|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/dsa.h> | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/dh.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/engine.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/ex_data.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/sha2.h> | 
|  |  | 
|  | #include "../fipsmodule/bn/internal.h" | 
|  | #include "../fipsmodule/dh/internal.h" | 
|  | #include "../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | static_assert(OPENSSL_DSA_MAX_MODULUS_BITS <= | 
|  | BN_MONTGOMERY_MAX_WORDS * BN_BITS2, | 
|  | "Max DSA size too big for Montgomery arithmetic"); | 
|  |  | 
|  | // Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of | 
|  | // Miller-Rabin. | 
|  | #define DSS_prime_checks 50 | 
|  |  | 
|  | static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv, | 
|  | BIGNUM **out_r); | 
|  |  | 
|  | static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT; | 
|  |  | 
|  | DSA *DSA_new(void) { | 
|  | DSA *dsa = reinterpret_cast<DSA *>(OPENSSL_zalloc(sizeof(DSA))); | 
|  | if (dsa == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | dsa->references = 1; | 
|  | CRYPTO_MUTEX_init(&dsa->method_mont_lock); | 
|  | CRYPTO_new_ex_data(&dsa->ex_data); | 
|  | return dsa; | 
|  | } | 
|  |  | 
|  | void DSA_free(DSA *dsa) { | 
|  | if (dsa == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | CRYPTO_free_ex_data(&g_ex_data_class, &dsa->ex_data); | 
|  |  | 
|  | BN_clear_free(dsa->p); | 
|  | BN_clear_free(dsa->q); | 
|  | BN_clear_free(dsa->g); | 
|  | BN_clear_free(dsa->pub_key); | 
|  | BN_clear_free(dsa->priv_key); | 
|  | BN_MONT_CTX_free(dsa->method_mont_p); | 
|  | BN_MONT_CTX_free(dsa->method_mont_q); | 
|  | CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock); | 
|  | OPENSSL_free(dsa); | 
|  | } | 
|  |  | 
|  | int DSA_up_ref(DSA *dsa) { | 
|  | CRYPTO_refcount_inc(&dsa->references); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned DSA_bits(const DSA *dsa) { return BN_num_bits(dsa->p); } | 
|  |  | 
|  | const BIGNUM *DSA_get0_pub_key(const DSA *dsa) { return dsa->pub_key; } | 
|  |  | 
|  | const BIGNUM *DSA_get0_priv_key(const DSA *dsa) { return dsa->priv_key; } | 
|  |  | 
|  | const BIGNUM *DSA_get0_p(const DSA *dsa) { return dsa->p; } | 
|  |  | 
|  | const BIGNUM *DSA_get0_q(const DSA *dsa) { return dsa->q; } | 
|  |  | 
|  | const BIGNUM *DSA_get0_g(const DSA *dsa) { return dsa->g; } | 
|  |  | 
|  | void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key, | 
|  | const BIGNUM **out_priv_key) { | 
|  | if (out_pub_key != NULL) { | 
|  | *out_pub_key = dsa->pub_key; | 
|  | } | 
|  | if (out_priv_key != NULL) { | 
|  | *out_priv_key = dsa->priv_key; | 
|  | } | 
|  | } | 
|  |  | 
|  | void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q, | 
|  | const BIGNUM **out_g) { | 
|  | if (out_p != NULL) { | 
|  | *out_p = dsa->p; | 
|  | } | 
|  | if (out_q != NULL) { | 
|  | *out_q = dsa->q; | 
|  | } | 
|  | if (out_g != NULL) { | 
|  | *out_g = dsa->g; | 
|  | } | 
|  | } | 
|  |  | 
|  | int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key) { | 
|  | if (dsa->pub_key == NULL && pub_key == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (pub_key != NULL) { | 
|  | BN_free(dsa->pub_key); | 
|  | dsa->pub_key = pub_key; | 
|  | } | 
|  | if (priv_key != NULL) { | 
|  | BN_free(dsa->priv_key); | 
|  | dsa->priv_key = priv_key; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g) { | 
|  | if ((dsa->p == NULL && p == NULL) || (dsa->q == NULL && q == NULL) || | 
|  | (dsa->g == NULL && g == NULL)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (p != NULL) { | 
|  | BN_free(dsa->p); | 
|  | dsa->p = p; | 
|  | } | 
|  | if (q != NULL) { | 
|  | BN_free(dsa->q); | 
|  | dsa->q = q; | 
|  | } | 
|  | if (g != NULL) { | 
|  | BN_free(dsa->g); | 
|  | dsa->g = g; | 
|  | } | 
|  |  | 
|  | BN_MONT_CTX_free(dsa->method_mont_p); | 
|  | dsa->method_mont_p = NULL; | 
|  | BN_MONT_CTX_free(dsa->method_mont_q); | 
|  | dsa->method_mont_q = NULL; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in, | 
|  | size_t seed_len, int *out_counter, | 
|  | unsigned long *out_h, BN_GENCB *cb) { | 
|  | if (bits > OPENSSL_DSA_MAX_MODULUS_BITS) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned char seed[SHA256_DIGEST_LENGTH]; | 
|  | unsigned char md[SHA256_DIGEST_LENGTH]; | 
|  | unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH]; | 
|  | BIGNUM *r0, *W, *X, *c, *test; | 
|  | BIGNUM *g = NULL, *q = NULL, *p = NULL; | 
|  | int k, n = 0, m = 0; | 
|  | int counter = 0; | 
|  | int r = 0; | 
|  | unsigned int h = 2; | 
|  | const EVP_MD *evpmd; | 
|  |  | 
|  | evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1(); | 
|  | size_t qsize = EVP_MD_size(evpmd); | 
|  |  | 
|  | if (bits < 512) { | 
|  | bits = 512; | 
|  | } | 
|  |  | 
|  | bits = (bits + 63) / 64 * 64; | 
|  |  | 
|  | if (seed_in != NULL) { | 
|  | if (seed_len < qsize) { | 
|  | return 0; | 
|  | } | 
|  | if (seed_len > qsize) { | 
|  | // Only consume as much seed as is expected. | 
|  | seed_len = qsize; | 
|  | } | 
|  | OPENSSL_memcpy(seed, seed_in, seed_len); | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); | 
|  | if (ctx == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | bssl::BN_CTXScope scope(ctx.get()); | 
|  |  | 
|  | r0 = BN_CTX_get(ctx.get()); | 
|  | g = BN_CTX_get(ctx.get()); | 
|  | W = BN_CTX_get(ctx.get()); | 
|  | q = BN_CTX_get(ctx.get()); | 
|  | X = BN_CTX_get(ctx.get()); | 
|  | c = BN_CTX_get(ctx.get()); | 
|  | p = BN_CTX_get(ctx.get()); | 
|  | test = BN_CTX_get(ctx.get()); | 
|  |  | 
|  | if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | // Find q. | 
|  | for (;;) { | 
|  | // step 1 | 
|  | if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, m++)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int use_random_seed = (seed_in == NULL); | 
|  | if (use_random_seed) { | 
|  | if (!RAND_bytes(seed, qsize)) { | 
|  | return 0; | 
|  | } | 
|  | // DSA parameters are public. | 
|  | CONSTTIME_DECLASSIFY(seed, qsize); | 
|  | } else { | 
|  | // If we come back through, use random seed next time. | 
|  | seed_in = NULL; | 
|  | } | 
|  | OPENSSL_memcpy(buf, seed, qsize); | 
|  | OPENSSL_memcpy(buf2, seed, qsize); | 
|  | // precompute "SEED + 1" for step 7: | 
|  | for (size_t i = qsize - 1; i < qsize; i--) { | 
|  | buf[i]++; | 
|  | if (buf[i] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // step 2 | 
|  | if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) || | 
|  | !EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) { | 
|  | return 0; | 
|  | } | 
|  | for (size_t i = 0; i < qsize; i++) { | 
|  | md[i] ^= buf2[i]; | 
|  | } | 
|  |  | 
|  | // step 3 | 
|  | md[0] |= 0x80; | 
|  | md[qsize - 1] |= 0x01; | 
|  | if (!BN_bin2bn(md, qsize, q)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // step 4 | 
|  | r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx.get(), | 
|  | use_random_seed, cb); | 
|  | if (r > 0) { | 
|  | break; | 
|  | } | 
|  | if (r != 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // do a callback call | 
|  | // step 5 | 
|  | } | 
|  |  | 
|  | if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // step 6 | 
|  | counter = 0; | 
|  | // "offset = 2" | 
|  |  | 
|  | n = (bits - 1) / 160; | 
|  |  | 
|  | for (;;) { | 
|  | if ((counter != 0) && !BN_GENCB_call(cb, BN_GENCB_GENERATED, counter)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // step 7 | 
|  | BN_zero(W); | 
|  | // now 'buf' contains "SEED + offset - 1" | 
|  | for (k = 0; k <= n; k++) { | 
|  | // obtain "SEED + offset + k" by incrementing: | 
|  | for (size_t i = qsize - 1; i < qsize; i--) { | 
|  | buf[i]++; | 
|  | if (buf[i] != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // step 8 | 
|  | if (!BN_bin2bn(md, qsize, r0) || !BN_lshift(r0, r0, (qsize << 3) * k) || | 
|  | !BN_add(W, W, r0)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // more of step 8 | 
|  | if (!BN_mask_bits(W, bits - 1) || !BN_copy(X, W) || !BN_add(X, X, test)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // step 9 | 
|  | if (!BN_lshift1(r0, q) || !BN_mod(c, X, r0, ctx.get()) || | 
|  | !BN_sub(r0, c, BN_value_one()) || !BN_sub(p, X, r0)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // step 10 | 
|  | if (BN_cmp(p, test) >= 0) { | 
|  | // step 11 | 
|  | r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx.get(), 1, cb); | 
|  | if (r > 0) { | 
|  | goto end;  // found it | 
|  | } | 
|  | if (r != 0) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // step 13 | 
|  | counter++; | 
|  | // "offset = offset + n + 1" | 
|  |  | 
|  | // step 14 | 
|  | if (counter >= 4096) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | end: | 
|  | if (!BN_GENCB_call(cb, 2, 1)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We now need to generate g | 
|  | // Set r0=(p-1)/q | 
|  | if (!BN_sub(test, p, BN_value_one()) || | 
|  | !BN_div(r0, NULL, test, q, ctx.get())) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<BN_MONT_CTX> mont(BN_MONT_CTX_new_for_modulus(p, ctx.get())); | 
|  | if (mont == nullptr || !BN_set_word(test, h)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | // g=test^r0%p | 
|  | if (!BN_mod_exp_mont(g, test, r0, p, ctx.get(), mont.get())) { | 
|  | return 0; | 
|  | } | 
|  | if (!BN_is_one(g)) { | 
|  | break; | 
|  | } | 
|  | if (!BN_add(test, test, BN_value_one())) { | 
|  | return 0; | 
|  | } | 
|  | h++; | 
|  | } | 
|  |  | 
|  | if (!BN_GENCB_call(cb, 3, 1)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BN_free(dsa->p); | 
|  | BN_free(dsa->q); | 
|  | BN_free(dsa->g); | 
|  | dsa->p = BN_dup(p); | 
|  | dsa->q = BN_dup(q); | 
|  | dsa->g = BN_dup(g); | 
|  | if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) { | 
|  | return 0; | 
|  | } | 
|  | if (out_counter != NULL) { | 
|  | *out_counter = counter; | 
|  | } | 
|  | if (out_h != NULL) { | 
|  | *out_h = h; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | DSA *DSAparams_dup(const DSA *dsa) { | 
|  | DSA *ret = DSA_new(); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | ret->p = BN_dup(dsa->p); | 
|  | ret->q = BN_dup(dsa->q); | 
|  | ret->g = BN_dup(dsa->g); | 
|  | if (ret->p == NULL || ret->q == NULL || ret->g == NULL) { | 
|  | DSA_free(ret); | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int DSA_generate_key(DSA *dsa) { | 
|  | if (!dsa_check_key(dsa)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); | 
|  | if (ctx == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ok = 0; | 
|  | BIGNUM *pub_key = nullptr; | 
|  | BIGNUM *priv_key = dsa->priv_key; | 
|  | if (priv_key == nullptr) { | 
|  | priv_key = BN_new(); | 
|  | if (priv_key == nullptr) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BN_rand_range_ex(priv_key, 1, dsa->q)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | pub_key = dsa->pub_key; | 
|  | if (pub_key == nullptr) { | 
|  | pub_key = BN_new(); | 
|  | if (pub_key == nullptr) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock, | 
