| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/gaussian_distribution.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <cstddef> |
| #include <ios> |
| #include <iterator> |
| #include <random> |
| #include <string> |
| #include <type_traits> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/base/macros.h" |
| #include "absl/log/log.h" |
| #include "absl/numeric/internal/representation.h" |
| #include "absl/random/internal/chi_square.h" |
| #include "absl/random/internal/distribution_test_util.h" |
| #include "absl/random/internal/sequence_urbg.h" |
| #include "absl/random/random.h" |
| #include "absl/strings/str_cat.h" |
| #include "absl/strings/str_format.h" |
| #include "absl/strings/str_replace.h" |
| #include "absl/strings/strip.h" |
| |
| namespace { |
| |
| using absl::random_internal::kChiSquared; |
| |
| template <typename RealType> |
| class GaussianDistributionInterfaceTest : public ::testing::Test {}; |
| |
| // double-double arithmetic is not supported well by either GCC or Clang; see |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048, |
| // https://bugs.llvm.org/show_bug.cgi?id=49131, and |
| // https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests |
| // with double doubles until compiler support is better. |
| using RealTypes = |
| std::conditional<absl::numeric_internal::IsDoubleDouble(), |
| ::testing::Types<float, double>, |
| ::testing::Types<float, double, long double>>::type; |
| TYPED_TEST_SUITE(GaussianDistributionInterfaceTest, RealTypes); |
| |
| TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) { |
| using param_type = |
| typename absl::gaussian_distribution<TypeParam>::param_type; |
| |
| const TypeParam kParams[] = { |
| // Cases around 1. |
| 1, // |
| std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon |
| std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon |
| // Arbitrary values. |
| TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4), |
| TypeParam(1e8), TypeParam(1e20), TypeParam(2.5), |
| // Boundary cases. |
| std::numeric_limits<TypeParam>::infinity(), |
| std::numeric_limits<TypeParam>::max(), |
| std::numeric_limits<TypeParam>::epsilon(), |
| std::nextafter(std::numeric_limits<TypeParam>::min(), |
| TypeParam(1)), // min + epsilon |
| std::numeric_limits<TypeParam>::min(), // smallest normal |
| // There are some errors dealing with denorms on apple platforms. |
| std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm |
| std::numeric_limits<TypeParam>::min() / 2, |
| std::nextafter(std::numeric_limits<TypeParam>::min(), |
| TypeParam(0)), // denorm_max |
| }; |
| |
| constexpr int kCount = 1000; |
| absl::InsecureBitGen gen; |
| |
| // Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to |
| // all values in kParams, |
| for (const auto mod : {0, 1, 2, 3}) { |
| for (const auto x : kParams) { |
| if (!std::isfinite(x)) continue; |
| for (const auto y : kParams) { |
| const TypeParam mean = (mod & 0x1) ? -x : x; |
| const TypeParam stddev = (mod & 0x2) ? -y : y; |
| const param_type param(mean, stddev); |
| |
| absl::gaussian_distribution<TypeParam> before(mean, stddev); |
| EXPECT_EQ(before.mean(), param.mean()); |
| EXPECT_EQ(before.stddev(), param.stddev()); |
| |
| { |
| absl::gaussian_distribution<TypeParam> via_param(param); |
| EXPECT_EQ(via_param, before); |
| EXPECT_EQ(via_param.param(), before.param()); |
| } |
| |
| // Smoke test. |
| auto sample_min = before.max(); |
| auto sample_max = before.min(); |
| for (int i = 0; i < kCount; i++) { |
| auto sample = before(gen); |
| if (sample > sample_max) sample_max = sample; |
| if (sample < sample_min) sample_min = sample; |
| EXPECT_GE(sample, before.min()) << before; |
| EXPECT_LE(sample, before.max()) << before; |
| } |
