| // Copyright 2017 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/random/internal/nanobenchmark.h" |
| |
| #include <sys/types.h> |
| |
| #include <algorithm> // sort |
| #include <atomic> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <cstring> // memcpy |
| #include <limits> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/base/attributes.h" |
| #include "absl/base/internal/raw_logging.h" |
| #include "absl/random/internal/platform.h" |
| #include "absl/random/internal/randen_engine.h" |
| |
| // OS |
| #if defined(_WIN32) || defined(_WIN64) |
| #define ABSL_OS_WIN |
| #include <windows.h> // NOLINT |
| |
| #elif defined(__ANDROID__) |
| #define ABSL_OS_ANDROID |
| |
| #elif defined(__linux__) |
| #define ABSL_OS_LINUX |
| #include <sched.h> // NOLINT |
| #include <sys/syscall.h> // NOLINT |
| #endif |
| |
| #if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN) |
| #include <cpuid.h> // NOLINT |
| #endif |
| |
| // __ppc_get_timebase_freq |
| #if defined(ABSL_ARCH_PPC) |
| #include <sys/platform/ppc.h> // NOLINT |
| #endif |
| |
| // clock_gettime |
| #if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64) |
| #include <time.h> // NOLINT |
| #endif |
| |
| // ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method. |
| #if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__)) |
| #define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline)) |
| #elif defined(_MSC_VER) |
| #define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline) |
| #else |
| #define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE |
| #endif |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace random_internal_nanobenchmark { |
| namespace { |
| |
| // For code folding. |
| namespace platform { |
| #if defined(ABSL_ARCH_X86_64) |
| |
| // TODO(janwas): Merge with the one in randen_hwaes.cc? |
| void Cpuid(const uint32_t level, const uint32_t count, |
| uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) { |
| #if defined(ABSL_OS_WIN) |
| int regs[4]; |
| __cpuidex(regs, level, count); |
| for (int i = 0; i < 4; ++i) { |
| abcd[i] = regs[i]; |
| } |
| #else |
| uint32_t a, b, c, d; |
| __cpuid_count(level, count, a, b, c, d); |
| abcd[0] = a; |
| abcd[1] = b; |
| abcd[2] = c; |
| abcd[3] = d; |
| #endif |
| } |
| |
| std::string BrandString() { |
| char brand_string[49]; |
| uint32_t abcd[4]; |
| |
| // Check if brand string is supported (it is on all reasonable Intel/AMD) |
| Cpuid(0x80000000U, 0, abcd); |
| if (abcd[0] < 0x80000004U) { |
| return std::string(); |
| } |
| |
| for (int i = 0; i < 3; ++i) { |
| Cpuid(0x80000002U + i, 0, abcd); |
| memcpy(brand_string + i * 16, &abcd, sizeof(abcd)); |
| } |
| brand_string[48] = 0; |
| return brand_string; |
| } |
| |
| // Returns the frequency quoted inside the brand string. This does not |
| // account for throttling nor Turbo Boost. |
| double NominalClockRate() { |
| const std::string& brand_string = BrandString(); |
| // Brand strings include the maximum configured frequency. These prefixes are |
| // defined by Intel CPUID documentation. |
| const char* prefixes[3] = {"MHz", "GHz", "THz"}; |
| const double multipliers[3] = {1E6, 1E9, 1E12}; |
| for (size_t i = 0; i < 3; ++i) { |
| const size_t pos_prefix = brand_string.find(prefixes[i]); |
| if (pos_prefix != std::string::npos) { |
| const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1); |
| if (pos_space != std::string::npos) { |
| const std::string digits = |
| brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1); |
| return std::stod(digits) * multipliers[i]; |
| } |
| } |
| } |
| |
| return 0.0; |
| } |
| |
| #endif // ABSL_ARCH_X86_64 |
| } // namespace platform |
| |
| // Prevents the compiler from eliding the computations that led to "output". |
| template <class T> |
| inline void PreventElision(T&& output) { |
| #ifndef ABSL_OS_WIN |
| // Works by indicating to the compiler that "output" is being read and |
