| // Copyright 2020 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // A Cord is a sequence of characters with some unusual access propreties. |
| // A Cord supports efficient insertions and deletions at the start and end of |
| // the byte sequence, but random access reads are slower, and random access |
| // modifications are not supported by the API. Cord also provides cheap copies |
| // (using a copy-on-write strategy) and cheap substring operations. |
| // |
| // Thread safety |
| // ------------- |
| // Cord has the same thread-safety properties as many other types like |
| // std::string, std::vector<>, int, etc -- it is thread-compatible. In |
| // particular, if no thread may call a non-const method, then it is safe to |
| // concurrently call const methods. Copying a Cord produces a new instance that |
| // can be used concurrently with the original in arbitrary ways. |
| // |
| // Implementation is similar to the "Ropes" described in: |
| // Ropes: An alternative to strings |
| // Hans J. Boehm, Russ Atkinson, Michael Plass |
| // Software Practice and Experience, December 1995 |
| |
| #ifndef ABSL_STRINGS_CORD_H_ |
| #define ABSL_STRINGS_CORD_H_ |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <iostream> |
| #include <iterator> |
| #include <string> |
| #include <type_traits> |
| |
| #include "absl/base/internal/endian.h" |
| #include "absl/base/internal/invoke.h" |
| #include "absl/base/internal/per_thread_tls.h" |
| #include "absl/base/macros.h" |
| #include "absl/base/port.h" |
| #include "absl/functional/function_ref.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/strings/internal/cord_internal.h" |
| #include "absl/strings/internal/resize_uninitialized.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/optional.h" |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| class Cord; |
| class CordTestPeer; |
| template <typename Releaser> |
| Cord MakeCordFromExternal(absl::string_view, Releaser&&); |
| void CopyCordToString(const Cord& src, std::string* dst); |
| namespace hash_internal { |
| template <typename H> |
| H HashFragmentedCord(H, const Cord&); |
| } |
| |
| namespace cord_internal { |
| |
| // It's expensive to keep a tree perfectly balanced, so instead we keep trees |
| // approximately balanced. A tree node N of depth D(N) that contains a string |
| // of L(N) characters is considered balanced if L >= Fibonacci(D + 2). |
| // The "+ 2" is used to ensure that every leaf node contains at least one |
| // character. Here we presume that |
| // Fibonacci(0) = 0 |
| // Fibonacci(1) = 1 |
| // Fibonacci(2) = 1 |
| // Fibonacci(3) = 2 |
| // ... |
| // |
| // Fibonacci numbers are convenient because it means when two balanced trees of |
| // the same depth are made the children of a new node, the resulting tree is |
| // guaranteed to also be balanced: |
| // |
| // |
| // L(left) >= Fibonacci(D(left) + 2) |
| // L(right) >= Fibonacci(D(right) + 2) |
| // |
| // L(left) + L(right) >= Fibonacci(D(left) + 2) + Fibonacci(D(right) + 2) |
| // L(left) + L(right) == L(new_tree) |
| // |
| // L(new_tree) >= 2 * Fibonacci(D(child) + 2) |
| // D(child) == D(new_tree) - 1 |
| // |
| // L(new_tree) >= 2 * Fibonacci(D(new_tree) + 1) |
| // 2 * Fibonacci(N) >= Fibonacci(N + 1) |
| // |
| // L(new_tree) >= Fibonacci(D(new_tree) + 2) |
| // |
| // |
| // The 93rd Fibonacci number is the largest Fibonacci number that can be |
| // represented in 64 bits, so the size of a balanced Cord of depth 92 is too big |
| // for an unsigned 64 bit integer to hold. Therefore we can safely assume that |
| // the maximum depth of a Cord is 91. |
| constexpr size_t MaxCordDepth() { return 91; } |
| |
| // This class models fixed max size stack of CordRep pointers. |
| // The elements are being pushed back and popped from the back. |
| template <typename CordRepPtr, size_t N> |
| class CordTreePath { |
| public: |
| CordTreePath() {} |
| explicit CordTreePath(CordRepPtr root) { push_back(root); } |
| |
| bool empty() const { return size_ == 0; } |
| size_t size() const { return size_; } |
| void clear() { size_ = 0; } |
| |
| CordRepPtr back() { return data_[size_ - 1]; } |
| |
| void pop_back() { |
| --size_; |
| assert(size_ < N); |
| } |
| void push_back(CordRepPtr elem) { data_[size_++] = elem; } |
| |
| private: |
| CordRepPtr data_[N]; |
| size_t size_ = 0; |
| }; |
| |
| using CordTreeMutablePath = CordTreePath<CordRep*, MaxCordDepth()>; |
| } // namespace cord_internal |
| |
| // A Cord is a sequence of characters. |
| class Cord { |
| private: |
| template <typename T> |
| using EnableIfString = |
| absl::enable_if_t<std::is_same<T, std::string>::value, int>; |
| |
| public: |
| // -------------------------------------------------------------------- |
| // Constructors, destructors and helper factories |
| |
| // Create an empty cord |
| constexpr Cord() noexcept; |
| |
| // Cord is copyable and efficiently movable. |
| // The moved-from state is valid but unspecified. |
| Cord(const Cord& src); |
| Cord(Cord&& src) noexcept; |
| Cord& operator=(const Cord& x); |
| Cord& operator=(Cord&& x) noexcept; |
| |
| // Create a cord out of "src". This constructor is explicit on |
| // purpose so that people do not get automatic type conversions. |
