| // Copyright 2019 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/profiling/internal/exponential_biased.h" |
| |
| #include <stddef.h> |
| |
| #include <cmath> |
| #include <cstdint> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/strings/str_cat.h" |
| |
| using ::testing::Ge; |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace profiling_internal { |
| namespace { |
| |
| MATCHER_P2(IsBetween, a, b, |
| absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a, |
| " and ", b)) { |
| return a <= arg && arg <= b; |
| } |
| |
| // Tests of the quality of the random numbers generated |
| // This uses the Anderson Darling test for uniformity. |
| // See "Evaluating the Anderson-Darling Distribution" by Marsaglia |
| // for details. |
| |
| // Short cut version of ADinf(z), z>0 (from Marsaglia) |
| // This returns the p-value for Anderson Darling statistic in |
| // the limit as n-> infinity. For finite n, apply the error fix below. |
| double AndersonDarlingInf(double z) { |
| if (z < 2) { |
| return exp(-1.2337141 / z) / sqrt(z) * |
| (2.00012 + |
| (0.247105 - |
| (0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) * |
| z) * |
| z); |
| } |
| return exp( |
| -exp(1.0776 - |
| (2.30695 - |
| (0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) * |
| z)); |
| } |
| |
| // Corrects the approximation error in AndersonDarlingInf for small values of n |
| // Add this to AndersonDarlingInf to get a better approximation |
| // (from Marsaglia) |
| double AndersonDarlingErrFix(int n, double x) { |
| if (x > 0.8) { |
| return (-130.2137 + |
| (745.2337 - |
| (1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) * |
| x) / |
| n; |
| } |
| double cutoff = 0.01265 + 0.1757 / n; |
| if (x < cutoff) { |
| double t = x / cutoff; |
| t = sqrt(t) * (1 - t) * (49 * t - 102); |
| return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n; |
| } else { |
| double t = (x - cutoff) / (0.8 - cutoff); |
| t = -0.00022633 + |
| (6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) * |
| t; |
| return t * (0.04213 + 0.01365 / n) / n; |
| } |
| } |
| |
| // Returns the AndersonDarling p-value given n and the value of the statistic |
| double AndersonDarlingPValue(int n, double z) { |
| double ad = AndersonDarlingInf(z); |
| double errfix = AndersonDarlingErrFix(n, ad); |
| return ad + errfix; |
| } |
| |
| double AndersonDarlingStatistic(const std::vector<double>& random_sample) { |
| size_t n = random_sample.size(); |
| double ad_sum = 0; |
| for (size_t i = 0; i < n; i++) { |
| ad_sum += (2 * i + 1) * |
| std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); |
| } |
| const auto n_as_double = static_cast<double>(n); |
| double ad_statistic = -n_as_double - 1 / n_as_double * ad_sum; |
| return ad_statistic; |
| } |
| |
| // Tests if the array of doubles is uniformly distributed. |
| // Returns the p-value of the Anderson Darling Statistic |
| // for the given set of sorted random doubles |
| // See "Evaluating the Anderson-Darling Distribution" by |
| // Marsaglia and Marsaglia for details. |
| double AndersonDarlingTest(const std::vector<double>& random_sample) { |
| double ad_statistic = AndersonDarlingStatistic(random_sample); |
| double p = AndersonDarlingPValue(static_cast<int>(random_sample.size()), |
| ad_statistic); |
| return p; |
| } |
| |
| TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) { |
| ExponentialBiased eb; |
| for (int runs = 0; runs < 10; ++runs) { |
| for (int64_t flips = eb.GetSkipCount(1); flips > 0; --flips) { |
| printf("head..."); |
| } |
| printf("tail\n"); |
| } |
| int heads = 0; |
| for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) { |
| ++heads; |
| } |
| printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000); |
| } |
| |
| TEST(ExponentialBiasedTest, SampleDemoWithStride) { |
| ExponentialBiased eb; |
| int64_t stride = eb.GetStride(10); |
| int samples = 0; |
| for (int i = 0; i < 10000000; ++i) { |
| if (--stride == 0) { |
| ++samples; |
| stride = eb.GetStride(10); |
| } |
| } |
| printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000); |
| } |
| |
| |
| // Testing that NextRandom generates uniform random numbers. Applies the |
| // Anderson-Darling test for uniformity |
| TEST(ExponentialBiasedTest, TestNextRandom) { |
| for (auto n : std::vector<size_t>({ |
| 10, // Check short-range correlation |
| 100, 1000, |
| 10000 // Make sure there's no systemic error |
| })) { |
| uint64_t x = 1; |
| // This assumes that the prng returns 48 bit numbers |
| uint64_t max_prng_value = static_cast<uint64_t>(1) << 48; |
| // Initialize. |
| for (int i = 1; i <= 20; i++) { |
| x = ExponentialBiased::NextRandom(x); |
| } |
| std::vector<uint64_t> int_random_sample(n); |
| // Collect samples |
| for (size_t i = 0; i < n; i++) { |
| int_random_sample[i] = x; |
| x = ExponentialBiased::NextRandom(x); |
| } |
| // First sort them... |
| std::sort(int_random_sample.begin(), int_random_sample.end()); |
| std::vector<double> random_sample(n); |
| // Convert them to uniform randoms (in the range [0,1]) |
| for (size_t i = 0; i < n; i++) { |
| random_sample[i] = |
| static_cast<double>(int_random_sample[i]) / max_prng_value; |
| } |
| // Now compute the Anderson-Darling statistic |
| double ad_pvalue = AndersonDarlingTest(random_sample); |
| EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001) |
| << "prng is not uniform: n = " << n << " p = " << ad_pvalue; |
| } |
| } |
| |
| // The generator needs to be available as a thread_local and as a static |
| // variable. |
| TEST(ExponentialBiasedTest, InitializationModes) { |
| ABSL_CONST_INIT static ExponentialBiased eb_static; |
| EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0)); |
| |
| #ifdef ABSL_HAVE_THREAD_LOCAL |
| thread_local ExponentialBiased eb_thread; |
| EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0)); |
| #endif |
| |
| ExponentialBiased eb_stack; |
| EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0)); |
| } |
| |
| } // namespace |
| } // namespace profiling_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |