blob: 8ade048225ab8dfcd2093d49c126e0ba6921f750 [file] [log] [blame]
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "benchmark_register.h"
#ifndef BENCHMARK_OS_WINDOWS
#if !defined(BENCHMARK_OS_FUCHSIA) && !defined(BENCHMARK_OS_QURT)
#include <sys/resource.h>
#endif
#include <sys/time.h>
#include <unistd.h>
#endif
#include <algorithm>
#include <atomic>
#include <cinttypes>
#include <condition_variable>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <memory>
#include <numeric>
#include <sstream>
#include <thread>
#include "benchmark/benchmark.h"
#include "benchmark_api_internal.h"
#include "check.h"
#include "commandlineflags.h"
#include "complexity.h"
#include "internal_macros.h"
#include "log.h"
#include "mutex.h"
#include "re.h"
#include "statistics.h"
#include "string_util.h"
#include "timers.h"
namespace benchmark {
namespace {
// For non-dense Range, intermediate values are powers of kRangeMultiplier.
static constexpr int kRangeMultiplier = 8;
// The size of a benchmark family determines is the number of inputs to repeat
// the benchmark on. If this is "large" then warn the user during configuration.
static constexpr size_t kMaxFamilySize = 100;
static constexpr char kDisabledPrefix[] = "DISABLED_";
} // end namespace
namespace internal {
//=============================================================================//
// BenchmarkFamilies
//=============================================================================//
// Class for managing registered benchmarks. Note that each registered
// benchmark identifies a family of related benchmarks to run.
class BenchmarkFamilies {
public:
static BenchmarkFamilies* GetInstance();
// Registers a benchmark family and returns the index assigned to it.
size_t AddBenchmark(std::unique_ptr<Benchmark> family);
// Clear all registered benchmark families.
void ClearBenchmarks();
// Extract the list of benchmark instances that match the specified
// regular expression.
bool FindBenchmarks(std::string re,
std::vector<BenchmarkInstance>* benchmarks,
std::ostream* Err);
private:
BenchmarkFamilies() {}
std::vector<std::unique_ptr<Benchmark>> families_;
Mutex mutex_;
};
BenchmarkFamilies* BenchmarkFamilies::GetInstance() {
static BenchmarkFamilies instance;
return &instance;
}
size_t BenchmarkFamilies::AddBenchmark(std::unique_ptr<Benchmark> family) {
MutexLock l(mutex_);
size_t index = families_.size();
families_.push_back(std::move(family));
return index;
}
void BenchmarkFamilies::ClearBenchmarks() {
MutexLock l(mutex_);
families_.clear();
families_.shrink_to_fit();
}
bool BenchmarkFamilies::FindBenchmarks(
std::string spec, std::vector<BenchmarkInstance>* benchmarks,
std::ostream* ErrStream) {
BM_CHECK(ErrStream);
auto& Err = *ErrStream;
// Make regular expression out of command-line flag
std::string error_msg;
Regex re;
bool is_negative_filter = false;
if (spec[0] == '-') {
spec.replace(0, 1, "");
is_negative_filter = true;
}
if (!re.Init(spec, &error_msg)) {
Err << "Could not compile benchmark re: " << error_msg << std::endl;
return false;
}
// Special list of thread counts to use when none are specified
const std::vector<int> one_thread = {1};
int next_family_index = 0;
MutexLock l(mutex_);
for (std::unique_ptr<Benchmark>& family : families_) {
int family_index = next_family_index;
int per_family_instance_index = 0;
// Family was deleted or benchmark doesn't match
if (!family) continue;
if (family->ArgsCnt() == -1) {
family->Args({});
}
const std::vector<int>* thread_counts =
(family->thread_counts_.empty()
? &one_thread
: &static_cast<const std::vector<int>&>(family->thread_counts_));
const size_t family_size = family->args_.size() * thread_counts->size();
// The benchmark will be run at least 'family_size' different inputs.
// If 'family_size' is very large warn the user.
if (family_size > kMaxFamilySize) {
Err << "The number of inputs is very large. " << family->name_
<< " will be repeated at least " << family_size << " times.\n";
}
// reserve in the special case the regex ".", since we know the final
// family size. this doesn't take into account any disabled benchmarks
// so worst case we reserve more than we need.
if (spec == ".") benchmarks->reserve(benchmarks->size() + family_size);
for (auto const& args : family->args_) {
for (int num_threads : *thread_counts) {
BenchmarkInstance instance(family.get(), family_index,
per_family_instance_index, args,
num_threads);
const auto full_name = instance.name().str();
if (full_name.rfind(kDisabledPrefix, 0) != 0 &&
((re.Match(full_name) && !is_negative_filter) ||
(!re.Match(full_name) && is_negative_filter))) {
benchmarks->push_back(std::move(instance));
++per_family_instance_index;
// Only bump the next family index once we've estabilished that
// at least one instance of this family will be run.