|  | dsa->p, ctx.get()) || | 
|  | !BN_mod_exp_mont_consttime(pub_key, dsa->g, priv_key, dsa->p, ctx.get(), | 
|  | dsa->method_mont_p)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // The public key is computed from the private key, but is public. | 
|  | bn_declassify(pub_key); | 
|  |  | 
|  | dsa->priv_key = priv_key; | 
|  | dsa->pub_key = pub_key; | 
|  | ok = 1; | 
|  |  | 
|  | err: | 
|  | if (dsa->pub_key == nullptr) { | 
|  | BN_free(pub_key); | 
|  | } | 
|  | if (dsa->priv_key == nullptr) { | 
|  | BN_free(priv_key); | 
|  | } | 
|  |  | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | DSA_SIG *DSA_SIG_new(void) { | 
|  | return reinterpret_cast<DSA_SIG *>(OPENSSL_zalloc(sizeof(DSA_SIG))); | 
|  | } | 
|  |  | 
|  | void DSA_SIG_free(DSA_SIG *sig) { | 
|  | if (!sig) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | BN_free(sig->r); | 
|  | BN_free(sig->s); | 
|  | OPENSSL_free(sig); | 
|  | } | 
|  |  | 
|  | void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **out_r, | 
|  | const BIGNUM **out_s) { | 
|  | if (out_r != NULL) { | 
|  | *out_r = sig->r; | 
|  | } | 
|  | if (out_s != NULL) { | 
|  | *out_s = sig->s; | 
|  | } | 
|  | } | 
|  |  | 
|  | int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) { | 
|  | if (r == NULL || s == NULL) { | 
|  | return 0; | 
|  | } | 
|  | BN_free(sig->r); | 
|  | BN_free(sig->s); | 
|  | sig->r = r; | 
|  | sig->s = s; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // mod_mul_consttime sets |r| to |a| * |b| modulo |mont->N|, treating |a| and | 
|  | // |b| as secret. This function internally uses Montgomery reduction, but | 
|  | // neither inputs nor outputs are in Montgomery form. | 
|  | static int mod_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BN_MONT_CTX *mont, BN_CTX *ctx) { | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | // |BN_mod_mul_montgomery| removes a factor of R, so we cancel it with a | 
|  | // single |BN_to_montgomery| which adds one factor of R. | 
|  | return tmp != nullptr &&  // | 
|  | BN_to_montgomery(tmp, a, mont, ctx) && | 
|  | BN_mod_mul_montgomery(r, tmp, b, mont, ctx); | 
|  | } | 
|  |  | 
|  | DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, const DSA *dsa) { | 
|  | if (!dsa_check_key(dsa)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (dsa->priv_key == NULL) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | BIGNUM *kinv = NULL, *r = NULL, *s = NULL; | 
|  | BIGNUM m; | 
|  | BIGNUM xr; | 
|  | BN_CTX *ctx = NULL; | 
|  | DSA_SIG *ret = NULL; | 
|  |  | 
|  | BN_init(&m); | 
|  | BN_init(&xr); | 
|  | s = BN_new(); | 
|  | { | 
|  | if (s == NULL) { | 
|  | goto err; | 
|  | } | 
|  | ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Cap iterations so that invalid parameters do not infinite loop. This does | 
|  | // not impact valid parameters because the probability of requiring even one | 
|  | // retry is negligible, let alone 32. Unfortunately, DSA was mis-specified, | 
|  | // so invalid parameters are reachable from most callers handling untrusted | 
|  | // private keys. (The |dsa_check_key| call above is not sufficient. Checking | 
|  | // whether arbitrary paremeters form a valid DSA group is expensive.) | 
|  | static const int kMaxIterations = 32; | 
|  | int iters = 0; | 
|  | redo: | 
|  | if (!dsa_sign_setup(dsa, ctx, &kinv, &r)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (digest_len > BN_num_bytes(dsa->q)) { | 
|  | // If the digest length is greater than the size of |dsa->q| use the | 
|  | // BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-3, 4.2. | 
|  | // Note the above check that |dsa->q| is a multiple of 8 bits. | 