| explicit Cord(absl::string_view src); |
| Cord& operator=(absl::string_view src); |
| |
| // These are templated to avoid ambiguities for types that are convertible to |
| // both `absl::string_view` and `std::string`, such as `const char*`. |
| // |
| // Note that these functions reserve the right to reuse the `string&&`'s |
| // memory and that they will do so in the future. |
| template <typename T, EnableIfString<T> = 0> |
| explicit Cord(T&& src) : Cord(absl::string_view(src)) {} |
| template <typename T, EnableIfString<T> = 0> |
| Cord& operator=(T&& src); |
| |
| // Destroy the cord |
| ~Cord() { |
| if (contents_.is_tree()) DestroyCordSlow(); |
| } |
| |
| // Creates a Cord that takes ownership of external memory. The contents of |
| // `data` are not copied. |
| // |
| // This function takes a callable that is invoked when all Cords are |
| // finished with `data`. The data must remain live and unchanging until the |
| // releaser is called. The requirements for the releaser are that it: |
| // * is move constructible, |
| // * supports `void operator()(absl::string_view) const` or |
| // `void operator()() const`, |
| // * does not have alignment requirement greater than what is guaranteed by |
| // ::operator new. This is dictated by alignof(std::max_align_t) before |
| // C++17 and __STDCPP_DEFAULT_NEW_ALIGNMENT__ if compiling with C++17 or |
| // it is supported by the implementation. |
| // |
| // Example: |
| // |
| // Cord MakeCord(BlockPool* pool) { |
| // Block* block = pool->NewBlock(); |
| // FillBlock(block); |
| // return absl::MakeCordFromExternal( |
| // block->ToStringView(), |
| // [pool, block](absl::string_view v) { |
| // pool->FreeBlock(block, v); |
| // }); |
| // } |
| // |
| // WARNING: It's likely a bug if your releaser doesn't do anything. |
| // For example, consider the following: |
| // |
| // void Foo(const char* buffer, int len) { |
| // auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len), |
| // [](absl::string_view) {}); |
| // |
| // // BUG: If Bar() copies its cord for any reason, including keeping a |
| // // substring of it, the lifetime of buffer might be extended beyond |
| // // when Foo() returns. |
| // Bar(c); |
| // } |
| template <typename Releaser> |
| friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser); |
| |
| // -------------------------------------------------------------------- |
| // Mutations |
| |
| void Clear(); |
| |
| void Append(const Cord& src); |
| void Append(Cord&& src); |
| void Append(absl::string_view src); |
| template <typename T, EnableIfString<T> = 0> |
| void Append(T&& src); |
| |
| void Prepend(const Cord& src); |
| void Prepend(absl::string_view src); |
| template <typename T, EnableIfString<T> = 0> |
| void Prepend(T&& src); |
| |
| void RemovePrefix(size_t n); |
| void RemoveSuffix(size_t n); |
| |
| // Returns a new cord representing the subrange [pos, pos + new_size) of |
| // *this. If pos >= size(), the result is empty(). If |
| // (pos + new_size) >= size(), the result is the subrange [pos, size()). |
| Cord Subcord(size_t pos, size_t new_size) const; |
| |
| friend void swap(Cord& x, Cord& y) noexcept; |
| |
| // -------------------------------------------------------------------- |
| // Accessors |
| |
| size_t size() const; |
| bool empty() const; |
| |
| // Returns the approximate number of bytes pinned by this Cord. Note that |
| // Cords that share memory could each be "charged" independently for the same |
| // shared memory. |
| size_t EstimatedMemoryUsage() const; |
| |
| // -------------------------------------------------------------------- |
| // Comparators |
| |
| // Compares 'this' Cord with rhs. This function and its relatives |
| // treat Cords as sequences of unsigned bytes. The comparison is a |
| // straightforward lexicographic comparison. Return value: |
| // -1 'this' Cord is smaller |
| // 0 two Cords are equal |
| // 1 'this' Cord is larger |
| int Compare(absl::string_view rhs) const; |
| int Compare(const Cord& rhs) const; |
| |
| // Does 'this' cord start/end with rhs |
| bool StartsWith(const Cord& rhs) const; |
| bool StartsWith(absl::string_view rhs) const; |
| bool EndsWith(absl::string_view rhs) const; |
| bool EndsWith(const Cord& rhs) const; |
| |
| // -------------------------------------------------------------------- |
| // Conversion to other types |
| |
| explicit operator std::string() const; |
| |
| // Copies the contents from `src` to `*dst`. |
| // |
| // This function optimizes the case of reusing the destination std::string since it |
| // can reuse previously allocated capacity. However, this function does not |
| // guarantee that pointers previously returned by `dst->data()` remain valid |
| // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new |
| // object, prefer to simply use the conversion operator to `std::string`. |
| friend void CopyCordToString(const Cord& src, std::string* dst); |
| |
| // -------------------------------------------------------------------- |
| // Iteration |
| |
| class CharIterator; |
| |
| // Type for iterating over the chunks of a `Cord`. See comments for |
| // `Cord::chunk_begin()`, `Cord::chunk_end()` and `Cord::Chunks()` below for |
| // preferred usage. |
| // |
| // Additional notes: |