if (next_family_index == family_index) ++next_family_index;
}
}
}
}
return true;
}
Benchmark* RegisterBenchmarkInternal(Benchmark* bench) {
std::unique_ptr<Benchmark> bench_ptr(bench);
BenchmarkFamilies* families = BenchmarkFamilies::GetInstance();
families->AddBenchmark(std::move(bench_ptr));
return bench;
}
// FIXME: This function is a hack so that benchmark.cc can access
// `BenchmarkFamilies`
bool FindBenchmarksInternal(const std::string& re,
std::vector<BenchmarkInstance>* benchmarks,
std::ostream* Err) {
return BenchmarkFamilies::GetInstance()->FindBenchmarks(re, benchmarks, Err);
}
//=============================================================================//
// Benchmark
//=============================================================================//
Benchmark::Benchmark(const std::string& name)
: name_(name),
aggregation_report_mode_(ARM_Unspecified),
time_unit_(GetDefaultTimeUnit()),
use_default_time_unit_(true),
range_multiplier_(kRangeMultiplier),
min_time_(0),
min_warmup_time_(0),
iterations_(0),
repetitions_(0),
measure_process_cpu_time_(false),
use_real_time_(false),
use_manual_time_(false),
complexity_(oNone),
complexity_lambda_(nullptr),
setup_(nullptr),
teardown_(nullptr) {
ComputeStatistics("mean", StatisticsMean);
ComputeStatistics("median", StatisticsMedian);
ComputeStatistics("stddev", StatisticsStdDev);
ComputeStatistics("cv", StatisticsCV, kPercentage);
}
Benchmark::~Benchmark() {}
Benchmark* Benchmark::Name(const std::string& name) {
SetName(name);
return this;
}
Benchmark* Benchmark::Arg(int64_t x) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
args_.push_back({x});
return this;
}
Benchmark* Benchmark::Unit(TimeUnit unit) {
time_unit_ = unit;
use_default_time_unit_ = false;
return this;
}
Benchmark* Benchmark::Range(int64_t start, int64_t limit) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
std::vector<int64_t> arglist;
AddRange(&arglist, start, limit, range_multiplier_);
for (int64_t i : arglist) {
args_.push_back({i});
}
return this;
}
Benchmark* Benchmark::Ranges(
const std::vector<std::pair<int64_t, int64_t>>& ranges) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(ranges.size()));
std::vector<std::vector<int64_t>> arglists(ranges.size());
for (std::size_t i = 0; i < ranges.size(); i++) {
AddRange(&arglists[i], ranges[i].first, ranges[i].second,
range_multiplier_);
}
ArgsProduct(arglists);
return this;
}
Benchmark* Benchmark::ArgsProduct(
const std::vector<std::vector<int64_t>>& arglists) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(arglists.size()));
std::vector<std::size_t> indices(arglists.size());
const std::size_t total = std::accumulate(
std::begin(arglists), std::end(arglists), std::size_t{1},
[](const std::size_t res, const std::vector<int64_t>& arglist) {
return res * arglist.size();
});
std::vector<int64_t> args;
args.reserve(arglists.size());
for (std::size_t i = 0; i < total; i++) {
for (std::size_t arg = 0; arg < arglists.size(); arg++) {
args.push_back(arglists[arg][indices[arg]]);
}
args_.push_back(args);
args.clear();
std::size_t arg = 0;
do {
indices[arg] = (indices[arg] + 1) % arglists[arg].size();
} while (indices[arg++] == 0 && arg < arglists.size());
}
return this;
}
Benchmark* Benchmark::ArgName(const std::string& name) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
arg_names_ = {name};
return this;
}
Benchmark* Benchmark::ArgNames(const std::vector<std::string>& names) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(names.size()));
arg_names_ = names;
return this;
}
Benchmark* Benchmark::DenseRange(int64_t start, int64_t limit, int step) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1);
BM_CHECK_LE(start, limit);
for (int64_t arg = start; arg <= limit; arg += step) {
args_.push_back({arg});
}
return this;
}
Benchmark* Benchmark::Args(const std::vector<int64_t>& args) {
BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast<int>(args.size()));
args_.push_back(args);
return this;
}
Benchmark* Benchmark::Apply(void (*custom_arguments)(Benchmark* benchmark)) {
custom_arguments(this);
return this;
}
Benchmark* Benchmark::Setup(void (*setup)(const benchmark::State&)) {
BM_CHECK(setup != nullptr);
setup_ = setup;
return this;
}
Benchmark* Benchmark::Teardown(void (*teardown)(const benchmark::State&)) {
BM_CHECK(teardown != nullptr);
teardown_ = teardown;
return this;
}
Benchmark* Benchmark::RangeMultiplier(int multiplier) {
BM_CHECK(multiplier > 1);
range_multiplier_ = multiplier;
return this;
}
Benchmark* Benchmark::MinTime(double t) {
BM_CHECK(t > 0.0);
BM_CHECK(iterations_ == 0);
min_time_ = t;
return this;
}
Benchmark* Benchmark::MinWarmUpTime(double t) {
BM_CHECK(t >= 0.0);
BM_CHECK(iterations_ == 0);
min_warmup_time_ = t;
return this;
}
Benchmark* Benchmark::Iterations(IterationCount n) {
BM_CHECK(n > 0);
BM_CHECK(IsZero(min_time_));
BM_CHECK(IsZero(min_warmup_time_));
iterations_ = n;
return this;
}
Benchmark* Benchmark::Repetitions(int n) {
BM_CHECK(n > 0);
repetitions_ = n;
return this;
}
Benchmark* Benchmark::ReportAggregatesOnly(bool value) {
aggregation_report_mode_ = value ? ARM_ReportAggregatesOnly : ARM_Default;
return this;
}
Benchmark* Benchmark::DisplayAggregatesOnly(bool value) {
// If we were called, the report mode is no longer 'unspecified', in any case.