| if (!std::is_same<TypeParam, long double>::value) { |
| LOG(INFO) << "Range{" << mean << ", " << stddev << "}: " << sample_min |
| << ", " << sample_max; |
| } |
| |
| std::stringstream ss; |
| ss << before; |
| |
| if (!std::isfinite(mean) || !std::isfinite(stddev)) { |
| // Streams do not parse inf/nan. |
| continue; |
| } |
| |
| // Validate stream serialization. |
| absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f); |
| |
| EXPECT_NE(before.mean(), after.mean()); |
| EXPECT_NE(before.stddev(), after.stddev()); |
| EXPECT_NE(before.param(), after.param()); |
| EXPECT_NE(before, after); |
| |
| ss >> after; |
| |
| EXPECT_EQ(before.mean(), after.mean()); |
| EXPECT_EQ(before.stddev(), after.stddev()) // |
| << ss.str() << " " // |
| << (ss.good() ? "good " : "") // |
| << (ss.bad() ? "bad " : "") // |
| << (ss.eof() ? "eof " : "") // |
| << (ss.fail() ? "fail " : ""); |
| } |
| } |
| } |
| } |
| |
| // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm |
| |
| class GaussianModel { |
| public: |
| GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {} |
| |
| double mean() const { return mean_; } |
| double variance() const { return stddev() * stddev(); } |
| double stddev() const { return stddev_; } |
| double skew() const { return 0; } |
| double kurtosis() const { return 3.0; } |
| |
| // The inverse CDF, or PercentPoint function. |
| double InverseCDF(double p) { |
| ABSL_ASSERT(p >= 0.0); |
| ABSL_ASSERT(p < 1.0); |
| return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p); |
| } |
| |
| private: |
| const double mean_; |
| const double stddev_; |
| }; |
| |
| struct Param { |
| double mean; |
| double stddev; |
| double p_fail; // Z-Test probability of failure. |
| int trials; // Z-Test trials. |
| }; |
| |
| // GaussianDistributionTests implements a z-test for the gaussian |
| // distribution. |
| class GaussianDistributionTests : public testing::TestWithParam<Param>, |
| public GaussianModel { |
| public: |
| GaussianDistributionTests() |
| : GaussianModel(GetParam().mean, GetParam().stddev) {} |
| |
| // SingleZTest provides a basic z-squared test of the mean vs. expected |
| // mean for data generated by the poisson distribution. |
| template <typename D> |
| bool SingleZTest(const double p, const size_t samples); |
| |
| // SingleChiSquaredTest provides a basic chi-squared test of the normal |
| // distribution. |
| template <typename D> |
| double SingleChiSquaredTest(); |
| |
| // We use a fixed bit generator for distribution accuracy tests. This allows |
| // these tests to be deterministic, while still testing the qualify of the |
| // implementation. |
| absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6}; |
| }; |
| |
| template <typename D> |
| bool GaussianDistributionTests::SingleZTest(const double p, |
| const size_t samples) { |
| D dis(mean(), stddev()); |
| |
| std::vector<double> data; |
| data.reserve(samples); |
| for (size_t i = 0; i < samples; i++) { |
| const double x = dis(rng_); |
| data.push_back(x); |
| } |
| |
| const double max_err = absl::random_internal::MaxErrorTolerance(p); |
| const auto m = absl::random_internal::ComputeDistributionMoments(data); |
| const double z = absl::random_internal::ZScore(mean(), m); |
| const bool pass = absl::random_internal::Near("z", z, 0.0, max_err); |
| |
| // NOTE: Informational statistical test: |
| // |
| // Compute the Jarque-Bera test statistic given the excess skewness |
| // and kurtosis. The statistic is drawn from a chi-square(2) distribution. |
| // https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test |
| // |
| // The null-hypothesis (normal distribution) is rejected when |
| // (p = 0.05 => jb > 5.99) |
| // (p = 0.01 => jb > 9.21) |
| // NOTE: JB has a large type-I error rate, so it will reject the |