| // * The `string_view` returned by dereferencing a valid, non-`end()` |
| // iterator is guaranteed to be non-empty. |
| // * A `ChunkIterator` object is invalidated after any non-const |
| // operation on the `Cord` object over which it iterates. |
| // * Two `ChunkIterator` objects can be equality compared if and only if |
| // they remain valid and iterate over the same `Cord`. |
| // * This is a proxy iterator. This means the `string_view` returned by the |
| // iterator does not live inside the Cord, and its lifetime is limited to |
| // the lifetime of the iterator itself. To help prevent issues, |
| // `ChunkIterator::reference` is not a true reference type and is |
| // equivalent to `value_type`. |
| // * The iterator keeps state that can grow for `Cord`s that contain many |
| // nodes and are imbalanced due to sharing. Prefer to pass this type by |
| // const reference instead of by value. |
| class ChunkIterator { |
| public: |
| using iterator_category = std::input_iterator_tag; |
| using value_type = absl::string_view; |
| using difference_type = ptrdiff_t; |
| using pointer = const value_type*; |
| using reference = value_type; |
| |
| ChunkIterator() = default; |
| |
| ChunkIterator& operator++(); |
| ChunkIterator operator++(int); |
| bool operator==(const ChunkIterator& other) const; |
| bool operator!=(const ChunkIterator& other) const; |
| reference operator*() const; |
| pointer operator->() const; |
| |
| friend class Cord; |
| friend class CharIterator; |
| |
| private: |
| // Constructs a `begin()` iterator from `cord`. |
| explicit ChunkIterator(const Cord* cord); |
| |
| // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than |
| // `current_chunk_.size()`. |
| void RemoveChunkPrefix(size_t n); |
| Cord AdvanceAndReadBytes(size_t n); |
| void AdvanceBytes(size_t n); |
| // Iterates `n` bytes, where `n` is expected to be greater than or equal to |
| // `current_chunk_.size()`. |
| void AdvanceBytesSlowPath(size_t n); |
| |
| // A view into bytes of the current `CordRep`. It may only be a view to a |
| // suffix of bytes if this is being used by `CharIterator`. |
| absl::string_view current_chunk_; |
| // The current leaf, or `nullptr` if the iterator points to short data. |
| // If the current chunk is a substring node, current_leaf_ points to the |
| // underlying flat or external node. |
| absl::cord_internal::CordRep* current_leaf_ = nullptr; |
| // The number of bytes left in the `Cord` over which we are iterating. |
| size_t bytes_remaining_ = 0; |
| absl::cord_internal::CordTreeMutablePath stack_of_right_children_; |
| }; |
| |
| // Returns an iterator to the first chunk of the `Cord`. |
| // |
| // This is useful for getting a `ChunkIterator` outside the context of a |
| // range-based for-loop (in which case see `Cord::Chunks()` below). |
| // |
| // Example: |
| // |
| // absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c, |
| // absl::string_view s) { |
| // return std::find(c.chunk_begin(), c.chunk_end(), s); |
| // } |
| ChunkIterator chunk_begin() const; |
| // Returns an iterator one increment past the last chunk of the `Cord`. |
| ChunkIterator chunk_end() const; |
| |
| // Convenience wrapper over `Cord::chunk_begin()` and `Cord::chunk_end()` to |
| // enable range-based for-loop iteration over `Cord` chunks. |
| // |
| // Prefer to use `Cord::Chunks()` below instead of constructing this directly. |
| class ChunkRange { |
| public: |
| explicit ChunkRange(const Cord* cord) : cord_(cord) {} |
| |
| ChunkIterator begin() const; |
| ChunkIterator end() const; |
| |
| private: |
| const Cord* cord_; |
| }; |
| |
| // Returns a range for iterating over the chunks of a `Cord` with a |
| // range-based for-loop. |
| // |
| // Example: |
| // |
| // void ProcessChunks(const Cord& cord) { |
| // for (absl::string_view chunk : cord.Chunks()) { ... } |
| // } |
| // |
| // Note that the ordinary caveats of temporary lifetime extension apply: |
| // |
| // void Process() { |
| // for (absl::string_view chunk : CordFactory().Chunks()) { |
| // // The temporary Cord returned by CordFactory has been destroyed! |
| // } |
| // } |
| ChunkRange Chunks() const; |
| |
| // Type for iterating over the characters of a `Cord`. See comments for |
| // `Cord::char_begin()`, `Cord::char_end()` and `Cord::Chars()` below for |
| // preferred usage. |
| // |
| // Additional notes: |
| // * A `CharIterator` object is invalidated after any non-const |
| // operation on the `Cord` object over which it iterates. |
| // * Two `CharIterator` objects can be equality compared if and only if |
| // they remain valid and iterate over the same `Cord`. |
| // * The iterator keeps state that can grow for `Cord`s that contain many |
| // nodes and are imbalanced due to sharing. Prefer to pass this type by |
| // const reference instead of by value. |
| // * This type cannot be a forward iterator because a `Cord` can reuse |
| // sections of memory. This violates the requirement that if dereferencing |
| // two iterators returns the same object, the iterators must compare |
| // equal. |
| class CharIterator { |
| public: |
| using iterator_category = std::input_iterator_tag; |
| using value_type = char; |
| using difference_type = ptrdiff_t; |
| using pointer = const char*; |
