_right(const int to_move, |
| btree_node *right, |
| allocator_type *alloc) { |
| assert(parent() == right->parent()); |
| assert(position() + 1 == right->position()); |
| assert(count() >= right->count()); |
| assert(to_move >= 1); |
| assert(to_move <= count()); |
| |
| // Values in the right node are shifted to the right to make room for the |
| // new to_move values. Then, the delimiting value in the parent and the |
| // other (to_move - 1) values in the left node are moved into the right node. |
| // Lastly, a new delimiting value is moved from the left node into the |
| // parent, and the remaining empty left node entries are destroyed. |
| |
| if (right->count() >= to_move) { |
| // The original location of the right->count() values are sufficient to hold |
| // the new to_move entries from the parent and left node. |
| |
| // 1) Shift existing values in the right node to their correct positions. |
| right->uninitialized_move_n(to_move, right->finish() - to_move, |
| right->finish(), right, alloc); |
| for (slot_type *src = right->slot(right->finish() - to_move - 1), |
| *dest = right->slot(right->finish() - 1), |
| *end = right->start_slot(); |
| src >= end; --src, --dest) { |
| params_type::move(alloc, src, dest); |
| } |
| |
| // 2) Move the delimiting value in the parent to the right node. |
| params_type::move(alloc, parent()->slot(position()), |
| right->slot(to_move - 1)); |
| |
| // 3) Move the (to_move - 1) values from the left node to the right node. |
| params_type::move(alloc, slot(finish() - (to_move - 1)), finish_slot(), |
| right->start_slot()); |
| } else { |
| // The right node does not have enough initialized space to hold the new |
| // to_move entries, so part of them will move to uninitialized space. |
| |
| // 1) Shift existing values in the right node to their correct positions. |
| right->uninitialized_move_n(right->count(), right->start(), |
| right->start() + to_move, right, alloc); |
| |
| // 2) Move the delimiting value in the parent to the right node. |
| right->value_init(to_move - 1, alloc, parent()->slot(position())); |
| |
| // 3) Move the (to_move - 1) values from the left node to the right node. |
| const size_type uninitialized_remaining = to_move - right->count() - 1; |
| uninitialized_move_n(uninitialized_remaining, |
| finish() - uninitialized_remaining, right->finish(), |
| right, alloc); |
| params_type::move(alloc, slot(finish() - (to_move - 1)), |
| slot(finish() - uninitialized_remaining), |
| right->start_slot()); |
| } |
| |
| // 4) Move the new delimiting value to the parent from the left node. |
| params_type::move(alloc, slot(finish() - to_move), |
| parent()->slot(position())); |
| |
| // 5) Destroy the now-empty to_move entries in the left node. |
| value_destroy_n(finish() - to_move, to_move, alloc); |
| |
| if (!leaf()) { |
| // Move the child pointers from the left to the right node. |
| for (int i = right->finish(); i >= right->start(); --i) { |
| right->init_child(i + to_move, right->child(i)); |
| right->clear_child(i); |
| } |
| for (int i = 1; i <= to_move; ++i) { |
| right->init_child(i - 1, child(finish() - to_move + i)); |
| clear_child(finish() - to_move + i); |
| } |
| } |
| |
| // Fixup the counts on the left and right nodes. |
| set_finish(finish() - to_move); |
| right->set_finish(right->finish() + to_move); |
| } |
| |
| template <typename P> |
| void btree_node<P>::split(const int insert_position, btree_node *dest, |
| allocator_type *alloc) { |
| assert(dest->count() == 0); |
| assert(max_count() == kNodeValues); |
| |
| // We bias the split based on the position being inserted. If we're |
| // inserting at the beginning of the left node then bias the split to put |
| // more values on the right node. If we're inserting at the end of the |
| // right node then bias the split to put more values on the left node. |
| if (insert_position == start()) { |
| dest->set_finish(dest->start() + finish() - 1); |
| } else if (insert_position == kNodeValues) { |
| dest->set_finish(dest->start()); |
| } else { |
| dest->set_finish(dest->start() + count() / 2); |
| } |
| set_finish(finish() - dest->count()); |
| assert(count() >= 1); |
| |
| // Move values from the left sibling to the right sibling. |
| uninitialized_move_n(dest->count(), finish(), dest->start(), dest, alloc); |
| |
| // Destroy the now-empty entries in the left node. |
| value_destroy_n(finish(), dest->count(), alloc); |
