| // Copyright 2016 Brian Smith. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| static uint64_t bn_neg_inv_mod_u64(uint64_t n); |
| |
| static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, |
| "BN_MONT_CTX_N0_LIMBS value is invalid"); |
| static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t), |
| "uint64_t is insufficient precision for n0"); |
| |
| uint64_t bn_mont_n0(const BIGNUM *n) { |
| // These conditions are checked by the caller, |BN_MONT_CTX_set| or |
| // |BN_MONT_CTX_new_consttime|. |
| assert(!BN_is_zero(n)); |
| assert(!BN_is_negative(n)); |
| assert(BN_is_odd(n)); |
| |
| // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) ensures that we can do integer |
| // division by |r| by simply ignoring |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, |
| // we can calculate values modulo |r| by just looking at the lowest |
| // |BN_MONT_CTX_N0_LIMBS| limbs. This is what makes Montgomery multiplication |
| // efficient. |
| // |
| // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography |
| // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a |
| // multi-limb Montgomery multiplication of |a * b (mod n)|, given the |
| // unreduced product |t == a * b|, we repeatedly calculate: |
| // |
| // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). |
| // t2 := t1*n0*n |
| // t3 := t + t2 |
| // t := t3 / r copy all limbs of |t3| except the lowest to |t|. |
| // |
| // In the last step, it would only make sense to ignore the lowest limb of |
| // |t3| if it were zero. The middle steps ensure that this is the case: |
| // |
| // t3 == 0 (mod r) |
| // t + t2 == 0 (mod r) |
| // t + t1*n0*n == 0 (mod r) |
| // t1*n0*n == -t (mod r) |
| // t*n0*n == -t (mod r) |
| // n0*n == -1 (mod r) |
| // n0 == -1/n (mod r) |
| // |
| // Thus, in each iteration of the loop, we multiply by the constant factor |
| // |n0|, the negative inverse of n (mod r). |
| |
| // n_mod_r = n % r. As explained above, this is done by taking the lowest |
| // |BN_MONT_CTX_N0_LIMBS| limbs of |n|. |
| uint64_t n_mod_r = n->d[0]; |
| #if BN_MONT_CTX_N0_LIMBS == 2 |
| if (n->width > 1) { |
| n_mod_r |= (uint64_t)n->d[1] << BN_BITS2; |
| } |
| #endif |
| |
| // A 64-bit inverse is enough precision to invert by r. (r is also currently |
| // always 2^64.) |
| return bn_neg_inv_mod_u64(n_mod_r); |
| } |
| |
| // bn_neg_inv_mod_u64 calculates -1/n mod 2^64. |n| must be odd. |
| static uint64_t bn_neg_inv_mod_u64(uint64_t n) { |
| // This is a modified version of the technique described in |
| // https://crypto.stackexchange.com/a/47496 and |
| // https://bearssl.org/bigint.html#montgomery-reduction-and-multiplication. We |
| // modify it to compute the negative inverse directly so that, on 32-bit, |
| // negation happens before we go to double-word precision, instead of at the |
| // end. |
| // |
| // If r = -n^-1 (mod m), then r * (r*n + 2) is -n^(-1) (mod m^2). This is |
| // because, for some k, r*n = k*m - 1. Then: |
| // |
| // r*n * (r*n + 2) = (k*m - 1) * (k*m + 1) = k^2*m^2 - 1 = -1 (mod m^2) |
| // |
| // We start with the negative inverse mod some small power of 2 and square the |
| // modulus up to 2^64. n = n^-1 (mod 8) for all odd n, so r = -n (mod 8). From |
| // there, four iterations are enough for 2^32 and five for 2^64. |
| assert(n % 2 == 1); |
| #if defined(OPENSSL_32_BIT) |
| // Compute the result mod 2^32 first. |
| uint32_t n32 = static_cast<uint32_t>(n); |
| uint32_t r = 0u - n32; |
| for (int i = 0; i < 4; i++) { |
| r *= r * n32 + 2; |
| } |
| // Run one more double-word iteration to get the result mod 2^64. |
| return r * (r * n + 2); |
| #else |
| uint64_t r = 0u - n; |
| for (int i = 0; i < 5; i++) { |
| r *= r * n + 2; |
| } |
| return r; |
| #endif |
| } |
| |
| int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx) { |
| assert(!BN_is_zero(&mont->N)); |
| assert(!BN_is_negative(&mont->N)); |
| assert(BN_is_odd(&mont->N)); |
| assert(bn_minimal_width(&mont->N) == mont->N.width); |
| |
| unsigned n_bits = BN_num_bits(&mont->N); |
| assert(n_bits != 0); |
| if (n_bits == 1) { |
| BN_zero(&mont->RR); |
| return bn_resize_words(&mont->RR, mont->N.width); |
| } |
| |
| unsigned lgBigR = mont->N.width * BN_BITS2; |
| assert(lgBigR >= n_bits); |
| |
| // RR is R, or 2^lgBigR, in the Montgomery domain. We can compute 2 in the |
| // Montgomery domain, 2R or 2^(lgBigR+1), and then use Montgomery |
| // square-and-multiply to exponentiate. |
| // |
| // The square steps take 2^n R to (2^n)*(2^n) R = 2^2n R. This is the same as |
| // doubling 2^n R, n times (doubling any x, n times, computes 2^n * x). When n |
| // is below some threshold, doubling is faster; when above, squaring is |
| // faster. From benchmarking various 32-bit and 64-bit architectures, the word |
| // count seems to work well as a threshold. (Doubling scales linearly and |
| // Montgomery reduction scales quadratically, so the threshold should scale |
| // roughly linearly.) |
| // |
| // The multiply steps take 2^n R to 2*2^n R = 2^(n+1) R. It is faster to |
| // double the value instead, so the square-and-multiply exponentiation would |
| // become square-and-double. However, when using the word count as the |
| // threshold, it turns out that no multiply/double steps will be needed at |
| // all, because squaring any x, i times, computes x^(2^i): |
| // |
| // (2^threshold)^(2^BN_BITS2_LG) R |
| // (2^mont->N.width)^BN_BITS2 R |
| // = 2^(mont->N.width*BN_BITS2) R |
| // = 2^lgBigR R |
| // = RR |
| int threshold = mont->N.width; |
| |
| // Calculate 2^threshold R = 2^(threshold + lgBigR) by doubling. The |
| // first n_bits - 1 doubles can be skipped because we don't need to reduce. |
| if (!BN_set_bit(&mont->RR, n_bits - 1) || |
| !bn_mod_lshift_consttime(&mont->RR, &mont->RR, |
| threshold + (lgBigR - (n_bits - 1)), |
| &mont->N, ctx)) { |
| return 0; |
| } |
| |
| // The above steps are the same regardless of the threshold. The steps below |
| // need to be modified if the threshold changes. |
| assert(threshold == mont->N.width); |
| for (unsigned i = 0; i < BN_BITS2_LG; i++) { |
| if (!BN_mod_mul_montgomery(&mont->RR, &mont->RR, &mont->RR, mont, ctx)) { |
| return 0; |
| } |
| } |
| |
| return bn_resize_words(&mont->RR, mont->N.width); |
| } |