| using reference = const char&; |
| |
| CharIterator() = default; |
| |
| CharIterator& operator++(); |
| CharIterator operator++(int); |
| bool operator==(const CharIterator& other) const; |
| bool operator!=(const CharIterator& other) const; |
| reference operator*() const; |
| pointer operator->() const; |
| |
| friend Cord; |
| |
| private: |
| explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {} |
| |
| ChunkIterator chunk_iterator_; |
| }; |
| |
| // Advances `*it` by `n_bytes` and returns the bytes passed as a `Cord`. |
| // |
| // `n_bytes` must be less than or equal to the number of bytes remaining for |
| // iteration. Otherwise the behavior is undefined. It is valid to pass |
| // `char_end()` and 0. |
| static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes); |
| |
| // Advances `*it` by `n_bytes`. |
| // |
| // `n_bytes` must be less than or equal to the number of bytes remaining for |
| // iteration. Otherwise the behavior is undefined. It is valid to pass |
| // `char_end()` and 0. |
| static void Advance(CharIterator* it, size_t n_bytes); |
| |
| // Returns the longest contiguous view starting at the iterator's position. |
| // |
| // `it` must be dereferenceable. |
| static absl::string_view ChunkRemaining(const CharIterator& it); |
| |
| // Returns an iterator to the first character of the `Cord`. |
| CharIterator char_begin() const; |
| // Returns an iterator to one past the last character of the `Cord`. |
| CharIterator char_end() const; |
| |
| // Convenience wrapper over `Cord::char_begin()` and `Cord::char_end()` to |
| // enable range-based for-loop iterator over the characters of a `Cord`. |
| // |
| // Prefer to use `Cord::Chars()` below instead of constructing this directly. |
| class CharRange { |
| public: |
| explicit CharRange(const Cord* cord) : cord_(cord) {} |
| |
| CharIterator begin() const; |
| CharIterator end() const; |
| |
| private: |
| const Cord* cord_; |
| }; |
| |
| // Returns a range for iterating over the characters of a `Cord` with a |
| // range-based for-loop. |
| // |
| // Example: |
| // |
| // void ProcessCord(const Cord& cord) { |
| // for (char c : cord.Chars()) { ... } |
| // } |
| // |
| // Note that the ordinary caveats of temporary lifetime extension apply: |
| // |
| // void Process() { |
| // for (char c : CordFactory().Chars()) { |
| // // The temporary Cord returned by CordFactory has been destroyed! |
| // } |
| // } |
| CharRange Chars() const; |
| |
| // -------------------------------------------------------------------- |
| // Miscellaneous |
| |
| // Get the "i"th character of 'this' and return it. |
| // NOTE: This routine is reasonably efficient. It is roughly |
| // logarithmic in the number of nodes that make up the cord. Still, |
| // if you need to iterate over the contents of a cord, you should |
| // use a CharIterator/CordIterator rather than call operator[] or Get() |
| // repeatedly in a loop. |
| // |
| // REQUIRES: 0 <= i < size() |
| char operator[](size_t i) const; |
| |
| // If this cord's representation is a single flat array, return a |
| // string_view referencing that array. Otherwise return nullopt. |
| absl::optional<absl::string_view> TryFlat() const; |
| |
| // Flattens the cord into a single array and returns a view of the data. |
| // |
| // If the cord was already flat, the contents are not modified. |
| absl::string_view Flatten(); |
| |
| private: |
| friend class CordTestPeer; |
| template <typename H> |
| friend H absl::hash_internal::HashFragmentedCord(H, const Cord&); |
| friend bool operator==(const Cord& lhs, const Cord& rhs); |
| friend bool operator==(const Cord& lhs, absl::string_view rhs); |
| |
| // Call the provided function once for each cord chunk, in order. Unlike |
| // Chunks(), this API will not allocate memory. |
| void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const; |
| |
| // Allocates new contiguous storage for the contents of the cord. This is |
| // called by Flatten() when the cord was not already flat. |
| absl::string_view FlattenSlowPath(); |
| |
| // Actual cord contents are hidden inside the following simple |
| // class so that we can isolate the bulk of cord.cc from changes |
| // to the representation. |
| // |
| // InlineRep holds either either a tree pointer, or an array of kMaxInline |
| // bytes. |
| class InlineRep { |
| public: |
| static const unsigned char kMaxInline = 15; |
| static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), ""); |
| // Tag byte & kMaxInline means we are storing a pointer. |
| static const unsigned char kTreeFlag = 1 << 4; |
| // Tag byte & kProfiledFlag means we are profiling the Cord. |
| static const unsigned char kProfiledFlag = 1 << 5; |
| |
| constexpr InlineRep() : data_{} {} |
| InlineRep(const InlineRep& src); |
| InlineRep(InlineRep&& src); |
| InlineRep& operator=(const InlineRep& src); |
| InlineRep& operator=(InlineRep&& src) noexcept; |
| |
| void Swap(InlineRep* rhs); |
| bool empty() const; |
| size_t size() const; |
| const char* data() const; // Returns nullptr if holding pointer |
| void set_data(const char* data, size_t n, |
| bool nullify_tail); // Discards pointer, if any |
| char* set_data(size_t n); // Write data to the result |
| // Returns nullptr if holding bytes |