|  | digest_len = BN_num_bytes(dsa->q); | 
|  | } | 
|  |  | 
|  | if (BN_bin2bn(digest, digest_len, &m) == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // |m| is bounded by 2^(num_bits(q)), which is slightly looser than q. This | 
|  | // violates |bn_mod_add_consttime| and |mod_mul_consttime|'s preconditions. | 
|  | // (The underlying algorithms could accept looser bounds, but we reduce for | 
|  | // simplicity.) | 
|  | size_t q_width = bn_minimal_width(dsa->q); | 
|  | if (!bn_resize_words(&m, q_width) || !bn_resize_words(&xr, q_width)) { | 
|  | goto err; | 
|  | } | 
|  | bn_reduce_once_in_place(m.d, 0 /* no carry word */, dsa->q->d, | 
|  | xr.d /* scratch space */, q_width); | 
|  |  | 
|  | // Compute s = inv(k) (m + xr) mod q. Note |dsa->method_mont_q| is | 
|  | // initialized by |dsa_sign_setup|. | 
|  | if (!mod_mul_consttime(&xr, dsa->priv_key, r, dsa->method_mont_q, ctx) || | 
|  | !bn_mod_add_consttime(s, &xr, &m, dsa->q, ctx) || | 
|  | !mod_mul_consttime(s, s, kinv, dsa->method_mont_q, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // The signature is computed from the private key, but is public. | 
|  | bn_declassify(r); | 
|  | bn_declassify(s); | 
|  |  | 
|  | // Redo if r or s is zero as required by FIPS 186-3: this is | 
|  | // very unlikely. | 
|  | if (BN_is_zero(r) || BN_is_zero(s)) { | 
|  | iters++; | 
|  | if (iters > kMaxIterations) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_TOO_MANY_ITERATIONS); | 
|  | goto err; | 
|  | } | 
|  | goto redo; | 
|  | } | 
|  |  | 
|  | ret = DSA_SIG_new(); | 
|  | if (ret == NULL) { | 
|  | goto err; | 
|  | } | 
|  | ret->r = r; | 
|  | ret->s = s; | 
|  | } | 
|  |  | 
|  | err: | 
|  | if (ret == NULL) { | 
|  | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); | 
|  | BN_free(r); | 
|  | BN_free(s); | 
|  | } | 
|  | BN_CTX_free(ctx); | 
|  | BN_clear_free(&m); | 
|  | BN_clear_free(&xr); | 
|  | BN_clear_free(kinv); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int DSA_do_verify(const uint8_t *digest, size_t digest_len, const DSA_SIG *sig, | 
|  | const DSA *dsa) { | 
|  | int valid; | 
|  | if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) { | 
|  | return -1; | 
|  | } | 
|  | return valid; | 
|  | } | 
|  |  | 
|  | int DSA_do_check_signature(int *out_valid, const uint8_t *digest, | 
|  | size_t digest_len, const DSA_SIG *sig, | 
|  | const DSA *dsa) { | 
|  | *out_valid = 0; | 
|  | if (!dsa_check_key(dsa)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (dsa->pub_key == NULL) { | 
|  | OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | BIGNUM u1, u2, t1; | 
|  | BN_init(&u1); | 
|  | BN_init(&u2); | 
|  | BN_init(&t1); | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | { | 
|  | if (ctx == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (BN_is_zero(sig->r) || BN_is_negative(sig->r) || | 
|  | BN_ucmp(sig->r, dsa->q) >= 0) { | 
|  | ret = 1; | 
|  | goto err; | 
|  | } | 
|  | if (BN_is_zero(sig->s) || BN_is_negative(sig->s) || | 
|  | BN_ucmp(sig->s, dsa->q) >= 0) { | 
|  | ret = 1; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p, | 
|  | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p, | 
|  | ctx) || | 
|  | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q, | 
|  | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q, | 
|  | ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Calculate W = inv(S) mod Q, in the Montgomery domain. This is slightly | 
|  | // more efficiently computed as FromMont(s)^-1 = (s * R^-1)^-1 = s^-1 * R, | 
|  | // instead of ToMont(s^-1) = s^-1 * R. | 
|  | if (!BN_from_montgomery(&u2, sig->s, dsa->method_mont_q, ctx) || | 