| // modified. The +r constraint avoids unnecessary writes to memory, but only |
| // works for built-in types (typically FuncOutput). |
| asm volatile("" : "+r"(output) : : "memory"); |
| #else |
| // MSVC does not support inline assembly anymore (and never supported GCC's |
| // RTL constraints). Self-assignment with #pragma optimize("off") might be |
| // expected to prevent elision, but it does not with MSVC 2015. Type-punning |
| // with volatile pointers generates inefficient code on MSVC 2017. |
| static std::atomic<T> dummy(T{}); |
| dummy.store(output, std::memory_order_relaxed); |
| #endif |
| } |
| |
| namespace timer { |
| |
| // Start/Stop return absolute timestamps and must be placed immediately before |
| // and after the region to measure. We provide separate Start/Stop functions |
| // because they use different fences. |
| // |
| // Background: RDTSC is not 'serializing'; earlier instructions may complete |
| // after it, and/or later instructions may complete before it. 'Fences' ensure |
| // regions' elapsed times are independent of such reordering. The only |
| // documented unprivileged serializing instruction is CPUID, which acts as a |
| // full fence (no reordering across it in either direction). Unfortunately |
| // the latency of CPUID varies wildly (perhaps made worse by not initializing |
| // its EAX input). Because it cannot reliably be deducted from the region's |
| // elapsed time, it must not be included in the region to measure (i.e. |
| // between the two RDTSC). |
| // |
| // The newer RDTSCP is sometimes described as serializing, but it actually |
| // only serves as a half-fence with release semantics. Although all |
| // instructions in the region will complete before the final timestamp is |
| // captured, subsequent instructions may leak into the region and increase the |
| // elapsed time. Inserting another fence after the final RDTSCP would prevent |
| // such reordering without affecting the measured region. |
| // |
| // Fortunately, such a fence exists. The LFENCE instruction is only documented |
| // to delay later loads until earlier loads are visible. However, Intel's |
| // reference manual says it acts as a full fence (waiting until all earlier |
| // instructions have completed, and delaying later instructions until it |
| // completes). AMD assigns the same behavior to MFENCE. |
| // |
| // We need a fence before the initial RDTSC to prevent earlier instructions |
| // from leaking into the region, and arguably another after RDTSC to avoid |
| // region instructions from completing before the timestamp is recorded. |
| // When surrounded by fences, the additional RDTSCP half-fence provides no |
| // benefit, so the initial timestamp can be recorded via RDTSC, which has |
| // lower overhead than RDTSCP because it does not read TSC_AUX. In summary, |
| // we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE. |
| // |
| // Using Start+Start leads to higher variance and overhead than Stop+Stop. |
| // However, Stop+Stop includes an LFENCE in the region measurements, which |
| // adds a delay dependent on earlier loads. The combination of Start+Stop |
| // is faster than Start+Start and more consistent than Stop+Stop because |
| // the first LFENCE already delayed subsequent loads before the measured |
| // region. This combination seems not to have been considered in prior work: |
| // http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c |
| // |
| // Note: performance counters can measure 'exact' instructions-retired or |
| // (unhalted) cycle counts. The RDPMC instruction is not serializing and also |
| // requires fences. Unfortunately, it is not accessible on all OSes and we |
| // prefer to avoid kernel-mode drivers. Performance counters are also affected |
| // by several under/over-count errata, so we use the TSC instead. |
| |
| // Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds, |
| // divide by InvariantTicksPerSecond. |