| // null-hypothesis even when it is true more often than the z-test. |
| // |
| const double jb = |
| static_cast<double>(m.n) / 6.0 * |
| (std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0); |
| |
| if (!pass || jb > 9.21) { |
| // clang-format off |
| LOG(INFO) |
| << "p=" << p << " max_err=" << max_err << "\n" |
| " mean=" << m.mean << " vs. " << mean() << "\n" |
| " stddev=" << std::sqrt(m.variance) << " vs. " << stddev() << "\n" |
| " skewness=" << m.skewness << " vs. " << skew() << "\n" |
| " kurtosis=" << m.kurtosis << " vs. " << kurtosis() << "\n" |
| " z=" << z << " vs. 0\n" |
| " jb=" << jb << " vs. 9.21"; |
| // clang-format on |
| } |
| return pass; |
| } |
| |
| template <typename D> |
| double GaussianDistributionTests::SingleChiSquaredTest() { |
| const size_t kSamples = 10000; |
| const int kBuckets = 50; |
| |
| // The InverseCDF is the percent point function of the |
| // distribution, and can be used to assign buckets |
| // roughly uniformly. |
| std::vector<double> cutoffs; |
| const double kInc = 1.0 / static_cast<double>(kBuckets); |
| for (double p = kInc; p < 1.0; p += kInc) { |
| cutoffs.push_back(InverseCDF(p)); |
| } |
| if (cutoffs.back() != std::numeric_limits<double>::infinity()) { |
| cutoffs.push_back(std::numeric_limits<double>::infinity()); |
| } |
| |
| D dis(mean(), stddev()); |
| |
| std::vector<int32_t> counts(cutoffs.size(), 0); |
| for (int j = 0; j < kSamples; j++) { |
| const double x = dis(rng_); |
| auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x); |
| counts[std::distance(cutoffs.begin(), it)]++; |
| } |
| |
| // Null-hypothesis is that the distribution is a gaussian distribution |
| // with the provided mean and stddev (not estimated from the data). |
| const int dof = static_cast<int>(counts.size()) - 1; |
| |
| // Our threshold for logging is 1-in-50. |
| const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); |
| |
| const double expected = |
| static_cast<double>(kSamples) / static_cast<double>(counts.size()); |
| |
| double chi_square = absl::random_internal::ChiSquareWithExpected( |
| std::begin(counts), std::end(counts), expected); |
| double p = absl::random_internal::ChiSquarePValue(chi_square, dof); |
| |
| // Log if the chi_square value is above the threshold. |
| if (chi_square > threshold) { |
| for (size_t i = 0; i < cutoffs.size(); i++) { |
| LOG(INFO) << i << " : (" << cutoffs[i] << ") = " << counts[i]; |
| } |
| |
| // clang-format off |
| LOG(INFO) << "mean=" << mean() << " stddev=" << stddev() << "\n" |
| " expected " << expected << "\n" |
| << kChiSquared << " " << chi_square << " (" << p << ")\n" |
| << kChiSquared << " @ 0.98 = " << threshold; |
| // clang-format on |
| } |
| return p; |
| } |
| |
| TEST_P(GaussianDistributionTests, ZTest) { |
| // TODO(absl-team): Run these tests against std::normal_distribution<double> |
| // to validate outcomes are similar. |
| const size_t kSamples = 10000; |
| const auto& param = GetParam(); |
| const int expected_failures = |
| std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail))); |
| const double p = absl::random_internal::RequiredSuccessProbability( |
| param.p_fail, param.trials); |
| |
| int failures = 0; |
| for (int i = 0; i < param.trials; i++) { |
| failures += |
| SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1; |
| } |
| EXPECT_LE(failures, expected_failures); |
| } |
| |
| TEST_P(GaussianDistributionTests, ChiSquaredTest) { |
| const int kTrials = 20; |
| int failures = 0; |
| |
| for (int i = 0; i < kTrials; i++) { |
| double p_value = |
| SingleChiSquaredTest<absl::gaussian_distribution<double>>(); |
| if (p_value < 0.0025) { // 1/400 |
| failures++; |
| } |
| } |
| // There is a 0.05% chance of producing at least one failure, so raise the |