|  | !BN_mod_inverse(&u2, &u2, dsa->q, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // save M in u1 | 
|  | unsigned q_bits = BN_num_bits(dsa->q); | 
|  | if (digest_len > (q_bits >> 3)) { | 
|  | // if the digest length is greater than the size of q use the | 
|  | // BN_num_bits(dsa->q) leftmost bits of the digest, see | 
|  | // fips 186-3, 4.2 | 
|  | digest_len = (q_bits >> 3); | 
|  | } | 
|  |  | 
|  | if (BN_bin2bn(digest, digest_len, &u1) == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // u1 = M * w mod q. w was stored in the Montgomery domain while M was not, | 
|  | // so the result will already be out of the Montgomery domain. | 
|  | if (!BN_mod_mul_montgomery(&u1, &u1, &u2, dsa->method_mont_q, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // u2 = r * w mod q. w was stored in the Montgomery domain while r was not, | 
|  | // so the result will already be out of the Montgomery domain. | 
|  | if (!BN_mod_mul_montgomery(&u2, sig->r, &u2, dsa->method_mont_q, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx, | 
|  | dsa->method_mont_p)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // let u1 = u1 mod q | 
|  | if (!BN_mod(&u1, &t1, dsa->q, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // V is now in u1.  If the signature is correct, it will be | 
|  | // equal to R. | 
|  | *out_valid = BN_ucmp(&u1, sig->r) == 0; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | err: | 
|  | if (ret != 1) { | 
|  | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); | 
|  | } | 
|  | BN_CTX_free(ctx); | 
|  | BN_free(&u1); | 
|  | BN_free(&u2); | 
|  | BN_free(&t1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int DSA_sign(int type, const uint8_t *digest, size_t digest_len, | 
|  | uint8_t *out_sig, unsigned int *out_siglen, const DSA *dsa) { | 
|  | DSA_SIG *s; | 
|  |  | 
|  | s = DSA_do_sign(digest, digest_len, dsa); | 
|  | if (s == NULL) { | 
|  | *out_siglen = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_siglen = i2d_DSA_SIG(s, &out_sig); | 
|  | DSA_SIG_free(s); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int DSA_verify(int type, const uint8_t *digest, size_t digest_len, | 
|  | const uint8_t *sig, size_t sig_len, const DSA *dsa) { | 
|  | int valid; | 
|  | if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) { | 
|  | return -1; | 
|  | } | 
|  | return valid; | 
|  | } | 
|  |  | 
|  | int DSA_check_signature(int *out_valid, const uint8_t *digest, | 
|  | size_t digest_len, const uint8_t *sig, size_t sig_len, | 
|  | const DSA *dsa) { | 
|  | DSA_SIG *s = NULL; | 
|  | int ret = 0; | 
|  | uint8_t *der = NULL; | 
|  |  | 
|  | s = DSA_SIG_new(); | 
|  | { | 
|  | if (s == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | const uint8_t *sigp = sig; | 
|  | if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Ensure that the signature uses DER and doesn't have trailing garbage. | 
|  | int der_len = i2d_DSA_SIG(s, &der); | 
|  | if (der_len < 0 || (size_t)der_len != sig_len || | 
|  | OPENSSL_memcmp(sig, der, sig_len)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa); | 
|  | } | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(der); | 
|  | DSA_SIG_free(s); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // der_len_len returns the number of bytes needed to represent a length of |len| | 
|  | // in DER. | 
|  | static size_t der_len_len(size_t len) { | 
|  | if (len < 0x80) { | 
|  | return 1; | 
|  | } | 
|  | size_t ret = 1; | 
|  | while (len > 0) { | 
|  | ret++; | 
|  | len >>= 8; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int DSA_size(const DSA *dsa) { | 
|  | if (dsa->q == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t order_len = BN_num_bytes(dsa->q); | 