| |
| // The split key is the largest value in the left sibling. |
| --mutable_finish(); |
| parent()->emplace_value(position(), alloc, finish_slot()); |
| value_destroy(finish(), alloc); |
| parent()->init_child(position() + 1, dest); |
| |
| if (!leaf()) { |
| for (int i = dest->start(), j = finish() + 1; i <= dest->finish(); |
| ++i, ++j) { |
| assert(child(j) != nullptr); |
| dest->init_child(i, child(j)); |
| clear_child(j); |
| } |
| } |
| } |
| |
| template <typename P> |
| void btree_node<P>::merge(btree_node *src, allocator_type *alloc) { |
| assert(parent() == src->parent()); |
| assert(position() + 1 == src->position()); |
| |
| // Move the delimiting value to the left node. |
| value_init(finish(), alloc, parent()->slot(position())); |
| |
| // Move the values from the right to the left node. |
| src->uninitialized_move_n(src->count(), src->start(), finish() + 1, this, |
| alloc); |
| |
| // Destroy the now-empty entries in the right node. |
| src->value_destroy_n(src->start(), src->count(), alloc); |
| |
| if (!leaf()) { |
| // Move the child pointers from the right to the left node. |
| for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) { |
| init_child(j, src->child(i)); |
| src->clear_child(i); |
| } |
| } |
| |
| // Fixup `finish` on the src and dest nodes. |
| set_finish(start() + 1 + count() + src->count()); |
| src->set_finish(src->start()); |
| |
| // Remove the value on the parent node. |
| parent()->remove_value(position(), alloc); |
| } |
| |
| template <typename P> |
| void btree_node<P>::swap(btree_node *other, allocator_type *alloc) { |
| using std::swap; |
| assert(leaf() == other->leaf()); |
| |
| // Determine which is the smaller/larger node. |
| btree_node *smaller = this, *larger = other; |
| if (smaller->count() > larger->count()) { |
| swap(smaller, larger); |
| } |
| |
| // Swap the values. |
| for (slot_type *a = smaller->start_slot(), *b = larger->start_slot(), |
| *end = smaller->finish_slot(); |
| a != end; ++a, ++b) { |
| params_type::swap(alloc, a, b); |
| } |
| |
| // Move values that can't be swapped. |
| const size_type to_move = larger->count() - smaller->count(); |
| larger->uninitialized_move_n(to_move, smaller->finish(), smaller->finish(), |
| smaller, alloc); |
| larger->value_destroy_n(smaller->finish(), to_move, alloc); |
| |
| if (!leaf()) { |
| // Swap the child pointers. |
| std::swap_ranges(&smaller->mutable_child(smaller->start()), |
| &smaller->mutable_child(smaller->finish() + 1), |
| &larger->mutable_child(larger->start())); |
| // Update swapped children's parent pointers. |
| int i = smaller->start(); |
| int j = larger->start(); |
| for (; i <= smaller->finish(); ++i, ++j) { |
| smaller->child(i)->set_parent(smaller); |
| larger->child(j)->set_parent(larger); |
| } |
| // Move the child pointers that couldn't be swapped. |
| for (; j <= larger->finish(); ++i, ++j) { |
| smaller->init_child(i, larger->child(j)); |
| larger->clear_child(j); |
| } |
| } |
| |
| // Swap the `finish`s. |
| // TODO(ezb): with floating storage, will also need to swap starts. |
| swap(mutable_finish(), other->mutable_finish()); |
| } |
| |
| //// |
| // btree_iterator methods |
| template <typename N, typename R, typename P> |
| void btree_iterator<N, R, P>::increment_slow() { |
| if (node->leaf()) { |
| assert(position >= node->finish()); |
| btree_iterator save(*this); |
| while (position == node->finish() && !node->is_root()) { |
| assert(node->parent()->child(node->position()) == node); |
| position = node->position(); |
| node = node->parent(); |
| } |
| if (position == node->finish()) { |
| *this = save; |
| } |
| } else { |
| assert(position < node->finish()); |
| node = node->child(position + 1); |
| while (!node->leaf()) { |
| node = node->start_child(); |
| } |
| position = node->start(); |
| } |
| } |
| |
| template <typename N, typename R, typename P> |
| void btree_iterator<N, R, P>::decrement_slow() { |
| if (node->leaf()) { |
| assert(position <= -1); |
| btree_iterator save(*this); |
| while (position < node->start() && !node->is_root()) { |
| assert(node->parent()->child(node->position()) == node); |
| position = node->position() - 1; |
| node = node->parent(); |
| } |
| if (position < node->start()) { |
| *this = save; |
| } |
| } else { |
| assert(position >= node->start()); |
| node = node->child(position); |
| while (!node->leaf()) { |