| inline uint64_t Start64() { |
| uint64_t t; |
| #if defined(ABSL_ARCH_PPC) |
| asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268)); |
| #elif defined(ABSL_ARCH_X86_64) |
| #if defined(ABSL_OS_WIN) |
| _ReadWriteBarrier(); |
| _mm_lfence(); |
| _ReadWriteBarrier(); |
| t = __rdtsc(); |
| _ReadWriteBarrier(); |
| _mm_lfence(); |
| _ReadWriteBarrier(); |
| #else |
| asm volatile( |
| "lfence\n\t" |
| "rdtsc\n\t" |
| "shl $32, %%rdx\n\t" |
| "or %%rdx, %0\n\t" |
| "lfence" |
| : "=a"(t) |
| : |
| // "memory" avoids reordering. rdx = TSC >> 32. |
| // "cc" = flags modified by SHL. |
| : "rdx", "memory", "cc"); |
| #endif |
| #else |
| // Fall back to OS - unsure how to reliably query cntvct_el0 frequency. |
| timespec ts; |
| clock_gettime(CLOCK_REALTIME, &ts); |
| t = ts.tv_sec * 1000000000LL + ts.tv_nsec; |
| #endif |
| return t; |
| } |
| |
| inline uint64_t Stop64() { |
| uint64_t t; |
| #if defined(ABSL_ARCH_X86_64) |
| #if defined(ABSL_OS_WIN) |
| _ReadWriteBarrier(); |
| unsigned aux; |
| t = __rdtscp(&aux); |
| _ReadWriteBarrier(); |
| _mm_lfence(); |
| _ReadWriteBarrier(); |
| #else |
| // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). |
| asm volatile( |
| "rdtscp\n\t" |
| "shl $32, %%rdx\n\t" |
| "or %%rdx, %0\n\t" |
| "lfence" |
| : "=a"(t) |
| : |
| // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. |
| // "cc" = flags modified by SHL. |
| : "rcx", "rdx", "memory", "cc"); |
| #endif |
| #else |
| t = Start64(); |
| #endif |
| return t; |
| } |
| |
| // Returns a 32-bit timestamp with about 4 cycles less overhead than |
| // Start64. Only suitable for measuring very short regions because the |
| // timestamp overflows about once a second. |
| inline uint32_t Start32() { |
| uint32_t t; |
| #if defined(ABSL_ARCH_X86_64) |
| #if defined(ABSL_OS_WIN) |
| _ReadWriteBarrier(); |
| _mm_lfence(); |
| _ReadWriteBarrier(); |
| t = static_cast<uint32_t>(__rdtsc()); |
| _ReadWriteBarrier(); |
| _mm_lfence(); |
| _ReadWriteBarrier(); |
| #else |
| asm volatile( |
| "lfence\n\t" |
| "rdtsc\n\t" |
| "lfence" |
| : "=a"(t) |
| : |
| // "memory" avoids reordering. rdx = TSC >> 32. |
| : "rdx", "memory"); |
| #endif |
| #else |
| t = static_cast<uint32_t>(Start64()); |
| #endif |
| return t; |
| } |
| |
| inline uint32_t Stop32() { |
| uint32_t t; |
| #if defined(ABSL_ARCH_X86_64) |
| #if defined(ABSL_OS_WIN) |
| _ReadWriteBarrier(); |
| unsigned aux; |
| t = static_cast<uint32_t>(__rdtscp(&aux)); |
| _ReadWriteBarrier(); |
| _mm_lfence(); |
| _ReadWriteBarrier(); |
| #else |
| // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). |
| asm volatile( |
| "rdtscp\n\t" |
| "lfence" |
| : "=a"(t) |
| : |
| // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. |
| : "rcx", "rdx", "memory"); |
| #endif |
| #else |
| t = static_cast<uint32_t>(Stop64()); |
| #endif |
| return t; |
| } |
| |
| } // namespace timer |
| |
| namespace robust_statistics { |
| |
| // Sorts integral values in ascending order (e.g. for Mode). About 3x faster |
| // than std::sort for input distributions with very few unique values. |
| template <class T> |
| void CountingSort(T* values, size_t num_values) { |
| // Unique values and their frequency (similar to flat_map). |
| using Unique = std::pair<T, int>; |
| std::vector<Unique> unique; |
| for (size_t i = 0; i < num_values; ++i) { |
| const T value = values[i]; |
| const auto pos = |
| std::find_if(unique.begin(), unique.end(), |
| [value](const Unique u) { return u.first == value; }); |
| if (pos == unique.end()) { |
| unique.push_back(std::make_pair(value, 1)); |
| } else { |
| ++pos->second; |
| } |
| } |
| |
| // Sort in ascending order of value (pair.first). |
| std::sort(unique.begin(), unique.end()); |
| |
| // Write that many copies of each unique value to the array. |
| T* ABSL_RANDOM_INTERNAL_RESTRICT p = values; |
| for (const auto& value_count : unique) { |
| std::fill_n(p, value_count.second, value_count.first); |