|  | // Compute the maximum length of an |order_len| byte integer. Defensively | 
|  | // assume that the leading 0x00 is included. | 
|  | size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len; | 
|  | if (integer_len < order_len) { | 
|  | return 0; | 
|  | } | 
|  | // A DSA signature is two INTEGERs. | 
|  | size_t value_len = 2 * integer_len; | 
|  | if (value_len < integer_len) { | 
|  | return 0; | 
|  | } | 
|  | // Add the header. | 
|  | size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len; | 
|  | if (ret < value_len) { | 
|  | return 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx, BIGNUM **out_kinv, | 
|  | BIGNUM **out_r) { | 
|  | int ret = 0; | 
|  | BIGNUM k; | 
|  | BN_init(&k); | 
|  | BIGNUM *r = BN_new(); | 
|  | BIGNUM *kinv = BN_new(); | 
|  | if (r == NULL || kinv == NULL || | 
|  | // Get random k | 
|  | !BN_rand_range_ex(&k, 1, dsa->q) || | 
|  | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p, | 
|  | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p, | 
|  | ctx) || | 
|  | !BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q, | 
|  | (CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q, | 
|  | ctx) || | 
|  | // Compute r = (g^k mod p) mod q | 
|  | !BN_mod_exp_mont_consttime(r, dsa->g, &k, dsa->p, ctx, | 
|  | dsa->method_mont_p)) { | 
|  | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  | // Note |BN_mod| below is not constant-time and may leak information about | 
|  | // |r|. |dsa->p| may be significantly larger than |dsa->q|, so this is not | 
|  | // easily performed in constant-time with Montgomery reduction. | 
|  | // | 
|  | // However, |r| at this point is g^k (mod p). It is almost the value of |r| | 
|  | // revealed in the signature anyway (g^k (mod p) (mod q)), going from it to | 
|  | // |k| would require computing a discrete log. | 
|  | bn_declassify(r); | 
|  | if (!BN_mod(r, r, dsa->q, ctx) || | 
|  | // Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little | 
|  | // Theorem. | 
|  | !bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) { | 
|  | OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | BN_clear_free(*out_kinv); | 
|  | *out_kinv = kinv; | 
|  | kinv = NULL; | 
|  |  | 
|  | BN_clear_free(*out_r); | 
|  | *out_r = r; | 
|  | r = NULL; | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_clear_free(&k); | 
|  | BN_clear_free(r); | 
|  | BN_clear_free(kinv); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, | 
|  | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { | 
|  | return CRYPTO_get_ex_new_index_ex(&g_ex_data_class, argl, argp, free_func); | 
|  | } | 
|  |  | 
|  | int DSA_set_ex_data(DSA *dsa, int idx, void *arg) { | 
|  | return CRYPTO_set_ex_data(&dsa->ex_data, idx, arg); | 
|  | } | 
|  |  | 
|  | void *DSA_get_ex_data(const DSA *dsa, int idx) { | 
|  | return CRYPTO_get_ex_data(&dsa->ex_data, idx); | 
|  | } | 
|  |  | 
|  | DH *DSA_dup_DH(const DSA *dsa) { | 
|  | if (dsa == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<DH> ret(DH_new()); | 
|  | if (ret == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | if (dsa->q != nullptr) { | 
|  | ret->priv_length = BN_num_bits(dsa->q); | 
|  | if ((ret->q = BN_dup(dsa->q)) == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | if ((dsa->p != nullptr && (ret->p = BN_dup(dsa->p)) == nullptr) || | 
|  | (dsa->g != nullptr && (ret->g = BN_dup(dsa->g)) == nullptr) || | 
|  | (dsa->pub_key != nullptr && | 
|  | (ret->pub_key = BN_dup(dsa->pub_key)) == nullptr) || | 
|  | (dsa->priv_key != nullptr && | 
|  | (ret->priv_key = BN_dup(dsa->priv_key)) == nullptr)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return ret.release(); | 
|  | } |