| node = node->child(node->finish()); |
| } |
| position = node->finish() - 1; |
| } |
| } |
| |
| //// |
| // btree methods |
| template <typename P> |
| template <typename Btree> |
| void btree<P>::copy_or_move_values_in_order(Btree *other) { |
| static_assert(std::is_same<btree, Btree>::value || |
| std::is_same<const btree, Btree>::value, |
| "Btree type must be same or const."); |
| assert(empty()); |
| |
| // We can avoid key comparisons because we know the order of the |
| // values is the same order we'll store them in. |
| auto iter = other->begin(); |
| if (iter == other->end()) return; |
| insert_multi(maybe_move_from_iterator(iter)); |
| ++iter; |
| for (; iter != other->end(); ++iter) { |
| // If the btree is not empty, we can just insert the new value at the end |
| // of the tree. |
| internal_emplace(end(), maybe_move_from_iterator(iter)); |
| } |
| } |
| |
| template <typename P> |
| constexpr bool btree<P>::static_assert_validation() { |
| static_assert(std::is_nothrow_copy_constructible<key_compare>::value, |
| "Key comparison must be nothrow copy constructible"); |
| static_assert(std::is_nothrow_copy_constructible<allocator_type>::value, |
| "Allocator must be nothrow copy constructible"); |
| static_assert(type_traits_internal::is_trivially_copyable<iterator>::value, |
| "iterator not trivially copyable."); |
| |
| // Note: We assert that kTargetValues, which is computed from |
| // Params::kTargetNodeSize, must fit the node_type::field_type. |
| static_assert( |
| kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))), |
| "target node size too large"); |
| |
| // Verify that key_compare returns an absl::{weak,strong}_ordering or bool. |
| using compare_result_type = |
| absl::result_of_t<key_compare(key_type, key_type)>; |
| static_assert( |
| std::is_same<compare_result_type, bool>::value || |
| std::is_convertible<compare_result_type, absl::weak_ordering>::value, |
| "key comparison function must return absl::{weak,strong}_ordering or " |
| "bool."); |
| |
| // Test the assumption made in setting kNodeValueSpace. |
| static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4, |
| "node space assumption incorrect"); |
| |
| return true; |
| } |
| |
| template <typename P> |
| btree<P>::btree(const key_compare &comp, const allocator_type &alloc) |
| : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {} |
| |
| template <typename P> |
| btree<P>::btree(const btree &other) |
| : btree(other.key_comp(), other.allocator()) { |
| copy_or_move_values_in_order(&other); |
| } |
| |
| template <typename P> |
| template <typename... Args> |
| auto btree<P>::insert_unique(const key_type &key, Args &&... args) |
| -> std::pair<iterator, bool> { |
| if (empty()) { |
| mutable_root() = rightmost_ = new_leaf_root_node(1); |
| } |
| |
| auto res = internal_locate(key); |
| iterator &iter = res.value; |
| |
| if (res.HasMatch()) { |
| if (res.IsEq()) { |
| // The key already exists in the tree, do nothing. |
| return {iter, false}; |
| } |
| } else { |
| iterator last = internal_last(iter); |
| if (last.node && !compare_keys(key, last.key())) { |
| // The key already exists in the tree, do nothing. |
| return {last, false}; |
| } |
| } |
| return {internal_emplace(iter, std::forward<Args>(args)...), true}; |
| } |
| |
| template <typename P> |
| template <typename... Args> |
| inline auto btree<P>::insert_hint_unique(iterator position, const key_type &key, |
| Args &&... args) |
| -> std::pair<iterator, bool> { |
| if (!empty()) { |
| if (position == end() || compare_keys(key, position.key())) { |
| if (position == begin() || compare_keys(std::prev(position).key(), key)) { |
| // prev.key() < key < position.key() |
| return {internal_emplace(position, std::forward<Args>(args)...), true}; |
| } |
| } else if (compare_keys(position.key(), key)) { |
| ++position; |
| if (position == end() || compare_keys(key, position.key())) { |
| // {original `position`}.key() < key < {current `position`}.key() |
| return {internal_emplace(position, std::forward<Args>(args)...), true}; |
| } |
| } else { |
| // position.key() == key |
| return {position, false}; |
| } |
| } |
| return insert_unique(key, std::forward<Args>(args)...); |
| } |
| |
| template <typename P> |
| template <typename InputIterator> |
| void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e) { |
| for (; b != e; ++b) { |
| insert_hint_unique(end(), params_type::key(*b), *b); |