| absl::cord_internal::CordRep* tree() const; |
| // Discards old pointer, if any |
| void set_tree(absl::cord_internal::CordRep* rep); |
| // Replaces a tree with a new root. This is faster than set_tree, but it |
| // should only be used when it's clear that the old rep was a tree. |
| void replace_tree(absl::cord_internal::CordRep* rep); |
| // Returns non-null iff was holding a pointer |
| absl::cord_internal::CordRep* clear(); |
| // Convert to pointer if necessary |
| absl::cord_internal::CordRep* force_tree(size_t extra_hint); |
| void reduce_size(size_t n); // REQUIRES: holding data |
| void remove_prefix(size_t n); // REQUIRES: holding data |
| void AppendArray(const char* src_data, size_t src_size); |
| absl::string_view FindFlatStartPiece() const; |
| void AppendTree(absl::cord_internal::CordRep* tree); |
| void PrependTree(absl::cord_internal::CordRep* tree); |
| void GetAppendRegion(char** region, size_t* size, size_t max_length); |
| void GetAppendRegion(char** region, size_t* size); |
| bool IsSame(const InlineRep& other) const { |
| return memcmp(data_, other.data_, sizeof(data_)) == 0; |
| } |
| int BitwiseCompare(const InlineRep& other) const { |
| uint64_t x, y; |
| // Use memcpy to avoid anti-aliasing issues. |
| memcpy(&x, data_, sizeof(x)); |
| memcpy(&y, other.data_, sizeof(y)); |
| if (x == y) { |
| memcpy(&x, data_ + 8, sizeof(x)); |
| memcpy(&y, other.data_ + 8, sizeof(y)); |
| if (x == y) return 0; |
| } |
| return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y) |
| ? -1 |
| : 1; |
| } |
| void CopyTo(std::string* dst) const { |
| // memcpy is much faster when operating on a known size. On most supported |
| // platforms, the small std::string optimization is large enough that resizing |
| // to 15 bytes does not cause a memory allocation. |
| absl::strings_internal::STLStringResizeUninitialized(dst, |
| sizeof(data_) - 1); |
| memcpy(&(*dst)[0], data_, sizeof(data_) - 1); |
| // erase is faster than resize because the logic for memory allocation is |
| // not needed. |
| dst->erase(data_[kMaxInline]); |
| } |
| |
| // Copies the inline contents into `dst`. Assumes the cord is not empty. |
| void CopyToArray(char* dst) const; |
| |
| bool is_tree() const { return data_[kMaxInline] > kMaxInline; } |
| |
| private: |
| friend class Cord; |
| |
| void AssignSlow(const InlineRep& src); |
| // Unrefs the tree, stops profiling, and zeroes the contents |
| void ClearSlow(); |
| |
| // If the data has length <= kMaxInline, we store it in data_[0..len-1], |
| // and store the length in data_[kMaxInline]. Else we store it in a tree |
| // and store a pointer to that tree in data_[0..sizeof(CordRep*)-1]. |
| alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1]; |
| }; |
| InlineRep contents_; |
| |
| // Helper for MemoryUsage() |
| static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep); |
| |
| // Helper for GetFlat() and TryFlat() |
| static bool GetFlatAux(absl::cord_internal::CordRep* rep, |
| absl::string_view* fragment); |
| |
| // Helper for ForEachChunk() |
| static void ForEachChunkAux( |
| absl::cord_internal::CordRep* rep, |
| absl::FunctionRef<void(absl::string_view)> callback); |
| |
| // The destructor for non-empty Cords. |
| void DestroyCordSlow(); |
| |
| // Out-of-line implementation of slower parts of logic. |
| void CopyToArraySlowPath(char* dst) const; |
| int CompareSlowPath(absl::string_view rhs, size_t compared_size, |
| size_t size_to_compare) const; |
| int CompareSlowPath(const Cord& rhs, size_t compared_size, |
| size_t size_to_compare) const; |
| bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const; |
| bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const; |
| int CompareImpl(const Cord& rhs) const; |
| |
| template <typename ResultType, typename RHS> |
| friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs, |
| size_t size_to_compare); |
| static absl::string_view GetFirstChunk(const Cord& c); |
| static absl::string_view GetFirstChunk(absl::string_view sv); |
| |
| // Returns a new reference to contents_.tree(), or steals an existing |
| // reference if called on an rvalue. |
| absl::cord_internal::CordRep* TakeRep() const&; |
| absl::cord_internal::CordRep* TakeRep() &&; |
| |
| // Helper for Append() |
| template <typename C> |
| void AppendImpl(C&& src); |
| }; |
| |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| |
| // allow a Cord to be logged |
| extern std::ostream& operator<<(std::ostream& out, const Cord& cord); |
| |
| // ------------------------------------------------------------------ |
| // Internal details follow. Clients should ignore. |
| |
| namespace cord_internal { |
| |
| // Fast implementation of memmove for up to 15 bytes. This implementation is |
| // safe for overlapping regions. If nullify_tail is true, the destination is |
| // padded with '\0' up to 16 bytes. |
| inline void SmallMemmove(char* dst, const char* src, size_t n, |
| bool nullify_tail = false) { |
| if (n >= 8) { |
| assert(n <= 16); |
| uint64_t buf1; |
| uint64_t buf2; |
| memcpy(&buf1, src, 8); |
| memcpy(&buf2, src + n - 8, 8); |
| if (nullify_tail) { |
| memset(dst + 8, 0, 8); |
| } |
| memcpy(dst, &buf1, 8); |
| memcpy(dst + n - 8, &buf2, 8); |
| } else if (n >= 4) { |