| p += value_count.second; |
| } |
| ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output"); |
| } |
| |
| // @return i in [idx_begin, idx_begin + half_count) that minimizes |
| // sorted[i + half_count] - sorted[i]. |
| template <typename T> |
| size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, |
| const size_t idx_begin, const size_t half_count) { |
| T min_range = (std::numeric_limits<T>::max)(); |
| size_t min_idx = 0; |
| |
| for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) { |
| ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted"); |
| const T range = sorted[idx + half_count] - sorted[idx]; |
| if (range < min_range) { |
| min_range = range; |
| min_idx = idx; |
| } |
| } |
| |
| return min_idx; |
| } |
| |
| // Returns an estimate of the mode by calling MinRange on successively |
| // halved intervals. "sorted" must be in ascending order. This is the |
| // Half Sample Mode estimator proposed by Bickel in "On a fast, robust |
| // estimator of the mode", with complexity O(N log N). The mode is less |
| // affected by outliers in highly-skewed distributions than the median. |
| // The averaging operation below assumes "T" is an unsigned integer type. |
| template <typename T> |
| T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted, |
| const size_t num_values) { |
| size_t idx_begin = 0; |
| size_t half_count = num_values / 2; |
| while (half_count > 1) { |
| idx_begin = MinRange(sorted, idx_begin, half_count); |
| half_count >>= 1; |
| } |
| |
| const T x = sorted[idx_begin + 0]; |
| if (half_count == 0) { |
| return x; |
| } |
| ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1"); |
| const T average = (x + sorted[idx_begin + 1] + 1) / 2; |
| return average; |
| } |
| |
| // Returns the mode. Side effect: sorts "values". |
| template <typename T> |
| T Mode(T* values, const size_t num_values) { |
| CountingSort(values, num_values); |
| return ModeOfSorted(values, num_values); |
| } |
| |
| template <typename T, size_t N> |
| T Mode(T (&values)[N]) { |
| return Mode(&values[0], N); |
| } |
| |
| // Returns the median value. Side effect: sorts "values". |
| template <typename T> |
| T Median(T* values, const size_t num_values) { |
| ABSL_RAW_CHECK(num_values != 0, "Empty input"); |
| std::sort(values, values + num_values); |
| const size_t half = num_values / 2; |
| // Odd count: return middle |
| if (num_values % 2) { |
| return values[half]; |
| } |
| // Even count: return average of middle two. |
| return (values[half] + values[half - 1] + 1) / 2; |
| } |
| |
| // Returns a robust measure of variability. |
| template <typename T> |
| T MedianAbsoluteDeviation(const T* values, const size_t num_values, |
| const T median) { |
| ABSL_RAW_CHECK(num_values != 0, "Empty input"); |
| std::vector<T> abs_deviations; |
| abs_deviations.reserve(num_values); |
| for (size_t i = 0; i < num_values; ++i) { |
| const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median)); |
| abs_deviations.push_back(static_cast<T>(abs)); |
| } |
| return Median(abs_deviations.data(), num_values); |
| } |
| |
| } // namespace robust_statistics |
| |
| // Ticks := platform-specific timer values (CPU cycles on x86). Must be |
| // unsigned to guarantee wraparound on overflow. 32 bit timers are faster to |
| // read than 64 bit. |
| using Ticks = uint32_t; |
| |
| // Returns timer overhead / minimum measurable difference. |
| Ticks TimerResolution() { |
| // Nested loop avoids exceeding stack/L1 capacity. |
| Ticks repetitions[Params::kTimerSamples]; |
| for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) { |
| Ticks samples[Params::kTimerSamples]; |
| for (size_t i = 0; i < Params::kTimerSamples; ++i) { |
| const Ticks t0 = timer::Start32(); |
| const Ticks t1 = timer::Stop32(); |
| samples[i] = t1 - t0; |
| } |
| repetitions[rep] = robust_statistics::Mode(samples); |
| } |
| return robust_statistics::Mode(repetitions); |
| } |
| |