| } |
| } |
| |
| template <typename P> |
| template <typename ValueType> |
| auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator { |
| if (empty()) { |
| mutable_root() = rightmost_ = new_leaf_root_node(1); |
| } |
| |
| iterator iter = internal_upper_bound(key); |
| if (iter.node == nullptr) { |
| iter = end(); |
| } |
| return internal_emplace(iter, std::forward<ValueType>(v)); |
| } |
| |
| template <typename P> |
| template <typename ValueType> |
| auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator { |
| if (!empty()) { |
| const key_type &key = params_type::key(v); |
| if (position == end() || !compare_keys(position.key(), key)) { |
| if (position == begin() || |
| !compare_keys(key, std::prev(position).key())) { |
| // prev.key() <= key <= position.key() |
| return internal_emplace(position, std::forward<ValueType>(v)); |
| } |
| } else { |
| ++position; |
| if (position == end() || !compare_keys(position.key(), key)) { |
| // {original `position`}.key() < key < {current `position`}.key() |
| return internal_emplace(position, std::forward<ValueType>(v)); |
| } |
| } |
| } |
| return insert_multi(std::forward<ValueType>(v)); |
| } |
| |
| template <typename P> |
| template <typename InputIterator> |
| void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) { |
| for (; b != e; ++b) { |
| insert_hint_multi(end(), *b); |
| } |
| } |
| |
| template <typename P> |
| auto btree<P>::operator=(const btree &other) -> btree & { |
| if (this != &other) { |
| clear(); |
| |
| *mutable_key_comp() = other.key_comp(); |
| if (absl::allocator_traits< |
| allocator_type>::propagate_on_container_copy_assignment::value) { |
| *mutable_allocator() = other.allocator(); |
| } |
| |
| copy_or_move_values_in_order(&other); |
| } |
| return *this; |
| } |
| |
| template <typename P> |
| auto btree<P>::operator=(btree &&other) noexcept -> btree & { |
| if (this != &other) { |
| clear(); |
| |
| using std::swap; |
| if (absl::allocator_traits< |
| allocator_type>::propagate_on_container_copy_assignment::value) { |
| // Note: `root_` also contains the allocator and the key comparator. |
| swap(root_, other.root_); |
| swap(rightmost_, other.rightmost_); |
| swap(size_, other.size_); |
| } else { |
| if (allocator() == other.allocator()) { |
| swap(mutable_root(), other.mutable_root()); |
| swap(*mutable_key_comp(), *other.mutable_key_comp()); |
| swap(rightmost_, other.rightmost_); |
| swap(size_, other.size_); |
| } else { |
| // We aren't allowed to propagate the allocator and the allocator is |
| // different so we can't take over its memory. We must move each element |
| // individually. We need both `other` and `this` to have `other`s key |
| // comparator while moving the values so we can't swap the key |
| // comparators. |
| *mutable_key_comp() = other.key_comp(); |
| copy_or_move_values_in_order(&other); |
| } |
| } |
| } |
| return *this; |
| } |
| |
| template <typename P> |
| auto btree<P>::erase(iterator iter) -> iterator { |
| bool internal_delete = false; |
| if (!iter.node->leaf()) { |
| // Deletion of a value on an internal node. First, move the largest value |
| // from our left child here, then delete that position (in remove_value() |
| // below). We can get to the largest value from our left child by |
| // decrementing iter. |
| iterator internal_iter(iter); |
| --iter; |
| assert(iter.node->leaf()); |
| params_type::move(mutable_allocator(), iter.node->slot(iter.position), |
| internal_iter.node->slot(internal_iter.position)); |
| internal_delete = true; |
| } |
| |
| // Delete the key from the leaf. |
| iter.node->remove_value(iter.position, mutable_allocator()); |
| --size_; |
| |
| // We want to return the next value after the one we just erased. If we |
| // erased from an internal node (internal_delete == true), then the next |
| // value is ++(++iter). If we erased from a leaf node (internal_delete == |
| // false) then the next value is ++iter. Note that ++iter may point to an |
| // internal node and the value in the internal node may move to a leaf node |
| // (iter.node) when rebalancing is performed at the leaf level. |
| |
| iterator res = rebalance_after_delete(iter); |
| |
| // If we erased from an internal node, advance the iterator. |
| if (internal_delete) { |
| ++res; |
| } |
| return res; |
| } |
| |
| template <typename P> |
| auto btree<P>::rebalance_after_delete(iterator iter) -> iterator { |