aggregation_report_mode_ = static_cast<AggregationReportMode>(
aggregation_report_mode_ | ARM_Default);
if (value) {
aggregation_report_mode_ = static_cast<AggregationReportMode>(
aggregation_report_mode_ | ARM_DisplayReportAggregatesOnly);
} else {
aggregation_report_mode_ = static_cast<AggregationReportMode>(
aggregation_report_mode_ & ~ARM_DisplayReportAggregatesOnly);
}
return this;
}
Benchmark* Benchmark::MeasureProcessCPUTime() {
// Can be used together with UseRealTime() / UseManualTime().
measure_process_cpu_time_ = true;
return this;
}
Benchmark* Benchmark::UseRealTime() {
BM_CHECK(!use_manual_time_)
<< "Cannot set UseRealTime and UseManualTime simultaneously.";
use_real_time_ = true;
return this;
}
Benchmark* Benchmark::UseManualTime() {
BM_CHECK(!use_real_time_)
<< "Cannot set UseRealTime and UseManualTime simultaneously.";
use_manual_time_ = true;
return this;
}
Benchmark* Benchmark::Complexity(BigO complexity) {
complexity_ = complexity;
return this;
}
Benchmark* Benchmark::Complexity(BigOFunc* complexity) {
complexity_lambda_ = complexity;
complexity_ = oLambda;
return this;
}
Benchmark* Benchmark::ComputeStatistics(const std::string& name,
StatisticsFunc* statistics,
StatisticUnit unit) {
statistics_.emplace_back(name, statistics, unit);
return this;
}
Benchmark* Benchmark::Threads(int t) {
BM_CHECK_GT(t, 0);
thread_counts_.push_back(t);
return this;
}
Benchmark* Benchmark::ThreadRange(int min_threads, int max_threads) {
BM_CHECK_GT(min_threads, 0);
BM_CHECK_GE(max_threads, min_threads);
AddRange(&thread_counts_, min_threads, max_threads, 2);
return this;
}
Benchmark* Benchmark::DenseThreadRange(int min_threads, int max_threads,
int stride) {
BM_CHECK_GT(min_threads, 0);
BM_CHECK_GE(max_threads, min_threads);
BM_CHECK_GE(stride, 1);
for (auto i = min_threads; i < max_threads; i += stride) {
thread_counts_.push_back(i);
}
thread_counts_.push_back(max_threads);
return this;
}
Benchmark* Benchmark::ThreadPerCpu() {
thread_counts_.push_back(CPUInfo::Get().num_cpus);
return this;
}
void Benchmark::SetName(const std::string& name) { name_ = name; }
const char* Benchmark::GetName() const { return name_.c_str(); }
int Benchmark::ArgsCnt() const {
if (args_.empty()) {
if (arg_names_.empty()) return -1;
return static_cast<int>(arg_names_.size());
}
return static_cast<int>(args_.front().size());
}
const char* Benchmark::GetArgName(int arg) const {
BM_CHECK_GE(arg, 0);
size_t uarg = static_cast<size_t>(arg);
BM_CHECK_LT(uarg, arg_names_.size());
return arg_names_[uarg].c_str();
}
TimeUnit Benchmark::GetTimeUnit() const {
return use_default_time_unit_ ? GetDefaultTimeUnit() : time_unit_;
}
//=============================================================================//
// FunctionBenchmark
//=============================================================================//
void FunctionBenchmark::Run(State& st) { func_(st); }
} // end namespace internal
void ClearRegisteredBenchmarks() {
internal::BenchmarkFamilies::GetInstance()->ClearBenchmarks();
}
std::vector<int64_t> CreateRange(int64_t lo, int64_t hi, int multi) {
std::vector<int64_t> args;
internal::AddRange(&args, lo, hi, multi);
return args;
}
std::vector<int64_t> CreateDenseRange(int64_t start, int64_t limit, int step) {
BM_CHECK_LE(start, limit);
std::vector<int64_t> args;
for (int64_t arg = start; arg <= limit; arg += step) {
args.push_back(arg);
}
return args;
}
} // end namespace benchmark