| static const Ticks timer_resolution = TimerResolution(); |
| |
| // Estimates the expected value of "lambda" values with a variable number of |
| // samples until the variability "rel_mad" is less than "max_rel_mad". |
| template <class Lambda> |
| Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad, |
| const Params& p, const Lambda& lambda) { |
| auto measure_duration = [&lambda]() -> Ticks { |
| const Ticks t0 = timer::Start32(); |
| lambda(); |
| const Ticks t1 = timer::Stop32(); |
| return t1 - t0; |
| }; |
| |
| // Choose initial samples_per_eval based on a single estimated duration. |
| Ticks est = measure_duration(); |
| static const double ticks_per_second = InvariantTicksPerSecond(); |
| const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval; |
| size_t samples_per_eval = ticks_per_eval / est; |
| samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval); |
| |
| std::vector<Ticks> samples; |
| samples.reserve(1 + samples_per_eval); |
| samples.push_back(est); |
| |
| // Percentage is too strict for tiny differences, so also allow a small |
| // absolute "median absolute deviation". |
| const Ticks max_abs_mad = (timer_resolution + 99) / 100; |
| *rel_mad = 0.0; // ensure initialized |
| |
| for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) { |
| samples.reserve(samples.size() + samples_per_eval); |
| for (size_t i = 0; i < samples_per_eval; ++i) { |
| const Ticks r = measure_duration(); |
| samples.push_back(r); |
| } |
| |
| if (samples.size() >= p.min_mode_samples) { |
| est = robust_statistics::Mode(samples.data(), samples.size()); |
| } else { |
| // For "few" (depends also on the variance) samples, Median is safer. |
| est = robust_statistics::Median(samples.data(), samples.size()); |
| } |
| ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration"); |
| |
| // Median absolute deviation (mad) is a robust measure of 'variability'. |
| const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation( |
| samples.data(), samples.size(), est); |
| *rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est; |
| |
| if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) { |
| if (p.verbose) { |
| ABSL_RAW_LOG(INFO, |
| "%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n", |
| samples.size(), est, abs_mad, *rel_mad * 100.0); |
| } |
| return est; |
| } |
| } |
| |
| if (p.verbose) { |
| ABSL_RAW_LOG(WARNING, |
| "rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n", |
| *rel_mad * 100.0, max_rel_mad * 100.0, samples.size()); |
| } |
| return est; |
| } |
| |
| using InputVec = std::vector<FuncInput>; |
| |
| // Returns vector of unique input values. |
| InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) { |
| InputVec unique(inputs, inputs + num_inputs); |
| std::sort(unique.begin(), unique.end()); |
| unique.erase(std::unique(unique.begin(), unique.end()), unique.end()); |
| return unique; |
| } |
| |
| // Returns how often we need to call func for sufficient precision, or zero |
| // on failure (e.g. the elapsed time is too long for a 32-bit tick count). |
| size_t NumSkip(const Func func, const void* arg, const InputVec& unique, |
| const Params& p) { |
| // Min elapsed ticks for any input. |
| Ticks min_duration = ~0u; |
| |
| for (const FuncInput input : unique) { |
| // Make sure a 32-bit timer is sufficient. |
| const uint64_t t0 = timer::Start64(); |
| PreventElision(func(arg, input)); |
| const uint64_t t1 = timer::Stop64(); |
| const uint64_t elapsed = t1 - t0; |
| if (elapsed >= (1ULL << 30)) { |
| ABSL_RAW_LOG(WARNING, |
| "Measurement failed: need 64-bit timer for input=%zu\n", |
| static_cast<size_t>(input)); |
| return 0; |
| } |
| |
| double rel_mad; |
| const Ticks total = SampleUntilStable( |
| p.target_rel_mad, &rel_mad, p, |
| [func, arg, input]() { PreventElision(func(arg, input)); }); |
| min_duration = (std::min)(min_duration, total - timer_resolution); |
| } |
| |
| // Number of repetitions required to reach the target resolution. |