| // Merge/rebalance as we walk back up the tree. |
| iterator res(iter); |
| bool first_iteration = true; |
| for (;;) { |
| if (iter.node == root()) { |
| try_shrink(); |
| if (empty()) { |
| return end(); |
| } |
| break; |
| } |
| if (iter.node->count() >= kMinNodeValues) { |
| break; |
| } |
| bool merged = try_merge_or_rebalance(&iter); |
| // On the first iteration, we should update `res` with `iter` because `res` |
| // may have been invalidated. |
| if (first_iteration) { |
| res = iter; |
| first_iteration = false; |
| } |
| if (!merged) { |
| break; |
| } |
| iter.position = iter.node->position(); |
| iter.node = iter.node->parent(); |
| } |
| |
| // Adjust our return value. If we're pointing at the end of a node, advance |
| // the iterator. |
| if (res.position == res.node->finish()) { |
| res.position = res.node->finish() - 1; |
| ++res; |
| } |
| |
| return res; |
| } |
| |
| template <typename P> |
| auto btree<P>::erase_range(iterator begin, iterator end) |
| -> std::pair<size_type, iterator> { |
| difference_type count = std::distance(begin, end); |
| assert(count >= 0); |
| |
| if (count == 0) { |
| return {0, begin}; |
| } |
| |
| if (count == size_) { |
| clear(); |
| return {count, this->end()}; |
| } |
| |
| if (begin.node == end.node) { |
| erase_same_node(begin, end); |
| size_ -= count; |
| return {count, rebalance_after_delete(begin)}; |
| } |
| |
| const size_type target_size = size_ - count; |
| while (size_ > target_size) { |
| if (begin.node->leaf()) { |
| const size_type remaining_to_erase = size_ - target_size; |
| const size_type remaining_in_node = begin.node->finish() - begin.position; |
| begin = erase_from_leaf_node( |
| begin, (std::min)(remaining_to_erase, remaining_in_node)); |
| } else { |
| begin = erase(begin); |
| } |
| } |
| return {count, begin}; |
| } |
| |
| template <typename P> |
| void btree<P>::erase_same_node(iterator begin, iterator end) { |
| assert(begin.node == end.node); |
| assert(end.position > begin.position); |
| |
| node_type *node = begin.node; |
| size_type to_erase = end.position - begin.position; |
| if (!node->leaf()) { |
| // Delete all children between begin and end. |
| for (size_type i = 0; i < to_erase; ++i) { |
| internal_clear(node->child(begin.position + i + 1)); |
| } |
| // Rotate children after end into new positions. |
| for (size_type i = begin.position + to_erase + 1; i <= node->finish(); |
| ++i) { |
| node->set_child(i - to_erase, node->child(i)); |
| node->clear_child(i); |
| } |
| } |
| node->remove_values_ignore_children(begin.position, to_erase, |
| mutable_allocator()); |
| |
| // Do not need to update rightmost_, because |
| // * either end == this->end(), and therefore node == rightmost_, and still |
| // exists |
| // * or end != this->end(), and therefore rightmost_ hasn't been erased, since |
| // it wasn't covered in [begin, end) |
| } |
| |
| template <typename P> |
| auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase) |
| -> iterator { |
| node_type *node = begin.node; |
| assert(node->leaf()); |
| assert(node->finish() > begin.position); |
| assert(begin.position + to_erase <= node->finish()); |
| |
| node->remove_values_ignore_children(begin.position, to_erase, |
| mutable_allocator()); |
| |
| size_ -= to_erase; |
| |
| return rebalance_after_delete(begin); |
| } |
| |
| template <typename P> |
| template <typename K> |
| auto btree<P>::erase_unique(const K &key) -> size_type { |
| const iterator iter = internal_find(key); |
| if (iter.node == nullptr) { |
| // The key doesn't exist in the tree, return nothing done. |
| return 0; |
| } |
| erase(iter); |
| return 1; |
| } |
| |
| template <typename P> |
| template <typename K> |
| auto btree<P>::erase_multi(const K &key) -> size_type { |
| const iterator begin = internal_lower_bound(key); |
| if (begin.node == nullptr) { |
| // The key doesn't exist in the tree, return nothing done. |
| return 0; |
| } |
| // Delete all of the keys between begin and upper_bound(key). |
| const iterator end = internal_end(internal_upper_bound(key)); |
| return erase_range(begin, end).first; |
| } |
| |
| template <typename P> |
| void btree<P>::clear() { |
| if (!empty()) { |
| internal_clear(root()); |
| } |
| mutable_root() = EmptyNode(); |
| rightmost_ = EmptyNode(); |
| size_ = 0; |
| } |
| |
| template <typename P> |
| void btree<P>::swap(btree &other) { |
| using std::swap; |