| uint32_t buf1; |
| uint32_t buf2; |
| memcpy(&buf1, src, 4); |
| memcpy(&buf2, src + n - 4, 4); |
| if (nullify_tail) { |
| memset(dst + 4, 0, 4); |
| memset(dst + 8, 0, 8); |
| } |
| memcpy(dst, &buf1, 4); |
| memcpy(dst + n - 4, &buf2, 4); |
| } else { |
| if (n != 0) { |
| dst[0] = src[0]; |
| dst[n / 2] = src[n / 2]; |
| dst[n - 1] = src[n - 1]; |
| } |
| if (nullify_tail) { |
| memset(dst + 8, 0, 8); |
| memset(dst + n, 0, 8); |
| } |
| } |
| } |
| |
| struct ExternalRepReleaserPair { |
| CordRep* rep; |
| void* releaser_address; |
| }; |
| |
| // Allocates a new external `CordRep` and returns a pointer to it and a pointer |
| // to `releaser_size` bytes where the desired releaser can be constructed. |
| // Expects `data` to be non-empty. |
| ExternalRepReleaserPair NewExternalWithUninitializedReleaser( |
| absl::string_view data, ExternalReleaserInvoker invoker, |
| size_t releaser_size); |
| |
| struct Rank1 {}; |
| struct Rank0 : Rank1 {}; |
| |
| template <typename Releaser, typename = ::absl::base_internal::InvokeT< |
| Releaser, absl::string_view>> |
| void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) { |
| ::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data); |
| } |
| |
| template <typename Releaser, |
| typename = ::absl::base_internal::InvokeT<Releaser>> |
| void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) { |
| ::absl::base_internal::Invoke(std::forward<Releaser>(releaser)); |
| } |
| |
| // Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer |
| // to it, or `nullptr` if `data` was empty. |
| template <typename Releaser> |
| // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
| CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) { |
| static_assert( |
| #if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__) |
| alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__, |
| #else |
| alignof(Releaser) <= alignof(max_align_t), |
| #endif |
| "Releasers with alignment requirement greater than what is returned by " |
| "default `::operator new()` are not supported."); |
| |
| using ReleaserType = absl::decay_t<Releaser>; |
| if (data.empty()) { |
| // Never create empty external nodes. |
| InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)), |
| data); |
| return nullptr; |
| } |
| |
| auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) { |
| auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser); |
| InvokeReleaser(Rank0{}, std::move(*my_releaser), d); |
| my_releaser->~ReleaserType(); |
| return sizeof(Releaser); |
| }; |
| |
| ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser( |
| data, releaser_invoker, sizeof(releaser)); |
| ::new (external.releaser_address) |
| ReleaserType(std::forward<Releaser>(releaser)); |
| return external.rep; |
| } |
| |
| // Overload for function reference types that dispatches using a function |
| // pointer because there are no `alignof()` or `sizeof()` a function reference. |
| // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
| inline CordRep* NewExternalRep(absl::string_view data, |
| void (&releaser)(absl::string_view)) { |
| return NewExternalRep(data, &releaser); |
| } |
| |
| } // namespace cord_internal |
| |
| template <typename Releaser> |
| Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) { |
| Cord cord; |
| cord.contents_.set_tree(::absl::cord_internal::NewExternalRep( |
| data, std::forward<Releaser>(releaser))); |
| return cord; |
| } |
| |
| inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) { |
| cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); |
| } |
| |
| inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) { |
| memcpy(data_, src.data_, sizeof(data_)); |
| memset(src.data_, 0, sizeof(data_)); |
| } |
| |
| inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) { |
| if (this == &src) { |
| return *this; |
| } |
| if (!is_tree() && !src.is_tree()) { |
| cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); |
| return *this; |
| } |
| AssignSlow(src); |
| return *this; |
| } |
| |
| inline Cord::InlineRep& Cord::InlineRep::operator=( |
| Cord::InlineRep&& src) noexcept { |
| if (is_tree()) { |
| ClearSlow(); |
| } |
| memcpy(data_, src.data_, sizeof(data_)); |
| memset(src.data_, 0, sizeof(data_)); |
| return *this; |
| } |
| |
| inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) { |
| if (rhs == this) { |
| return; |
| } |
| |
| Cord::InlineRep tmp; |
| cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_)); |
| cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_)); |
| cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_)); |
| } |
| |
| inline const char* Cord::InlineRep::data() const { |
| return is_tree() ? nullptr : data_; |
| } |
| |
| inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const { |
| if (is_tree()) { |
| absl::cord_internal::CordRep* rep; |
| memcpy(&rep, data_, sizeof(rep)); |
| return rep; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; } |
| |
| inline size_t Cord::InlineRep::size() const { |
| const char tag = data_[kMaxInline]; |
| if (tag <= kMaxInline) return tag; |
| return static_cast<size_t>(tree()->length); |
| } |
| |
| inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) { |
| if (rep == nullptr) { |
| memset(data_, 0, sizeof(data_)); |
| } else { |
