blob: e69edfd352f3cd15223129c973885cdb65fca18a [file] [log] [blame] [view]
# Modular Congruence of the Product of Two Values with Known Modular Congruences
(Draft)
TODO(webstera): Try to simplify this proof.
$$\text{If}$$ 
$${a} \equiv {r} \pmod{{m}}$$
$${b} \equiv {s} \pmod{{n}}$$
$${a}, {r}, {m}, {b}, {s}, {n} \in $$
$$\text{then}$$ 
$${a}{b} \equiv {r}{s} \pmod{G\left(\dfrac{{m}}{G\left({m}, {r}\right)},
\dfrac{{n}}{G\left({n}, {s}\right)}\right) \cdot G\left({m}, {r}\right) \cdot
G\left({n}, {s}\right)}$$
$$\text{where }G\text{ is the greatest common divisor function.}$$ 
$$\text{Proof:}$$ 
1. $$\exists {x} \in : {a} = {m}{x} + {r} \text{ by the definition of modular
congruence}$$ 
2. $$\exists {y} \in : {b} = {n}{y} + {s} \text{ by the definition of modular
congruence}$$ 
3. $$\text{Let }{q} = G\left({m}, {r}\right)$$ 
4. $$\text{Let }{p} = G\left({n}, {s}\right)$$ 
5. $$\text{Let }{z} = G\left(\dfrac{{m}}{{q}}, \dfrac{{n}}{{p}}\right) =
G\left(\dfrac{{m}}{G\left({m}, {r}\right)}, \dfrac{{n}}{G\left({n},
{s}\right)}\right)$$ 
6. $${a} = {q}\left(\dfrac{{m}{x}}{q} + \dfrac{{r}}{q}\right) \text{ by
multiplying } \dfrac{{q}}{{q}} \text{ and distributing }
\dfrac{1}{{q}}$$ 
7. $$\dfrac{{m}{x}}{q}, \dfrac{{r}}{q} \in \text{ by the definition of
} {q} \text{ in (3) }$$ 
8. $${b} = {p}\left(\dfrac{{n}{y}}{{p}} + \dfrac{{s}}{{p}}\right) \text{ by
multiplying } \dfrac{{p}}{{p}} \text{ and distributing }
\dfrac{1}{{p}}$$ 
9. $$\dfrac{{n}{y}}{{p}}, \dfrac{{s}}{{p}} \in \text{ by the definition of
} {p} \text{ in (4) }$$ 
10. $${a} = {q}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} +
\dfrac{{r}}{{q}}\right) \text{ by multiplying } \dfrac{{z}}{{z}}$$ 
11. $$\dfrac{{m}{x}}{{q}{z}} \in \text{ by the definition of } {z} \text{ in
(5) }$$ 
12. $${b} = {p}\left({z} \cdot \dfrac{{n}{y}}{{p}{z}} +
\dfrac{{s}}{{p}}\right) \text{ by multiplying } \dfrac{{z}}{{z}}$$ 
13. $$\dfrac{{n}{y}}{{p}{z}} \in \text{ by the definition of } {z} \text{ in
(5)}$$ 
14. $${a}{b} = {q}{p}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} +
\dfrac{{r}}{{q}}\right)\left({z} \cdot \dfrac{{n}{y}}{{p}{z}} +
\dfrac{{s}}{{p}}\right) \text{ by (10) and (12)}$$ 
15. $${a}{b} = {q}{p}\left({z}^2 \cdot \dfrac{{m}{x}}{{q}{z}} \cdot
\dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{r}}{{q}} \cdot
\dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot
\dfrac{{s}}{{p}} + \dfrac{{r}}{{q}} \cdot \dfrac{{s}}{{p}}\right) \text{ by
partially distributing (14)}$$ 
16. $${a}{b} = {q}{p}\left({z}^2 \cdot \dfrac{{m}{x}}{{q}{z}} \cdot
\dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{r}}{{q}} \cdot
\dfrac{{n}{y}}{{p}{z}} + {z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot
\dfrac{{s}}{{p}}\right) + {r}{s} \text{ by extracting the
} \dfrac{{r}{s}}{{q}{p}} \text{ term from (15) and cancelling
} \dfrac{{q}{p}}{{q}{p}}$$ 
17. $${a}{b} = {q}{p}{z}\left({z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot
\dfrac{{n}{y}}{{p}{z}} + \dfrac{{r}}{{q}} \cdot \dfrac{{n}{y}}{{p}{z}} +
\dfrac{{m}{x}}{{q}{z}} \cdot \dfrac{{s}}{{p}}\right) + {r}{s} \text{ by
factoring } {z} \text{ from (16)}$$ 
18. $${z} \cdot \dfrac{{m}{x}}{{q}{z}} \cdot
\dfrac{{n}{y}}{{p}{z}} + \dfrac{{r}}{{q}} \cdot \dfrac{{n}{y}}{{p}{z}} +
\dfrac{{m}{x}}{{q}{z}} \cdot \dfrac{{s}}{{p}} \in \text{ because
} {z}, \dfrac{{r}}{q}, \dfrac{{s}}{{p}}, \dfrac{{m}{x}}{{q}{z}},
\dfrac{{n}{y}}{{p}{z}}, {z} \in \text{ per (5), (7), (9), (11),
(13)}$$ 
19. $${a}{b} \equiv {r}{s} \pmod{{q}{p}{z}} \text{ by the definition of
modulus}$$ 
20. $${a}{b} {r}{s} \pmod{G\left(\dfrac{{m}}{G\left({m}, {r}\right)},
\dfrac{{n}}{G\left({n}, {s}\right)}\right) \cdot G\left({m}, {r}\right)
\cdot G\left({n}, {s}\right)} \text{ by the definitions of } {q} \text{,
} {p} \text{, and } {z} \text{ in (3), (4), and (5)}$$