| if (absl::allocator_traits< |
| allocator_type>::propagate_on_container_swap::value) { |
| // Note: `root_` also contains the allocator and the key comparator. |
| swap(root_, other.root_); |
| } else { |
| // It's undefined behavior if the allocators are unequal here. |
| assert(allocator() == other.allocator()); |
| swap(mutable_root(), other.mutable_root()); |
| swap(*mutable_key_comp(), *other.mutable_key_comp()); |
| } |
| swap(rightmost_, other.rightmost_); |
| swap(size_, other.size_); |
| } |
| |
| template <typename P> |
| void btree<P>::verify() const { |
| assert(root() != nullptr); |
| assert(leftmost() != nullptr); |
| assert(rightmost_ != nullptr); |
| assert(empty() || size() == internal_verify(root(), nullptr, nullptr)); |
| assert(leftmost() == (++const_iterator(root(), -1)).node); |
| assert(rightmost_ == (--const_iterator(root(), root()->finish())).node); |
| assert(leftmost()->leaf()); |
| assert(rightmost_->leaf()); |
| } |
| |
| template <typename P> |
| void btree<P>::rebalance_or_split(iterator *iter) { |
| node_type *&node = iter->node; |
| int &insert_position = iter->position; |
| assert(node->count() == node->max_count()); |
| assert(kNodeValues == node->max_count()); |
| |
| // First try to make room on the node by rebalancing. |
| node_type *parent = node->parent(); |
| if (node != root()) { |
| if (node->position() > parent->start()) { |
| // Try rebalancing with our left sibling. |
| node_type *left = parent->child(node->position() - 1); |
| assert(left->max_count() == kNodeValues); |
| if (left->count() < kNodeValues) { |
| // We bias rebalancing based on the position being inserted. If we're |
| // inserting at the end of the right node then we bias rebalancing to |
| // fill up the left node. |
| int to_move = (kNodeValues - left->count()) / |
| (1 + (insert_position < kNodeValues)); |
| to_move = (std::max)(1, to_move); |
| |
| if (insert_position - to_move >= node->start() || |
| left->count() + to_move < kNodeValues) { |
| left->rebalance_right_to_left(to_move, node, mutable_allocator()); |
| |
| assert(node->max_count() - node->count() == to_move); |
| insert_position = insert_position - to_move; |
| if (insert_position < node->start()) { |
| insert_position = insert_position + left->count() + 1; |
| node = left; |
| } |
| |
| assert(node->count() < node->max_count()); |
| return; |
| } |
| } |
| } |
| |
| if (node->position() < parent->finish()) { |
| // Try rebalancing with our right sibling. |
| node_type *right = parent->child(node->position() + 1); |
| assert(right->max_count() == kNodeValues); |
| if (right->count() < kNodeValues) { |
| // We bias rebalancing based on the position being inserted. If we're |
| // inserting at the beginning of the left node then we bias rebalancing |
| // to fill up the right node. |
| int to_move = (kNodeValues - right->count()) / |
| (1 + (insert_position > node->start())); |
| to_move = (std::max)(1, to_move); |
| |
| if (insert_position <= node->finish() - to_move || |
| right->count() + to_move < kNodeValues) { |
| node->rebalance_left_to_right(to_move, right, mutable_allocator()); |
| |
| if (insert_position > node->finish()) { |
| insert_position = insert_position - node->count() - 1; |
| node = right; |
| } |
| |
| assert(node->count() < node->max_count()); |
| return; |
| } |
| } |
| } |
| |
| // Rebalancing failed, make sure there is room on the parent node for a new |
| // value. |
| assert(parent->max_count() == kNodeValues); |
| if (parent->count() == kNodeValues) { |
| iterator parent_iter(node->parent(), node->position()); |
| rebalance_or_split(&parent_iter); |
| } |
| } else { |
| // Rebalancing not possible because this is the root node. |
| // Create a new root node and set the current root node as the child of the |
| // new root. |
| parent = new_internal_node(parent); |
| parent->init_child(parent->start(), root()); |
| mutable_root() = parent; |
| // If the former root was a leaf node, then it's now the rightmost node. |
| assert(!parent->start_child()->leaf() || |
| parent->start_child() == rightmost_); |
| } |
| |
| // Split the node. |
| node_type *split_node; |
| if (node->leaf()) { |
| split_node = new_leaf_node(parent); |
| node->split(insert_position, split_node, mutable_allocator()); |
| if (rightmost_ == node) rightmost_ = split_node; |
| } else { |
| split_node = new_internal_node(parent); |
| node->split(insert_position, split_node, mutable_allocator()); |