| bool was_tree = is_tree(); |
| memcpy(data_, &rep, sizeof(rep)); |
| memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); |
| if (!was_tree) { |
| data_[kMaxInline] = kTreeFlag; |
| } |
| } |
| } |
| |
| inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) { |
| ABSL_ASSERT(is_tree()); |
| if (ABSL_PREDICT_FALSE(rep == nullptr)) { |
| set_tree(rep); |
| return; |
| } |
| memcpy(data_, &rep, sizeof(rep)); |
| memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); |
| } |
| |
| inline absl::cord_internal::CordRep* Cord::InlineRep::clear() { |
| const char tag = data_[kMaxInline]; |
| absl::cord_internal::CordRep* result = nullptr; |
| if (tag > kMaxInline) { |
| memcpy(&result, data_, sizeof(result)); |
| } |
| memset(data_, 0, sizeof(data_)); // Clear the cord |
| return result; |
| } |
| |
| inline void Cord::InlineRep::CopyToArray(char* dst) const { |
| assert(!is_tree()); |
| size_t n = data_[kMaxInline]; |
| assert(n != 0); |
| cord_internal::SmallMemmove(dst, data_, n); |
| } |
| |
| constexpr inline Cord::Cord() noexcept {} |
| |
| inline Cord& Cord::operator=(const Cord& x) { |
| contents_ = x.contents_; |
| return *this; |
| } |
| |
| inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {} |
| |
| inline Cord& Cord::operator=(Cord&& x) noexcept { |
| contents_ = std::move(x.contents_); |
| return *this; |
| } |
| |
| template <typename T, Cord::EnableIfString<T>> |
| inline Cord& Cord::operator=(T&& src) { |
| *this = absl::string_view(src); |
| return *this; |
| } |
| |
| inline size_t Cord::size() const { |
| // Length is 1st field in str.rep_ |
| return contents_.size(); |
| } |
| |
| inline bool Cord::empty() const { return contents_.empty(); } |
| |
| inline size_t Cord::EstimatedMemoryUsage() const { |
| size_t result = sizeof(Cord); |
| if (const absl::cord_internal::CordRep* rep = contents_.tree()) { |
| result += MemoryUsageAux(rep); |
| } |
| return result; |
| } |
| |
| inline absl::optional<absl::string_view> Cord::TryFlat() const { |
| absl::cord_internal::CordRep* rep = contents_.tree(); |
| if (rep == nullptr) { |
| return absl::string_view(contents_.data(), contents_.size()); |
| } |
| absl::string_view fragment; |
| if (GetFlatAux(rep, &fragment)) { |
| return fragment; |
| } |
| return absl::nullopt; |
| } |
| |
| inline absl::string_view Cord::Flatten() { |
| absl::cord_internal::CordRep* rep = contents_.tree(); |
| if (rep == nullptr) { |
| return absl::string_view(contents_.data(), contents_.size()); |
| } else { |
| absl::string_view already_flat_contents; |
| if (GetFlatAux(rep, &already_flat_contents)) { |
| return already_flat_contents; |
| } |
| } |
| return FlattenSlowPath(); |
| } |
| |
| inline void Cord::Append(absl::string_view src) { |
| contents_.AppendArray(src.data(), src.size()); |
| } |
| |
| template <typename T, Cord::EnableIfString<T>> |
| inline void Cord::Append(T&& src) { |
| // Note that this function reserves the right to reuse the `string&&`'s |
| // memory and that it will do so in the future. |
| Append(absl::string_view(src)); |
| } |
| |
| template <typename T, Cord::EnableIfString<T>> |
| inline void Cord::Prepend(T&& src) { |
| // Note that this function reserves the right to reuse the `string&&`'s |
| // memory and that it will do so in the future. |
| Prepend(absl::string_view(src)); |
| } |
| |
| inline int Cord::Compare(const Cord& rhs) const { |
| if (!contents_.is_tree() && !rhs.contents_.is_tree()) { |
| return contents_.BitwiseCompare(rhs.contents_); |
| } |
| |
| return CompareImpl(rhs); |
| } |
| |
| // Does 'this' cord start/end with rhs |
| inline bool Cord::StartsWith(const Cord& rhs) const { |
| if (contents_.IsSame(rhs.contents_)) return true; |
| size_t rhs_size = rhs.size(); |
| if (size() < rhs_size) return false; |
| return EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline bool Cord::StartsWith(absl::string_view rhs) const { |
| size_t rhs_size = rhs.size(); |
| if (size() < rhs_size) return false; |
| return EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) |
| : bytes_remaining_(cord->size()) { |
| if (cord->empty()) return; |
| if (cord->contents_.is_tree()) { |
| stack_of_right_children_.push_back(cord->contents_.tree()); |
| operator++(); |
| } else { |
| current_chunk_ = absl::string_view(cord->contents_.data(), cord->size()); |
| } |
| } |
| |
| inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { |
| ChunkIterator tmp(*this); |
| operator++(); |
| return tmp; |
| } |
| |
| inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { |
| return bytes_remaining_ == other.bytes_remaining_; |
| } |
| |
| inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { |
| return !(*this == other); |
| } |
| |
| inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { |
| assert(bytes_remaining_ != 0); |
| return current_chunk_; |
| } |
| |
| inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { |
| assert(bytes_remaining_ != 0); |
| return ¤t_chunk_; |
| } |
| |
| inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { |
| assert(n < current_chunk_.size()); |
| current_chunk_.remove_prefix(n); |
| bytes_remaining_ -= n; |
| } |
| |
| inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { |
| if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { |
| RemoveChunkPrefix(n); |