| const size_t max_skip = p.precision_divisor; |
| // Number of repetitions given the estimated duration. |
| const size_t num_skip = |
| min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration; |
| if (p.verbose) { |
| ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n", |
| timer_resolution, max_skip, min_duration, num_skip); |
| } |
| return num_skip; |
| } |
| |
| // Replicates inputs until we can omit "num_skip" occurrences of an input. |
| InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs, |
| const size_t num_unique, const size_t num_skip, |
| const Params& p) { |
| InputVec full; |
| if (num_unique == 1) { |
| full.assign(p.subset_ratio * num_skip, inputs[0]); |
| return full; |
| } |
| |
| full.reserve(p.subset_ratio * num_skip * num_inputs); |
| for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) { |
| full.insert(full.end(), inputs, inputs + num_inputs); |
| } |
| absl::random_internal::randen_engine<uint32_t> rng; |
| std::shuffle(full.begin(), full.end(), rng); |
| return full; |
| } |
| |
| // Copies the "full" to "subset" in the same order, but with "num_skip" |
| // randomly selected occurrences of "input_to_skip" removed. |
| void FillSubset(const InputVec& full, const FuncInput input_to_skip, |
| const size_t num_skip, InputVec* subset) { |
| const size_t count = std::count(full.begin(), full.end(), input_to_skip); |
| // Generate num_skip random indices: which occurrence to skip. |
| std::vector<uint32_t> omit; |
| // Replacement for std::iota, not yet available in MSVC builds. |
| omit.reserve(count); |
| for (size_t i = 0; i < count; ++i) { |
| omit.push_back(i); |
| } |
| // omit[] is the same on every call, but that's OK because they identify the |
| // Nth instance of input_to_skip, so the position within full[] differs. |
| absl::random_internal::randen_engine<uint32_t> rng; |
| std::shuffle(omit.begin(), omit.end(), rng); |
| omit.resize(num_skip); |
| std::sort(omit.begin(), omit.end()); |
| |
| uint32_t occurrence = ~0u; // 0 after preincrement |
| size_t idx_omit = 0; // cursor within omit[] |
| size_t idx_subset = 0; // cursor within *subset |
| for (const FuncInput next : full) { |
| if (next == input_to_skip) { |
| ++occurrence; |
| // Haven't removed enough already |
| if (idx_omit < num_skip) { |
| // This one is up for removal |
| if (occurrence == omit[idx_omit]) { |
| ++idx_omit; |
| continue; |
| } |
| } |
| } |
| if (idx_subset < subset->size()) { |
| (*subset)[idx_subset++] = next; |
| } |
| } |
| ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end"); |
| ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end"); |
| ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end"); |
| } |
| |
| // Returns total ticks elapsed for all inputs. |
| Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs, |
| const Params& p, double* max_rel_mad) { |
| double rel_mad; |
| const Ticks duration = |
| SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() { |
| for (const FuncInput input : *inputs) { |
| PreventElision(func(arg, input)); |
| } |
| }); |
| *max_rel_mad = (std::max)(*max_rel_mad, rel_mad); |
| return duration; |
| } |
| |
| // (Nearly) empty Func for measuring timer overhead/resolution. |
| ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput |
| EmptyFunc(const void* arg, const FuncInput input) { |
| return input; |
| } |
| |
| // Returns overhead of accessing inputs[] and calling a function; this will |
| // be deducted from future TotalDuration return values. |
| Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) { |
| double rel_mad; |
| // Zero tolerance because repeatability is crucial and EmptyFunc is fast. |
| return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() { |
| for (const FuncInput input : *inputs) { |
| PreventElision(EmptyFunc(arg, input)); |
| } |
| }); |
| } |
| |
| } // namespace |
| |
| void PinThreadToCPU(int cpu) { |
| // We might migrate to another CPU before pinning below, but at least cpu |