| } |
| |
| if (insert_position > node->finish()) { |
| insert_position = insert_position - node->count() - 1; |
| node = split_node; |
| } |
| } |
| |
| template <typename P> |
| void btree<P>::merge_nodes(node_type *left, node_type *right) { |
| left->merge(right, mutable_allocator()); |
| if (right->leaf()) { |
| if (rightmost_ == right) rightmost_ = left; |
| delete_leaf_node(right); |
| } else { |
| delete_internal_node(right); |
| } |
| } |
| |
| template <typename P> |
| bool btree<P>::try_merge_or_rebalance(iterator *iter) { |
| node_type *parent = iter->node->parent(); |
| if (iter->node->position() > parent->start()) { |
| // Try merging with our left sibling. |
| node_type *left = parent->child(iter->node->position() - 1); |
| assert(left->max_count() == kNodeValues); |
| if (1 + left->count() + iter->node->count() <= kNodeValues) { |
| iter->position += 1 + left->count(); |
| merge_nodes(left, iter->node); |
| iter->node = left; |
| return true; |
| } |
| } |
| if (iter->node->position() < parent->finish()) { |
| // Try merging with our right sibling. |
| node_type *right = parent->child(iter->node->position() + 1); |
| assert(right->max_count() == kNodeValues); |
| if (1 + iter->node->count() + right->count() <= kNodeValues) { |
| merge_nodes(iter->node, right); |
| return true; |
| } |
| // Try rebalancing with our right sibling. We don't perform rebalancing if |
| // we deleted the first element from iter->node and the node is not |
| // empty. This is a small optimization for the common pattern of deleting |
| // from the front of the tree. |
| if (right->count() > kMinNodeValues && |
| (iter->node->count() == 0 || iter->position > iter->node->start())) { |
| int to_move = (right->count() - iter->node->count()) / 2; |
| to_move = (std::min)(to_move, right->count() - 1); |
| iter->node->rebalance_right_to_left(to_move, right, mutable_allocator()); |
| return false; |
| } |
| } |
| if (iter->node->position() > parent->start()) { |
| // Try rebalancing with our left sibling. We don't perform rebalancing if |
| // we deleted the last element from iter->node and the node is not |
| // empty. This is a small optimization for the common pattern of deleting |
| // from the back of the tree. |
| node_type *left = parent->child(iter->node->position() - 1); |
| if (left->count() > kMinNodeValues && |
| (iter->node->count() == 0 || iter->position < iter->node->finish())) { |
| int to_move = (left->count() - iter->node->count()) / 2; |
| to_move = (std::min)(to_move, left->count() - 1); |
| left->rebalance_left_to_right(to_move, iter->node, mutable_allocator()); |
| iter->position += to_move; |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| template <typename P> |
| void btree<P>::try_shrink() { |
| if (root()->count() > 0) { |
| return; |
| } |
| // Deleted the last item on the root node, shrink the height of the tree. |
| if (root()->leaf()) { |
| assert(size() == 0); |
| delete_leaf_node(root()); |
| mutable_root() = rightmost_ = EmptyNode(); |
| } else { |
| node_type *child = root()->start_child(); |
| child->make_root(); |
| delete_internal_node(root()); |
| mutable_root() = child; |
| } |
| } |
| |
| template <typename P> |
| template <typename IterType> |
| inline IterType btree<P>::internal_last(IterType iter) { |
| assert(iter.node != nullptr); |
| while (iter.position == iter.node->finish()) { |
| iter.position = iter.node->position(); |
| iter.node = iter.node->parent(); |
| if (iter.node->leaf()) { |
| iter.node = nullptr; |
| break; |
| } |
| } |
| return iter; |
| } |
| |
| template <typename P> |
| template <typename... Args> |
| inline auto btree<P>::internal_emplace(iterator iter, Args &&... args) |
| -> iterator { |
| if (!iter.node->leaf()) { |
| // We can't insert on an internal node. Instead, we'll insert after the |
| // previous value which is guaranteed to be on a leaf node. |
| --iter; |
| ++iter.position; |
| } |
| const int max_count = iter.node->max_count(); |
| if (iter.node->count() == max_count) { |
| // Make room in the leaf for the new item. |
| if (max_count < kNodeValues) { |
| // Insertion into the root where the root is smaller than the full node |
| // size. Simply grow the size of the root node. |
| assert(iter.node == root()); |
| iter.node = |
| new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count)); |
| iter.node->swap(root(), mutable_allocator()); |