| } else if (n != 0) { |
| AdvanceBytesSlowPath(n); |
| } |
| } |
| |
| inline Cord::ChunkIterator Cord::chunk_begin() const { |
| return ChunkIterator(this); |
| } |
| |
| inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } |
| |
| inline Cord::ChunkIterator Cord::ChunkRange::begin() const { |
| return cord_->chunk_begin(); |
| } |
| |
| inline Cord::ChunkIterator Cord::ChunkRange::end() const { |
| return cord_->chunk_end(); |
| } |
| |
| inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } |
| |
| inline Cord::CharIterator& Cord::CharIterator::operator++() { |
| if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) { |
| chunk_iterator_.RemoveChunkPrefix(1); |
| } else { |
| ++chunk_iterator_; |
| } |
| return *this; |
| } |
| |
| inline Cord::CharIterator Cord::CharIterator::operator++(int) { |
| CharIterator tmp(*this); |
| operator++(); |
| return tmp; |
| } |
| |
| inline bool Cord::CharIterator::operator==(const CharIterator& other) const { |
| return chunk_iterator_ == other.chunk_iterator_; |
| } |
| |
| inline bool Cord::CharIterator::operator!=(const CharIterator& other) const { |
| return !(*this == other); |
| } |
| |
| inline Cord::CharIterator::reference Cord::CharIterator::operator*() const { |
| return *chunk_iterator_->data(); |
| } |
| |
| inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const { |
| return chunk_iterator_->data(); |
| } |
| |
| inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) { |
| assert(it != nullptr); |
| return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes); |
| } |
| |
| inline void Cord::Advance(CharIterator* it, size_t n_bytes) { |
| assert(it != nullptr); |
| it->chunk_iterator_.AdvanceBytes(n_bytes); |
| } |
| |
| inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) { |
| return *it.chunk_iterator_; |
| } |
| |
| inline Cord::CharIterator Cord::char_begin() const { |
| return CharIterator(this); |
| } |
| |
| inline Cord::CharIterator Cord::char_end() const { return CharIterator(); } |
| |
| inline Cord::CharIterator Cord::CharRange::begin() const { |
| return cord_->char_begin(); |
| } |
| |
| inline Cord::CharIterator Cord::CharRange::end() const { |
| return cord_->char_end(); |
| } |
| |
| inline Cord::CharRange Cord::Chars() const { return CharRange(this); } |
| |
| inline void Cord::ForEachChunk( |
| absl::FunctionRef<void(absl::string_view)> callback) const { |
| absl::cord_internal::CordRep* rep = contents_.tree(); |
| if (rep == nullptr) { |
| callback(absl::string_view(contents_.data(), contents_.size())); |
| } else { |
| return ForEachChunkAux(rep, callback); |
| } |
| } |
| |
| // Nonmember Cord-to-Cord relational operarators. |
| inline bool operator==(const Cord& lhs, const Cord& rhs) { |
| if (lhs.contents_.IsSame(rhs.contents_)) return true; |
| size_t rhs_size = rhs.size(); |
| if (lhs.size() != rhs_size) return false; |
| return lhs.EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); } |
| inline bool operator<(const Cord& x, const Cord& y) { |
| return x.Compare(y) < 0; |
| } |
| inline bool operator>(const Cord& x, const Cord& y) { |
| return x.Compare(y) > 0; |
| } |
| inline bool operator<=(const Cord& x, const Cord& y) { |
| return x.Compare(y) <= 0; |
| } |
| inline bool operator>=(const Cord& x, const Cord& y) { |
| return x.Compare(y) >= 0; |
| } |
| |
| // Nonmember Cord-to-absl::string_view relational operators. |
| // |
| // Due to implicit conversions, these also enable comparisons of Cord with |
| // with std::string, ::string, and const char*. |
| inline bool operator==(const Cord& lhs, absl::string_view rhs) { |
| size_t lhs_size = lhs.size(); |
| size_t rhs_size = rhs.size(); |
| if (lhs_size != rhs_size) return false; |
| return lhs.EqualsImpl(rhs, rhs_size); |
| } |
| |
| inline bool operator==(absl::string_view x, const Cord& y) { return y == x; } |
| inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); } |
| inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); } |
| inline bool operator<(const Cord& x, absl::string_view y) { |
| return x.Compare(y) < 0; |
| } |
| inline bool operator<(absl::string_view x, const Cord& y) { |
| return y.Compare(x) > 0; |
| } |
| inline bool operator>(const Cord& x, absl::string_view y) { return y < x; } |
| inline bool operator>(absl::string_view x, const Cord& y) { return y < x; } |
| inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); } |
| inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); } |
| inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); } |
| inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); } |
| |
| // Overload of swap for Cord. The use of non-const references is |
| // required. :( |
| inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); } |
| |
| // Some internals exposed to test code. |
| namespace strings_internal { |
| class CordTestAccess { |
| public: |
| static size_t FlatOverhead(); |
| static size_t MaxFlatLength(); |
| static size_t SizeofCordRepConcat(); |
| static size_t SizeofCordRepExternal(); |
| static size_t SizeofCordRepSubstring(); |
| static size_t FlatTagToLength(uint8_t tag); |
| static uint8_t LengthToTag(size_t s); |
| }; |
| } // namespace strings_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #endif // ABSL_STRINGS_CORD_H_ |