| // failure threshold high enough to allow for a flake rate of less than one in |
| // 10,000. |
| EXPECT_LE(failures, 4); |
| } |
| |
| std::vector<Param> GenParams() { |
| return { |
| // Mean around 0. |
| Param{0.0, 1.0, 0.01, 100}, |
| Param{0.0, 1e2, 0.01, 100}, |
| Param{0.0, 1e4, 0.01, 100}, |
| Param{0.0, 1e8, 0.01, 100}, |
| Param{0.0, 1e16, 0.01, 100}, |
| Param{0.0, 1e-3, 0.01, 100}, |
| Param{0.0, 1e-5, 0.01, 100}, |
| Param{0.0, 1e-9, 0.01, 100}, |
| Param{0.0, 1e-17, 0.01, 100}, |
| |
| // Mean around 1. |
| Param{1.0, 1.0, 0.01, 100}, |
| Param{1.0, 1e2, 0.01, 100}, |
| Param{1.0, 1e-2, 0.01, 100}, |
| |
| // Mean around 100 / -100 |
| Param{1e2, 1.0, 0.01, 100}, |
| Param{-1e2, 1.0, 0.01, 100}, |
| Param{1e2, 1e6, 0.01, 100}, |
| Param{-1e2, 1e6, 0.01, 100}, |
| |
| // More extreme |
| Param{1e4, 1e4, 0.01, 100}, |
| Param{1e8, 1e4, 0.01, 100}, |
| Param{1e12, 1e4, 0.01, 100}, |
| }; |
| } |
| |
| std::string ParamName(const ::testing::TestParamInfo<Param>& info) { |
| const auto& p = info.param; |
| std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_", |
| absl::SixDigits(p.stddev)); |
| return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests, |
| ::testing::ValuesIn(GenParams()), ParamName); |
| |
| // NOTE: absl::gaussian_distribution is not guaranteed to be stable. |
| TEST(GaussianDistributionTest, StabilityTest) { |
| // absl::gaussian_distribution stability relies on the underlying zignor |
| // data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and |
| // std::abs. |
| absl::random_internal::sequence_urbg urbg( |
| {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
| 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
| 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
| 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); |
| |
| std::vector<int> output(11); |
| |
| { |
| absl::gaussian_distribution<double> dist; |
| std::generate(std::begin(output), std::end(output), |
| [&] { return static_cast<int>(10000000.0 * dist(urbg)); }); |
| |
| EXPECT_EQ(13, urbg.invocations()); |
| EXPECT_THAT(output, // |
| testing::ElementsAre(1494, 25518841, 9991550, 1351856, |
| -20373238, 3456682, 333530, -6804981, |
| -15279580, -16459654, 1494)); |
| } |
| |
| urbg.reset(); |
| { |
| absl::gaussian_distribution<float> dist; |
| std::generate(std::begin(output), std::end(output), |
| [&] { return static_cast<int>(1000000.0f * dist(urbg)); }); |
| |
| EXPECT_EQ(13, urbg.invocations()); |
| EXPECT_THAT( |
| output, // |
| testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668, |
| 33353, -680498, -1527958, -1645965, 149)); |
| } |
| } |
| |
| // This is an implementation-specific test. If any part of the implementation |
| // changes, then it is likely that this test will change as well. |
| // Also, if dependencies of the distribution change, such as RandU64ToDouble, |
| // then this is also likely to change. |
| TEST(GaussianDistributionTest, AlgorithmBounds) { |
| absl::gaussian_distribution<double> dist; |
| |
| // In ~95% of cases, a single value is used to generate the output. |
| // for all inputs where |x| < 0.750461021389 this should be the case. |
| // |
| // The exact constraints are based on the ziggurat tables, and any |
| // changes to the ziggurat tables may require adjusting these bounds. |
| // |
| // for i in range(0, len(X)-1): |
| // print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375) |
| // |
| // 0.125 <= |values| <= 0.75 |
| const uint64_t kValues[] = { |
| 0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull, |
| 0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull, |
| // negative values |
| 0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull, |
| 0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull}; |
| |