| delete_leaf_node(root()); |
| mutable_root() = rightmost_ = iter.node; |
| } else { |
| rebalance_or_split(&iter); |
| } |
| } |
| iter.node->emplace_value(iter.position, mutable_allocator(), |
| std::forward<Args>(args)...); |
| ++size_; |
| return iter; |
| } |
| |
| template <typename P> |
| template <typename K> |
| inline auto btree<P>::internal_locate(const K &key) const |
| -> SearchResult<iterator, is_key_compare_to::value> { |
| return internal_locate_impl(key, is_key_compare_to()); |
| } |
| |
| template <typename P> |
| template <typename K> |
| inline auto btree<P>::internal_locate_impl( |
| const K &key, std::false_type /* IsCompareTo */) const |
| -> SearchResult<iterator, false> { |
| iterator iter(const_cast<node_type *>(root())); |
| for (;;) { |
| iter.position = iter.node->lower_bound(key, key_comp()).value; |
| // NOTE: we don't need to walk all the way down the tree if the keys are |
| // equal, but determining equality would require doing an extra comparison |
| // on each node on the way down, and we will need to go all the way to the |
| // leaf node in the expected case. |
| if (iter.node->leaf()) { |
| break; |
| } |
| iter.node = iter.node->child(iter.position); |
| } |
| return {iter}; |
| } |
| |
| template <typename P> |
| template <typename K> |
| inline auto btree<P>::internal_locate_impl( |
| const K &key, std::true_type /* IsCompareTo */) const |
| -> SearchResult<iterator, true> { |
| iterator iter(const_cast<node_type *>(root())); |
| for (;;) { |
| SearchResult<int, true> res = iter.node->lower_bound(key, key_comp()); |
| iter.position = res.value; |
| if (res.match == MatchKind::kEq) { |
| return {iter, MatchKind::kEq}; |
| } |
| if (iter.node->leaf()) { |
| break; |
| } |
| iter.node = iter.node->child(iter.position); |
| } |
| return {iter, MatchKind::kNe}; |
| } |
| |
| template <typename P> |
| template <typename K> |
| auto btree<P>::internal_lower_bound(const K &key) const -> iterator { |
| iterator iter(const_cast<node_type *>(root())); |
| for (;;) { |
| iter.position = iter.node->lower_bound(key, key_comp()).value; |
| if (iter.node->leaf()) { |
| break; |
| } |
| iter.node = iter.node->child(iter.position); |
| } |
| return internal_last(iter); |
| } |
| |
| template <typename P> |
| template <typename K> |
| auto btree<P>::internal_upper_bound(const K &key) const -> iterator { |
| iterator iter(const_cast<node_type *>(root())); |
| for (;;) { |
| iter.position = iter.node->upper_bound(key, key_comp()); |
| if (iter.node->leaf()) { |
| break; |
| } |
| iter.node = iter.node->child(iter.position); |
| } |
| return internal_last(iter); |
| } |
| |
| template <typename P> |
| template <typename K> |
| auto btree<P>::internal_find(const K &key) const -> iterator { |
| auto res = internal_locate(key); |
| if (res.HasMatch()) { |
| if (res.IsEq()) { |
| return res.value; |
| } |
| } else { |
| const iterator iter = internal_last(res.value); |
| if (iter.node != nullptr && !compare_keys(key, iter.key())) { |
| return iter; |
| } |
| } |
| return {nullptr, 0}; |
| } |
| |
| template <typename P> |
| void btree<P>::internal_clear(node_type *node) { |
| if (!node->leaf()) { |
| for (int i = node->start(); i <= node->finish(); ++i) { |
| internal_clear(node->child(i)); |
| } |
| delete_internal_node(node); |
| } else { |
| delete_leaf_node(node); |
| } |
| } |
| |
| template <typename P> |
| int btree<P>::internal_verify(const node_type *node, const key_type *lo, |
| const key_type *hi) const { |
| assert(node->count() > 0); |
| assert(node->count() <= node->max_count()); |
| if (lo) { |
| assert(!compare_keys(node->key(node->start()), *lo)); |
| } |
| if (hi) { |
| assert(!compare_keys(*hi, node->key(node->finish() - 1))); |
| } |
| for (int i = node->start() + 1; i < node->finish(); ++i) { |
| assert(!compare_keys(node->key(i), node->key(i - 1))); |
| } |
| int count = node->count(); |
| if (!node->leaf()) { |
| for (int i = node->start(); i <= node->finish(); ++i) { |
| assert(node->child(i) != nullptr); |
| assert(node->child(i)->parent() == node); |
| assert(node->child(i)->position() == i); |
| count += internal_verify(node->child(i), |
| i == node->start() ? lo : &node->key(i - 1), |
| i == node->finish() ? hi : &node->key(i)); |
| } |
| } |
| return count; |
| } |
| |
| } // namespace container_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_CONTAINER_INTERNAL_BTREE_H_ |