| // will be one of the CPUs on which this thread ran. |
| #if defined(ABSL_OS_WIN) |
| if (cpu < 0) { |
| cpu = static_cast<int>(GetCurrentProcessorNumber()); |
| ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); |
| if (cpu >= 64) { |
| // NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns |
| // a value > 64, which is out of range. When this happens, log a message |
| // and don't set a cpu affinity. |
| ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu); |
| return; |
| } |
| } else if (cpu >= 64) { |
| // User specified an explicit CPU affinity > the valid range. |
| ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu); |
| } |
| const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu); |
| ABSL_RAW_CHECK(prev != 0, "SetAffinity failed"); |
| #elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID) |
| if (cpu < 0) { |
| cpu = sched_getcpu(); |
| ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed"); |
| } |
| const pid_t pid = 0; // current thread |
| cpu_set_t set; |
| CPU_ZERO(&set); |
| CPU_SET(cpu, &set); |
| const int err = sched_setaffinity(pid, sizeof(set), &set); |
| ABSL_RAW_CHECK(err == 0, "SetAffinity failed"); |
| #endif |
| } |
| |
| // Returns tick rate. Invariant means the tick counter frequency is independent |
| // of CPU throttling or sleep. May be expensive, caller should cache the result. |
| double InvariantTicksPerSecond() { |
| #if defined(ABSL_ARCH_PPC) |
| return __ppc_get_timebase_freq(); |
| #elif defined(ABSL_ARCH_X86_64) |
| // We assume the TSC is invariant; it is on all recent Intel/AMD CPUs. |
| return platform::NominalClockRate(); |
| #else |
| // Fall back to clock_gettime nanoseconds. |
| return 1E9; |
| #endif |
| } |
| |
| size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip, |
| const InputVec& unique, const InputVec& full, |
| const Params& p, Result* results) { |
| const float mul = 1.0f / static_cast<int>(num_skip); |
| |
| InputVec subset(full.size() - num_skip); |
| const Ticks overhead = Overhead(arg, &full, p); |
| const Ticks overhead_skip = Overhead(arg, &subset, p); |
| if (overhead < overhead_skip) { |
| ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead, |
| overhead_skip); |
| return 0; |
| } |
| |
| if (p.verbose) { |
| ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(), |
| subset.size(), overhead, overhead_skip); |
| } |
| |
| double max_rel_mad = 0.0; |
| const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad); |
| |
| for (size_t i = 0; i < unique.size(); ++i) { |
| FillSubset(full, unique[i], num_skip, &subset); |
| const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad); |
| |
| if (total < total_skip) { |
| ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total, |
| total_skip); |
| return 0; |
| } |
| |
| const Ticks duration = (total - overhead) - (total_skip - overhead_skip); |
| results[i].input = unique[i]; |
| results[i].ticks = duration * mul; |
| results[i].variability = max_rel_mad; |
| } |
| |
| return unique.size(); |
| } |
| |
| size_t Measure(const Func func, const void* arg, const FuncInput* inputs, |
| const size_t num_inputs, Result* results, const Params& p) { |
| ABSL_RAW_CHECK(num_inputs != 0, "No inputs"); |
| |
| const InputVec unique = UniqueInputs(inputs, num_inputs); |
| const size_t num_skip = NumSkip(func, arg, unique, p); // never 0 |
| if (num_skip == 0) return 0; // NumSkip already printed error message |
| |
| const InputVec full = |
| ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p); |
| |
| // MeasureImpl may fail up to p.max_measure_retries times. |
| for (size_t i = 0; i < p.max_measure_retries; i++) { |
| auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results); |
| if (result != 0) { |
| return result; |
| } |
| } |
| // All retries failed. (Unusual) |
| return 0; |
| } |
| |
| } // namespace random_internal_nanobenchmark |
| ABSL_NAMESPACE_END |
| } // namespace absl |