| // 0.875 <= |values| <= 0.984375 |
| const uint64_t kExtraValues[] = { |
| 0x7000000000000100ull, 0x7800000000000100ull, // |
| 0x7c00000000000100ull, 0x7e00000000000100ull, // |
| // negative values |
| 0xf000000000000100ull, 0xf800000000000100ull, // |
| 0xfc00000000000100ull, 0xfe00000000000100ull}; |
| |
| auto make_box = [](uint64_t v, uint64_t box) { |
| return (v & 0xffffffffffffff80ull) | box; |
| }; |
| |
| // The box is the lower 7 bits of the value. When the box == 0, then |
| // the algorithm uses an escape hatch to select the result for large |
| // outputs. |
| for (uint64_t box = 0; box < 0x7f; box++) { |
| for (const uint64_t v : kValues) { |
| // Extra values are added to the sequence to attempt to avoid |
| // infinite loops from rejection sampling on bugs/errors. |
| absl::random_internal::sequence_urbg urbg( |
| {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull}); |
| |
| auto a = dist(urbg); |
| EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v; |
| if (v & 0x8000000000000000ull) { |
| EXPECT_LT(a, 0.0) << box << " " << std::hex << v; |
| } else { |
| EXPECT_GT(a, 0.0) << box << " " << std::hex << v; |
| } |
| } |
| if (box > 10 && box < 100) { |
| // The center boxes use the fast algorithm for more |
| // than 98.4375% of values. |
| for (const uint64_t v : kExtraValues) { |
| absl::random_internal::sequence_urbg urbg( |
| {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull}); |
| |
| auto a = dist(urbg); |
| EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v; |
| if (v & 0x8000000000000000ull) { |
| EXPECT_LT(a, 0.0) << box << " " << std::hex << v; |
| } else { |
| EXPECT_GT(a, 0.0) << box << " " << std::hex << v; |
| } |
| } |
| } |
| } |
| |
| // When the box == 0, the fallback algorithm uses a ratio of uniforms, |
| // which consumes 2 additional values from the urbg. |
| // Fallback also requires that the initial value be > 0.9271586026096681. |
| auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); }; |
| |
| double tail[2]; |
| { |
| // 0.9375 |
| absl::random_internal::sequence_urbg urbg( |
| {make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull, |
| 0x00000076f6f7f755ull}); |
| tail[0] = dist(urbg); |
| EXPECT_EQ(3, urbg.invocations()); |
| EXPECT_GT(tail[0], 0); |
| } |
| { |
| // -0.9375 |
| absl::random_internal::sequence_urbg urbg( |
| {make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull, |
| 0x00000076f6f7f755ull}); |
| tail[1] = dist(urbg); |
| EXPECT_EQ(3, urbg.invocations()); |
| EXPECT_LT(tail[1], 0); |
| } |
| EXPECT_EQ(tail[0], -tail[1]); |
| EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0)); |
| |
| // When the box != 0, the fallback algorithm computes a wedge function. |
| // Depending on the box, the threshold for varies as high as |
| // 0.991522480228. |
| { |
| // 0.9921875, 0.875 |
| absl::random_internal::sequence_urbg urbg( |
| {make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull, |
| 0x13CCA830EB61BD96ull}); |
| tail[0] = dist(urbg); |
| EXPECT_EQ(2, urbg.invocations()); |
| EXPECT_GT(tail[0], 0); |
| } |
| { |
| // -0.9921875, 0.875 |
| absl::random_internal::sequence_urbg urbg( |
| {make_box(0xff00000000000000ull, 120), 0xe000000000000001ull, |
| 0x13CCA830EB61BD96ull}); |
| tail[1] = dist(urbg); |
| EXPECT_EQ(2, urbg.invocations()); |
| EXPECT_LT(tail[1], 0); |
| } |
| EXPECT_EQ(tail[0], -tail[1]); |
| EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0)); |
| |
| // Fallback rejected, try again. |
| { |
| // -0.9921875, 0.0625 |
| absl::random_internal::sequence_urbg urbg( |
| {make_box(0xff00000000000000ull, 120), 0x1000000000000001, |
| make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull}); |
| dist(urbg); |
| EXPECT_EQ(3, urbg.invocations()); |
| } |
| } |
| |
| } // namespace |